Properties

Label 1008.2.q.k.625.9
Level $1008$
Weight $2$
Character 1008.625
Analytic conductor $8.049$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(529,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.9
Character \(\chi\) \(=\) 1008.625
Dual form 1008.2.q.k.529.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.47982 - 0.900079i) q^{3} +(1.26145 + 2.18490i) q^{5} +(-2.63136 - 0.275550i) q^{7} +(1.37972 - 2.66390i) q^{9} +O(q^{10})\) \(q+(1.47982 - 0.900079i) q^{3} +(1.26145 + 2.18490i) q^{5} +(-2.63136 - 0.275550i) q^{7} +(1.37972 - 2.66390i) q^{9} +(-2.85648 + 4.94757i) q^{11} +(-2.45245 + 4.24777i) q^{13} +(3.83330 + 2.09784i) q^{15} +(2.49483 + 4.32118i) q^{17} +(0.00383929 - 0.00664984i) q^{19} +(-4.14195 + 1.96067i) q^{21} +(0.333877 + 0.578292i) q^{23} +(-0.682524 + 1.18217i) q^{25} +(-0.355997 - 5.18394i) q^{27} +(3.85082 + 6.66981i) q^{29} +7.76605 q^{31} +(0.226135 + 9.89256i) q^{33} +(-2.71729 - 6.09686i) q^{35} +(-3.19562 + 5.53498i) q^{37} +(0.194150 + 8.49333i) q^{39} +(5.21159 - 9.02673i) q^{41} +(-4.42935 - 7.67185i) q^{43} +(7.56081 - 0.345848i) q^{45} -2.16104 q^{47} +(6.84814 + 1.45015i) q^{49} +(7.58129 + 4.14900i) q^{51} +(-3.69858 - 6.40613i) q^{53} -14.4133 q^{55} +(-0.000303939 - 0.0132962i) q^{57} +0.523594 q^{59} -8.99082 q^{61} +(-4.36457 + 6.62952i) q^{63} -12.3746 q^{65} +5.09582 q^{67} +(1.01458 + 0.555250i) q^{69} +5.68471 q^{71} +(-1.52062 - 2.63379i) q^{73} +(0.0540325 + 2.36372i) q^{75} +(8.87975 - 12.2318i) q^{77} -6.16230 q^{79} +(-5.19277 - 7.35086i) q^{81} +(0.258726 + 0.448126i) q^{83} +(-6.29422 + 10.9019i) q^{85} +(11.7019 + 6.40406i) q^{87} +(1.19093 - 2.06274i) q^{89} +(7.62377 - 10.5017i) q^{91} +(11.4923 - 6.99006i) q^{93} +0.0193723 q^{95} +(4.32994 + 7.49968i) q^{97} +(9.23873 + 14.4356i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 2 q^{3} + 3 q^{5} + 5 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 2 q^{3} + 3 q^{5} + 5 q^{7} + 10 q^{9} + 3 q^{11} - 3 q^{13} + q^{15} + 7 q^{17} + q^{19} - 2 q^{23} - 10 q^{25} + 4 q^{27} + 9 q^{29} - 8 q^{31} + 29 q^{33} - 14 q^{35} + 2 q^{37} + 16 q^{39} + 16 q^{41} + q^{45} + 10 q^{47} + 15 q^{49} - 7 q^{51} + 11 q^{53} - 22 q^{55} + 7 q^{57} - 38 q^{59} + 26 q^{61} - 48 q^{63} - 26 q^{65} + 52 q^{67} - 4 q^{69} + 48 q^{71} - 35 q^{73} + 23 q^{75} + 17 q^{77} + 20 q^{79} - 38 q^{81} + 28 q^{83} - 20 q^{85} + 33 q^{87} + 6 q^{89} + 37 q^{91} + 19 q^{93} + 24 q^{95} - 29 q^{97} + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.47982 0.900079i 0.854373 0.519661i
\(4\) 0 0
\(5\) 1.26145 + 2.18490i 0.564139 + 0.977117i 0.997129 + 0.0757184i \(0.0241250\pi\)
−0.432991 + 0.901398i \(0.642542\pi\)
\(6\) 0 0
\(7\) −2.63136 0.275550i −0.994562 0.104148i
\(8\) 0 0
\(9\) 1.37972 2.66390i 0.459905 0.887968i
\(10\) 0 0
\(11\) −2.85648 + 4.94757i −0.861262 + 1.49175i 0.00944971 + 0.999955i \(0.496992\pi\)
−0.870712 + 0.491794i \(0.836341\pi\)
\(12\) 0 0
\(13\) −2.45245 + 4.24777i −0.680188 + 1.17812i 0.294735 + 0.955579i \(0.404769\pi\)
−0.974923 + 0.222541i \(0.928565\pi\)
\(14\) 0 0
\(15\) 3.83330 + 2.09784i 0.989754 + 0.541661i
\(16\) 0 0
\(17\) 2.49483 + 4.32118i 0.605086 + 1.04804i 0.992038 + 0.125939i \(0.0401945\pi\)
−0.386952 + 0.922100i \(0.626472\pi\)
\(18\) 0 0
\(19\) 0.00383929 0.00664984i 0.000880793 0.00152558i −0.865585 0.500763i \(-0.833053\pi\)
0.866465 + 0.499237i \(0.166386\pi\)
\(20\) 0 0
\(21\) −4.14195 + 1.96067i −0.903848 + 0.427853i
\(22\) 0 0
\(23\) 0.333877 + 0.578292i 0.0696181 + 0.120582i 0.898733 0.438496i \(-0.144489\pi\)
−0.829115 + 0.559078i \(0.811155\pi\)
\(24\) 0 0
\(25\) −0.682524 + 1.18217i −0.136505 + 0.236433i
\(26\) 0 0
\(27\) −0.355997 5.18394i −0.0685117 0.997650i
\(28\) 0 0
\(29\) 3.85082 + 6.66981i 0.715079 + 1.23855i 0.962929 + 0.269754i \(0.0869424\pi\)
−0.247851 + 0.968798i \(0.579724\pi\)
\(30\) 0 0
\(31\) 7.76605 1.39482 0.697412 0.716671i \(-0.254335\pi\)
0.697412 + 0.716671i \(0.254335\pi\)
\(32\) 0 0
\(33\) 0.226135 + 9.89256i 0.0393651 + 1.72207i
\(34\) 0 0
\(35\) −2.71729 6.09686i −0.459306 1.03056i
\(36\) 0 0
\(37\) −3.19562 + 5.53498i −0.525357 + 0.909946i 0.474207 + 0.880414i \(0.342735\pi\)
−0.999564 + 0.0295319i \(0.990598\pi\)
\(38\) 0 0
\(39\) 0.194150 + 8.49333i 0.0310889 + 1.36002i
\(40\) 0 0
\(41\) 5.21159 9.02673i 0.813913 1.40974i −0.0961931 0.995363i \(-0.530667\pi\)
0.910106 0.414376i \(-0.136000\pi\)
\(42\) 0 0
\(43\) −4.42935 7.67185i −0.675469 1.16995i −0.976332 0.216279i \(-0.930608\pi\)
0.300863 0.953668i \(-0.402725\pi\)
\(44\) 0 0
\(45\) 7.56081 0.345848i 1.12710 0.0515559i
\(46\) 0 0
\(47\) −2.16104 −0.315220 −0.157610 0.987501i \(-0.550379\pi\)
−0.157610 + 0.987501i \(0.550379\pi\)
\(48\) 0 0
\(49\) 6.84814 + 1.45015i 0.978306 + 0.207164i
\(50\) 0 0
\(51\) 7.58129 + 4.14900i 1.06159 + 0.580977i
\(52\) 0 0
\(53\) −3.69858 6.40613i −0.508039 0.879950i −0.999957 0.00930815i \(-0.997037\pi\)
0.491917 0.870642i \(-0.336296\pi\)
\(54\) 0 0
\(55\) −14.4133 −1.94348
\(56\) 0 0
\(57\) −0.000303939 0.0132962i −4.02578e−5 0.00176112i
\(58\) 0 0
\(59\) 0.523594 0.0681661 0.0340831 0.999419i \(-0.489149\pi\)
0.0340831 + 0.999419i \(0.489149\pi\)
\(60\) 0 0
\(61\) −8.99082 −1.15116 −0.575578 0.817747i \(-0.695223\pi\)
−0.575578 + 0.817747i \(0.695223\pi\)
\(62\) 0 0
\(63\) −4.36457 + 6.62952i −0.549885 + 0.835241i
\(64\) 0 0
\(65\) −12.3746 −1.53488
\(66\) 0 0
\(67\) 5.09582 0.622554 0.311277 0.950319i \(-0.399243\pi\)
0.311277 + 0.950319i \(0.399243\pi\)
\(68\) 0 0
\(69\) 1.01458 + 0.555250i 0.122142 + 0.0668443i
\(70\) 0 0
\(71\) 5.68471 0.674651 0.337325 0.941388i \(-0.390478\pi\)
0.337325 + 0.941388i \(0.390478\pi\)
\(72\) 0 0
\(73\) −1.52062 2.63379i −0.177975 0.308262i 0.763212 0.646148i \(-0.223621\pi\)
−0.941187 + 0.337887i \(0.890288\pi\)
\(74\) 0 0
\(75\) 0.0540325 + 2.36372i 0.00623913 + 0.272938i
\(76\) 0 0
\(77\) 8.87975 12.2318i 1.01194 1.39394i
\(78\) 0 0
\(79\) −6.16230 −0.693313 −0.346657 0.937992i \(-0.612683\pi\)
−0.346657 + 0.937992i \(0.612683\pi\)
\(80\) 0 0
\(81\) −5.19277 7.35086i −0.576974 0.816762i
\(82\) 0 0
\(83\) 0.258726 + 0.448126i 0.0283988 + 0.0491882i 0.879876 0.475204i \(-0.157626\pi\)
−0.851477 + 0.524392i \(0.824292\pi\)
\(84\) 0 0
\(85\) −6.29422 + 10.9019i −0.682704 + 1.18248i
\(86\) 0 0
\(87\) 11.7019 + 6.40406i 1.25457 + 0.686587i
\(88\) 0 0
\(89\) 1.19093 2.06274i 0.126238 0.218650i −0.795978 0.605325i \(-0.793043\pi\)
0.922216 + 0.386675i \(0.126376\pi\)
\(90\) 0 0
\(91\) 7.62377 10.5017i 0.799188 1.10087i
\(92\) 0 0
\(93\) 11.4923 6.99006i 1.19170 0.724835i
\(94\) 0 0
\(95\) 0.0193723 0.00198756
\(96\) 0 0
\(97\) 4.32994 + 7.49968i 0.439639 + 0.761477i 0.997662 0.0683485i \(-0.0217730\pi\)
−0.558022 + 0.829826i \(0.688440\pi\)
\(98\) 0 0
\(99\) 9.23873 + 14.4356i 0.928527 + 1.45084i
\(100\) 0 0
\(101\) 4.66783 8.08492i 0.464466 0.804479i −0.534711 0.845035i \(-0.679580\pi\)
0.999177 + 0.0405558i \(0.0129128\pi\)
\(102\) 0 0
\(103\) 8.10926 + 14.0456i 0.799029 + 1.38396i 0.920249 + 0.391333i \(0.127986\pi\)
−0.121220 + 0.992626i \(0.538681\pi\)
\(104\) 0 0
\(105\) −9.50874 6.57646i −0.927958 0.641797i
\(106\) 0 0
\(107\) −4.50171 + 7.79718i −0.435196 + 0.753782i −0.997312 0.0732767i \(-0.976654\pi\)
0.562115 + 0.827059i \(0.309988\pi\)
\(108\) 0 0
\(109\) 3.71563 + 6.43566i 0.355893 + 0.616424i 0.987270 0.159051i \(-0.0508435\pi\)
−0.631378 + 0.775476i \(0.717510\pi\)
\(110\) 0 0
\(111\) 0.252984 + 11.0671i 0.0240121 + 1.05044i
\(112\) 0 0
\(113\) 7.14642 12.3780i 0.672278 1.16442i −0.304978 0.952359i \(-0.598649\pi\)
0.977256 0.212061i \(-0.0680175\pi\)
\(114\) 0 0
\(115\) −0.842339 + 1.45897i −0.0785486 + 0.136050i
\(116\) 0 0
\(117\) 7.93197 + 12.3938i 0.733311 + 1.14581i
\(118\) 0 0
\(119\) −5.37411 12.0580i −0.492644 1.10536i
\(120\) 0 0
\(121\) −10.8190 18.7390i −0.983544 1.70355i
\(122\) 0 0
\(123\) −0.412578 18.0487i −0.0372009 1.62740i
\(124\) 0 0
\(125\) 9.17064 0.820247
\(126\) 0 0
\(127\) 1.96011 0.173932 0.0869660 0.996211i \(-0.472283\pi\)
0.0869660 + 0.996211i \(0.472283\pi\)
\(128\) 0 0
\(129\) −13.4599 7.36618i −1.18508 0.648556i
\(130\) 0 0
\(131\) −1.99412 3.45392i −0.174227 0.301771i 0.765666 0.643238i \(-0.222409\pi\)
−0.939894 + 0.341467i \(0.889076\pi\)
\(132\) 0 0
\(133\) −0.0119349 + 0.0164402i −0.00103489 + 0.00142555i
\(134\) 0 0
\(135\) 10.8773 7.31712i 0.936171 0.629757i
\(136\) 0 0
\(137\) 3.70422 6.41589i 0.316473 0.548147i −0.663277 0.748374i \(-0.730835\pi\)
0.979749 + 0.200227i \(0.0641681\pi\)
\(138\) 0 0
\(139\) −6.92660 + 11.9972i −0.587507 + 1.01759i 0.407051 + 0.913405i \(0.366557\pi\)
−0.994558 + 0.104186i \(0.966776\pi\)
\(140\) 0 0
\(141\) −3.19795 + 1.94511i −0.269316 + 0.163808i
\(142\) 0 0
\(143\) −14.0108 24.2674i −1.17164 2.02934i
\(144\) 0 0
\(145\) −9.71524 + 16.8273i −0.806807 + 1.39743i
\(146\) 0 0
\(147\) 11.4392 4.01792i 0.943493 0.331392i
\(148\) 0 0
\(149\) 7.05202 + 12.2144i 0.577724 + 1.00065i 0.995740 + 0.0922071i \(0.0293922\pi\)
−0.418016 + 0.908440i \(0.637274\pi\)
\(150\) 0 0
\(151\) −5.30027 + 9.18034i −0.431330 + 0.747086i −0.996988 0.0775543i \(-0.975289\pi\)
0.565658 + 0.824640i \(0.308622\pi\)
\(152\) 0 0
\(153\) 14.9534 0.683999i 1.20891 0.0552980i
\(154\) 0 0
\(155\) 9.79650 + 16.9680i 0.786874 + 1.36291i
\(156\) 0 0
\(157\) −0.259558 −0.0207150 −0.0103575 0.999946i \(-0.503297\pi\)
−0.0103575 + 0.999946i \(0.503297\pi\)
\(158\) 0 0
\(159\) −11.2393 6.15089i −0.891331 0.487797i
\(160\) 0 0
\(161\) −0.719203 1.61370i −0.0566811 0.127177i
\(162\) 0 0
\(163\) −6.31882 + 10.9445i −0.494928 + 0.857241i −0.999983 0.00584647i \(-0.998139\pi\)
0.505055 + 0.863087i \(0.331472\pi\)
\(164\) 0 0
\(165\) −21.3290 + 12.9731i −1.66046 + 1.00995i
\(166\) 0 0
\(167\) 5.74959 9.95859i 0.444917 0.770619i −0.553129 0.833095i \(-0.686567\pi\)
0.998046 + 0.0624765i \(0.0198999\pi\)
\(168\) 0 0
\(169\) −5.52905 9.57659i −0.425311 0.736661i
\(170\) 0 0
\(171\) −0.0124174 0.0194024i −0.000949583 0.00148374i
\(172\) 0 0
\(173\) −15.8094 −1.20197 −0.600984 0.799261i \(-0.705225\pi\)
−0.600984 + 0.799261i \(0.705225\pi\)
\(174\) 0 0
\(175\) 2.12171 2.92264i 0.160387 0.220931i
\(176\) 0 0
\(177\) 0.774823 0.471276i 0.0582393 0.0354233i
\(178\) 0 0
\(179\) 8.49849 + 14.7198i 0.635207 + 1.10021i 0.986471 + 0.163934i \(0.0524184\pi\)
−0.351265 + 0.936276i \(0.614248\pi\)
\(180\) 0 0
\(181\) 6.35841 0.472617 0.236308 0.971678i \(-0.424062\pi\)
0.236308 + 0.971678i \(0.424062\pi\)
\(182\) 0 0
\(183\) −13.3048 + 8.09245i −0.983516 + 0.598211i
\(184\) 0 0
\(185\) −16.1245 −1.18550
\(186\) 0 0
\(187\) −28.5058 −2.08455
\(188\) 0 0
\(189\) −0.491679 + 13.7389i −0.0357644 + 0.999360i
\(190\) 0 0
\(191\) 4.14094 0.299628 0.149814 0.988714i \(-0.452133\pi\)
0.149814 + 0.988714i \(0.452133\pi\)
\(192\) 0 0
\(193\) −7.69586 −0.553960 −0.276980 0.960876i \(-0.589334\pi\)
−0.276980 + 0.960876i \(0.589334\pi\)
\(194\) 0 0
\(195\) −18.3122 + 11.1381i −1.31136 + 0.797618i
\(196\) 0 0
\(197\) 3.29508 0.234765 0.117383 0.993087i \(-0.462550\pi\)
0.117383 + 0.993087i \(0.462550\pi\)
\(198\) 0 0
\(199\) −8.08840 14.0095i −0.573371 0.993108i −0.996216 0.0869063i \(-0.972302\pi\)
0.422845 0.906202i \(-0.361031\pi\)
\(200\) 0 0
\(201\) 7.54088 4.58664i 0.531893 0.323517i
\(202\) 0 0
\(203\) −8.29503 18.6118i −0.582197 1.30629i
\(204\) 0 0
\(205\) 26.2967 1.83664
\(206\) 0 0
\(207\) 2.00117 0.0915377i 0.139091 0.00636231i
\(208\) 0 0
\(209\) 0.0219337 + 0.0379903i 0.00151719 + 0.00262784i
\(210\) 0 0
\(211\) 13.9633 24.1851i 0.961273 1.66497i 0.241961 0.970286i \(-0.422209\pi\)
0.719312 0.694687i \(-0.244457\pi\)
\(212\) 0 0
\(213\) 8.41232 5.11668i 0.576403 0.350589i
\(214\) 0 0
\(215\) 11.1748 19.3554i 0.762116 1.32002i
\(216\) 0 0
\(217\) −20.4353 2.13994i −1.38724 0.145268i
\(218\) 0 0
\(219\) −4.62086 2.52885i −0.312249 0.170884i
\(220\) 0 0
\(221\) −24.4738 −1.64629
\(222\) 0 0
\(223\) 10.1652 + 17.6066i 0.680711 + 1.17903i 0.974764 + 0.223237i \(0.0716623\pi\)
−0.294054 + 0.955789i \(0.595004\pi\)
\(224\) 0 0
\(225\) 2.20749 + 3.44923i 0.147166 + 0.229949i
\(226\) 0 0
\(227\) −2.84470 + 4.92716i −0.188809 + 0.327027i −0.944853 0.327493i \(-0.893796\pi\)
0.756044 + 0.654520i \(0.227129\pi\)
\(228\) 0 0
\(229\) −7.42708 12.8641i −0.490795 0.850082i 0.509149 0.860679i \(-0.329960\pi\)
−0.999944 + 0.0105964i \(0.996627\pi\)
\(230\) 0 0
\(231\) 2.13085 26.0932i 0.140200 1.71681i
\(232\) 0 0
\(233\) 6.70652 11.6160i 0.439358 0.760991i −0.558282 0.829652i \(-0.688539\pi\)
0.997640 + 0.0686603i \(0.0218725\pi\)
\(234\) 0 0
\(235\) −2.72605 4.72166i −0.177828 0.308007i
\(236\) 0 0
\(237\) −9.11908 + 5.54656i −0.592348 + 0.360288i
\(238\) 0 0
\(239\) 9.33123 16.1622i 0.603587 1.04544i −0.388686 0.921370i \(-0.627071\pi\)
0.992273 0.124073i \(-0.0395958\pi\)
\(240\) 0 0
\(241\) 10.7080 18.5468i 0.689762 1.19470i −0.282153 0.959369i \(-0.591049\pi\)
0.971915 0.235333i \(-0.0756181\pi\)
\(242\) 0 0
\(243\) −14.3007 6.20403i −0.917390 0.397988i
\(244\) 0 0
\(245\) 5.47018 + 16.7918i 0.349477 + 1.07279i
\(246\) 0 0
\(247\) 0.0188313 + 0.0326168i 0.00119821 + 0.00207536i
\(248\) 0 0
\(249\) 0.786216 + 0.430271i 0.0498244 + 0.0272673i
\(250\) 0 0
\(251\) 0.462898 0.0292179 0.0146089 0.999893i \(-0.495350\pi\)
0.0146089 + 0.999893i \(0.495350\pi\)
\(252\) 0 0
\(253\) −3.81485 −0.239838
\(254\) 0 0
\(255\) 0.498286 + 21.7981i 0.0312039 + 1.36505i
\(256\) 0 0
\(257\) −0.401256 0.694996i −0.0250297 0.0433527i 0.853239 0.521520i \(-0.174635\pi\)
−0.878269 + 0.478167i \(0.841301\pi\)
\(258\) 0 0
\(259\) 9.93401 13.6840i 0.617270 0.850282i
\(260\) 0 0
\(261\) 23.0808 1.05576i 1.42866 0.0653501i
\(262\) 0 0
\(263\) 0.100693 0.174406i 0.00620902 0.0107543i −0.862904 0.505368i \(-0.831357\pi\)
0.869113 + 0.494613i \(0.164690\pi\)
\(264\) 0 0
\(265\) 9.33117 16.1621i 0.573209 0.992828i
\(266\) 0 0
\(267\) −0.0942803 4.12441i −0.00576986 0.252410i
\(268\) 0 0
\(269\) −11.1773 19.3596i −0.681490 1.18038i −0.974526 0.224274i \(-0.927999\pi\)
0.293036 0.956101i \(-0.405334\pi\)
\(270\) 0 0
\(271\) 1.78925 3.09907i 0.108689 0.188255i −0.806550 0.591166i \(-0.798668\pi\)
0.915240 + 0.402910i \(0.132001\pi\)
\(272\) 0 0
\(273\) 1.82946 22.4025i 0.110724 1.35586i
\(274\) 0 0
\(275\) −3.89924 6.75367i −0.235133 0.407262i
\(276\) 0 0
\(277\) 5.05336 8.75267i 0.303627 0.525897i −0.673328 0.739344i \(-0.735136\pi\)
0.976955 + 0.213447i \(0.0684690\pi\)
\(278\) 0 0
\(279\) 10.7149 20.6880i 0.641487 1.23856i
\(280\) 0 0
\(281\) 12.7114 + 22.0167i 0.758296 + 1.31341i 0.943719 + 0.330749i \(0.107301\pi\)
−0.185422 + 0.982659i \(0.559365\pi\)
\(282\) 0 0
\(283\) −3.87666 −0.230443 −0.115222 0.993340i \(-0.536758\pi\)
−0.115222 + 0.993340i \(0.536758\pi\)
\(284\) 0 0
\(285\) 0.0286675 0.0174366i 0.00169811 0.00103286i
\(286\) 0 0
\(287\) −16.2009 + 22.3166i −0.956308 + 1.31730i
\(288\) 0 0
\(289\) −3.94838 + 6.83879i −0.232257 + 0.402282i
\(290\) 0 0
\(291\) 13.1578 + 7.20087i 0.771326 + 0.422122i
\(292\) 0 0
\(293\) 0.428834 0.742762i 0.0250527 0.0433926i −0.853227 0.521539i \(-0.825358\pi\)
0.878280 + 0.478147i \(0.158691\pi\)
\(294\) 0 0
\(295\) 0.660489 + 1.14400i 0.0384551 + 0.0666063i
\(296\) 0 0
\(297\) 26.6648 + 13.0465i 1.54725 + 0.757036i
\(298\) 0 0
\(299\) −3.27527 −0.189414
\(300\) 0 0
\(301\) 9.54124 + 21.4079i 0.549948 + 1.23393i
\(302\) 0 0
\(303\) −0.369532 16.1656i −0.0212290 0.928690i
\(304\) 0 0
\(305\) −11.3415 19.6440i −0.649412 1.12481i
\(306\) 0 0
\(307\) 0.717950 0.0409756 0.0204878 0.999790i \(-0.493478\pi\)
0.0204878 + 0.999790i \(0.493478\pi\)
\(308\) 0 0
\(309\) 24.6424 + 13.4860i 1.40186 + 0.767192i
\(310\) 0 0
\(311\) 9.45213 0.535981 0.267990 0.963422i \(-0.413640\pi\)
0.267990 + 0.963422i \(0.413640\pi\)
\(312\) 0 0
\(313\) −23.2635 −1.31493 −0.657464 0.753486i \(-0.728371\pi\)
−0.657464 + 0.753486i \(0.728371\pi\)
\(314\) 0 0
\(315\) −19.9905 1.17333i −1.12634 0.0661098i
\(316\) 0 0
\(317\) 13.2354 0.743375 0.371687 0.928358i \(-0.378779\pi\)
0.371687 + 0.928358i \(0.378779\pi\)
\(318\) 0 0
\(319\) −43.9992 −2.46348
\(320\) 0 0
\(321\) 0.356380 + 15.5903i 0.0198912 + 0.870165i
\(322\) 0 0
\(323\) 0.0383135 0.00213182
\(324\) 0 0
\(325\) −3.34772 5.79841i −0.185698 0.321638i
\(326\) 0 0
\(327\) 11.2911 + 6.17924i 0.624397 + 0.341713i
\(328\) 0 0
\(329\) 5.68649 + 0.595476i 0.313506 + 0.0328297i
\(330\) 0 0
\(331\) 30.4330 1.67275 0.836375 0.548158i \(-0.184671\pi\)
0.836375 + 0.548158i \(0.184671\pi\)
\(332\) 0 0
\(333\) 10.3356 + 16.1495i 0.566388 + 0.884989i
\(334\) 0 0
\(335\) 6.42813 + 11.1339i 0.351206 + 0.608307i
\(336\) 0 0
\(337\) −0.767420 + 1.32921i −0.0418041 + 0.0724067i −0.886170 0.463360i \(-0.846644\pi\)
0.844366 + 0.535766i \(0.179977\pi\)
\(338\) 0 0
\(339\) −0.565751 24.7494i −0.0307274 1.34421i
\(340\) 0 0
\(341\) −22.1836 + 38.4231i −1.20131 + 2.08073i
\(342\) 0 0
\(343\) −17.6204 5.70287i −0.951410 0.307926i
\(344\) 0 0
\(345\) 0.0666843 + 2.91719i 0.00359016 + 0.157056i
\(346\) 0 0
\(347\) 28.6072 1.53571 0.767856 0.640622i \(-0.221323\pi\)
0.767856 + 0.640622i \(0.221323\pi\)
\(348\) 0 0
\(349\) −9.05123 15.6772i −0.484501 0.839181i 0.515340 0.856986i \(-0.327666\pi\)
−0.999841 + 0.0178047i \(0.994332\pi\)
\(350\) 0 0
\(351\) 22.8933 + 11.2012i 1.22195 + 0.597875i
\(352\) 0 0
\(353\) −7.29541 + 12.6360i −0.388295 + 0.672547i −0.992220 0.124494i \(-0.960269\pi\)
0.603925 + 0.797041i \(0.293603\pi\)
\(354\) 0 0
\(355\) 7.17099 + 12.4205i 0.380596 + 0.659212i
\(356\) 0 0
\(357\) −18.8059 13.0066i −0.995313 0.688380i
\(358\) 0 0
\(359\) 1.05831 1.83304i 0.0558554 0.0967443i −0.836746 0.547592i \(-0.815545\pi\)
0.892601 + 0.450847i \(0.148878\pi\)
\(360\) 0 0
\(361\) 9.49997 + 16.4544i 0.499998 + 0.866023i
\(362\) 0 0
\(363\) −32.8767 17.9924i −1.72558 0.944356i
\(364\) 0 0
\(365\) 3.83638 6.64480i 0.200805 0.347805i
\(366\) 0 0
\(367\) 3.33104 5.76954i 0.173879 0.301167i −0.765894 0.642967i \(-0.777703\pi\)
0.939773 + 0.341800i \(0.111036\pi\)
\(368\) 0 0
\(369\) −16.8558 26.3375i −0.877480 1.37107i
\(370\) 0 0
\(371\) 7.96710 + 17.8760i 0.413631 + 0.928076i
\(372\) 0 0
\(373\) 6.24916 + 10.8239i 0.323569 + 0.560438i 0.981222 0.192883i \(-0.0617838\pi\)
−0.657653 + 0.753321i \(0.728451\pi\)
\(374\) 0 0
\(375\) 13.5709 8.25430i 0.700796 0.426250i
\(376\) 0 0
\(377\) −37.7758 −1.94555
\(378\) 0 0
\(379\) 19.5504 1.00423 0.502117 0.864800i \(-0.332555\pi\)
0.502117 + 0.864800i \(0.332555\pi\)
\(380\) 0 0
\(381\) 2.90061 1.76426i 0.148603 0.0903856i
\(382\) 0 0
\(383\) −1.33740 2.31644i −0.0683379 0.118365i 0.829832 0.558013i \(-0.188436\pi\)
−0.898170 + 0.439649i \(0.855103\pi\)
\(384\) 0 0
\(385\) 37.9265 + 3.97158i 1.93292 + 0.202411i
\(386\) 0 0
\(387\) −26.5483 + 1.21438i −1.34953 + 0.0617303i
\(388\) 0 0
\(389\) 1.98155 3.43214i 0.100469 0.174017i −0.811409 0.584478i \(-0.801299\pi\)
0.911878 + 0.410462i \(0.134632\pi\)
\(390\) 0 0
\(391\) −1.66593 + 2.88548i −0.0842499 + 0.145925i
\(392\) 0 0
\(393\) −6.05974 3.31631i −0.305673 0.167285i
\(394\) 0 0
\(395\) −7.77345 13.4640i −0.391125 0.677448i
\(396\) 0 0
\(397\) 10.2978 17.8362i 0.516829 0.895175i −0.482980 0.875632i \(-0.660446\pi\)
0.999809 0.0195431i \(-0.00622114\pi\)
\(398\) 0 0
\(399\) −0.00286400 + 0.0350709i −0.000143379 + 0.00175574i
\(400\) 0 0
\(401\) 1.91979 + 3.32517i 0.0958696 + 0.166051i 0.909971 0.414671i \(-0.136103\pi\)
−0.814102 + 0.580722i \(0.802770\pi\)
\(402\) 0 0
\(403\) −19.0459 + 32.9884i −0.948742 + 1.64327i
\(404\) 0 0
\(405\) 9.51046 20.6184i 0.472579 1.02454i
\(406\) 0 0
\(407\) −18.2565 31.6212i −0.904940 1.56740i
\(408\) 0 0
\(409\) −29.4227 −1.45486 −0.727428 0.686184i \(-0.759285\pi\)
−0.727428 + 0.686184i \(0.759285\pi\)
\(410\) 0 0
\(411\) −0.293247 12.8284i −0.0144648 0.632780i
\(412\) 0 0
\(413\) −1.37777 0.144276i −0.0677954 0.00709938i
\(414\) 0 0
\(415\) −0.652741 + 1.13058i −0.0320418 + 0.0554980i
\(416\) 0 0
\(417\) 0.548349 + 23.9882i 0.0268528 + 1.17471i
\(418\) 0 0
\(419\) −4.40821 + 7.63525i −0.215355 + 0.373006i −0.953382 0.301765i \(-0.902424\pi\)
0.738027 + 0.674771i \(0.235758\pi\)
\(420\) 0 0
\(421\) −17.6437 30.5597i −0.859899 1.48939i −0.872024 0.489462i \(-0.837193\pi\)
0.0121255 0.999926i \(-0.496140\pi\)
\(422\) 0 0
\(423\) −2.98162 + 5.75681i −0.144972 + 0.279906i
\(424\) 0 0
\(425\) −6.81113 −0.330388
\(426\) 0 0
\(427\) 23.6581 + 2.47742i 1.14490 + 0.119891i
\(428\) 0 0
\(429\) −42.5759 23.3005i −2.05559 1.12496i
\(430\) 0 0
\(431\) 12.8099 + 22.1873i 0.617030 + 1.06873i 0.990025 + 0.140893i \(0.0449975\pi\)
−0.372995 + 0.927833i \(0.621669\pi\)
\(432\) 0 0
\(433\) 16.8556 0.810030 0.405015 0.914310i \(-0.367266\pi\)
0.405015 + 0.914310i \(0.367266\pi\)
\(434\) 0 0
\(435\) 0.769113 + 33.6458i 0.0368762 + 1.61319i
\(436\) 0 0
\(437\) 0.00512739 0.000245277
\(438\) 0 0
\(439\) −30.9192 −1.47569 −0.737846 0.674969i \(-0.764157\pi\)
−0.737846 + 0.674969i \(0.764157\pi\)
\(440\) 0 0
\(441\) 13.3115 16.2420i 0.633883 0.773429i
\(442\) 0 0
\(443\) 9.31087 0.442373 0.221186 0.975232i \(-0.429007\pi\)
0.221186 + 0.975232i \(0.429007\pi\)
\(444\) 0 0
\(445\) 6.00918 0.284862
\(446\) 0 0
\(447\) 21.4297 + 11.7278i 1.01359 + 0.554705i
\(448\) 0 0
\(449\) 23.8055 1.12345 0.561724 0.827324i \(-0.310138\pi\)
0.561724 + 0.827324i \(0.310138\pi\)
\(450\) 0 0
\(451\) 29.7736 + 51.5694i 1.40198 + 2.42831i
\(452\) 0 0
\(453\) 0.419599 + 18.3559i 0.0197145 + 0.862435i
\(454\) 0 0
\(455\) 32.5621 + 3.40983i 1.52653 + 0.159855i
\(456\) 0 0
\(457\) −13.8110 −0.646053 −0.323027 0.946390i \(-0.604700\pi\)
−0.323027 + 0.946390i \(0.604700\pi\)
\(458\) 0 0
\(459\) 21.5126 14.4714i 1.00412 0.675467i
\(460\) 0 0
\(461\) −0.00256407 0.00444110i −0.000119421 0.000206843i 0.865966 0.500103i \(-0.166705\pi\)
−0.866085 + 0.499897i \(0.833371\pi\)
\(462\) 0 0
\(463\) −12.9682 + 22.4616i −0.602685 + 1.04388i 0.389728 + 0.920930i \(0.372569\pi\)
−0.992413 + 0.122951i \(0.960764\pi\)
\(464\) 0 0
\(465\) 29.7696 + 16.2920i 1.38053 + 0.755522i
\(466\) 0 0
\(467\) 12.0484 20.8684i 0.557532 0.965673i −0.440170 0.897914i \(-0.645082\pi\)
0.997702 0.0677588i \(-0.0215848\pi\)
\(468\) 0 0
\(469\) −13.4090 1.40416i −0.619168 0.0648379i
\(470\) 0 0
\(471\) −0.384098 + 0.233622i −0.0176983 + 0.0107648i
\(472\) 0 0
\(473\) 50.6094 2.32702
\(474\) 0 0
\(475\) 0.00524081 + 0.00907735i 0.000240465 + 0.000416497i
\(476\) 0 0
\(477\) −22.1683 + 1.01403i −1.01502 + 0.0464291i
\(478\) 0 0
\(479\) 7.39114 12.8018i 0.337710 0.584931i −0.646292 0.763091i \(-0.723681\pi\)
0.984002 + 0.178160i \(0.0570144\pi\)
\(480\) 0 0
\(481\) −15.6742 27.1486i −0.714683 1.23787i
\(482\) 0 0
\(483\) −2.51674 1.74063i −0.114516 0.0792016i
\(484\) 0 0
\(485\) −10.9240 + 18.9210i −0.496035 + 0.859158i
\(486\) 0 0
\(487\) −9.38360 16.2529i −0.425211 0.736488i 0.571229 0.820791i \(-0.306467\pi\)
−0.996440 + 0.0843033i \(0.973134\pi\)
\(488\) 0 0
\(489\) 0.500234 + 21.8833i 0.0226213 + 0.989598i
\(490\) 0 0
\(491\) −18.2871 + 31.6741i −0.825284 + 1.42943i 0.0764182 + 0.997076i \(0.475652\pi\)
−0.901702 + 0.432358i \(0.857682\pi\)
\(492\) 0 0
\(493\) −19.2143 + 33.2801i −0.865368 + 1.49886i
\(494\) 0 0
\(495\) −19.8862 + 38.3956i −0.893819 + 1.72575i
\(496\) 0 0
\(497\) −14.9585 1.56642i −0.670982 0.0702637i
\(498\) 0 0
\(499\) 2.31591 + 4.01127i 0.103674 + 0.179569i 0.913196 0.407521i \(-0.133607\pi\)
−0.809521 + 0.587090i \(0.800273\pi\)
\(500\) 0 0
\(501\) −0.455170 19.9120i −0.0203355 0.889602i
\(502\) 0 0
\(503\) −16.4143 −0.731879 −0.365940 0.930639i \(-0.619252\pi\)
−0.365940 + 0.930639i \(0.619252\pi\)
\(504\) 0 0
\(505\) 23.5530 1.04809
\(506\) 0 0
\(507\) −16.8017 9.19502i −0.746188 0.408365i
\(508\) 0 0
\(509\) −5.24169 9.07888i −0.232334 0.402414i 0.726161 0.687525i \(-0.241303\pi\)
−0.958495 + 0.285111i \(0.907970\pi\)
\(510\) 0 0
\(511\) 3.27556 + 7.34947i 0.144902 + 0.325121i
\(512\) 0 0
\(513\) −0.0358392 0.0175353i −0.00158234 0.000774203i
\(514\) 0 0
\(515\) −20.4589 + 35.4358i −0.901526 + 1.56149i
\(516\) 0 0
\(517\) 6.17298 10.6919i 0.271487 0.470230i
\(518\) 0 0
\(519\) −23.3951 + 14.2297i −1.02693 + 0.624616i
\(520\) 0 0
\(521\) −11.0087 19.0675i −0.482298 0.835364i 0.517496 0.855686i \(-0.326864\pi\)
−0.999793 + 0.0203215i \(0.993531\pi\)
\(522\) 0 0
\(523\) 1.18541 2.05320i 0.0518346 0.0897801i −0.838944 0.544218i \(-0.816826\pi\)
0.890778 + 0.454438i \(0.150160\pi\)
\(524\) 0 0
\(525\) 0.509144 6.23468i 0.0222208 0.272104i
\(526\) 0 0
\(527\) 19.3750 + 33.5585i 0.843988 + 1.46183i
\(528\) 0 0
\(529\) 11.2771 19.5324i 0.490307 0.849236i
\(530\) 0 0
\(531\) 0.722411 1.39480i 0.0313500 0.0605293i
\(532\) 0 0
\(533\) 25.5623 + 44.2753i 1.10723 + 1.91777i
\(534\) 0 0
\(535\) −22.7147 −0.982044
\(536\) 0 0
\(537\) 25.8252 + 14.1333i 1.11444 + 0.609898i
\(538\) 0 0
\(539\) −26.7363 + 29.7394i −1.15161 + 1.28097i
\(540\) 0 0
\(541\) 6.65209 11.5218i 0.285996 0.495359i −0.686854 0.726795i \(-0.741009\pi\)
0.972850 + 0.231436i \(0.0743423\pi\)
\(542\) 0 0
\(543\) 9.40928 5.72307i 0.403791 0.245600i
\(544\) 0 0
\(545\) −9.37418 + 16.2366i −0.401546 + 0.695498i
\(546\) 0 0
\(547\) 2.43685 + 4.22074i 0.104192 + 0.180466i 0.913408 0.407046i \(-0.133441\pi\)
−0.809216 + 0.587512i \(0.800108\pi\)
\(548\) 0 0
\(549\) −12.4048 + 23.9507i −0.529423 + 1.02219i
\(550\) 0 0
\(551\) 0.0591375 0.00251934
\(552\) 0 0
\(553\) 16.2153 + 1.69802i 0.689543 + 0.0722074i
\(554\) 0 0
\(555\) −23.8613 + 14.5133i −1.01286 + 0.616057i
\(556\) 0 0
\(557\) 7.09601 + 12.2907i 0.300668 + 0.520772i 0.976287 0.216479i \(-0.0694572\pi\)
−0.675620 + 0.737250i \(0.736124\pi\)
\(558\) 0 0
\(559\) 43.4511 1.83778
\(560\) 0 0
\(561\) −42.1833 + 25.6575i −1.78098 + 1.08326i
\(562\) 0 0
\(563\) −7.03971 −0.296688 −0.148344 0.988936i \(-0.547394\pi\)
−0.148344 + 0.988936i \(0.547394\pi\)
\(564\) 0 0
\(565\) 36.0595 1.51703
\(566\) 0 0
\(567\) 11.6385 + 20.7737i 0.488772 + 0.872411i
\(568\) 0 0
\(569\) −18.3016 −0.767244 −0.383622 0.923490i \(-0.625323\pi\)
−0.383622 + 0.923490i \(0.625323\pi\)
\(570\) 0 0
\(571\) 30.4383 1.27380 0.636902 0.770944i \(-0.280215\pi\)
0.636902 + 0.770944i \(0.280215\pi\)
\(572\) 0 0
\(573\) 6.12783 3.72717i 0.255994 0.155705i
\(574\) 0 0
\(575\) −0.911516 −0.0380128
\(576\) 0 0
\(577\) 5.65385 + 9.79275i 0.235373 + 0.407678i 0.959381 0.282114i \(-0.0910356\pi\)
−0.724008 + 0.689791i \(0.757702\pi\)
\(578\) 0 0
\(579\) −11.3885 + 6.92688i −0.473288 + 0.287871i
\(580\) 0 0
\(581\) −0.557320 1.25047i −0.0231215 0.0518784i
\(582\) 0 0
\(583\) 42.2597 1.75022
\(584\) 0 0
\(585\) −17.0734 + 32.9648i −0.705900 + 1.36293i
\(586\) 0 0
\(587\) 9.89755 + 17.1431i 0.408516 + 0.707570i 0.994724 0.102591i \(-0.0327132\pi\)
−0.586208 + 0.810161i \(0.699380\pi\)
\(588\) 0 0
\(589\) 0.0298161 0.0516430i 0.00122855 0.00212791i
\(590\) 0 0
\(591\) 4.87612 2.96584i 0.200577 0.121998i
\(592\) 0 0
\(593\) 2.69067 4.66038i 0.110493 0.191379i −0.805476 0.592628i \(-0.798090\pi\)
0.915969 + 0.401249i \(0.131424\pi\)
\(594\) 0 0
\(595\) 19.5664 26.9525i 0.802145 1.10495i
\(596\) 0 0
\(597\) −24.5790 13.4513i −1.00595 0.550526i
\(598\) 0 0
\(599\) −2.25959 −0.0923243 −0.0461622 0.998934i \(-0.514699\pi\)
−0.0461622 + 0.998934i \(0.514699\pi\)
\(600\) 0 0
\(601\) 18.1873 + 31.5013i 0.741875 + 1.28496i 0.951641 + 0.307213i \(0.0993964\pi\)
−0.209766 + 0.977752i \(0.567270\pi\)
\(602\) 0 0
\(603\) 7.03078 13.5748i 0.286316 0.552808i
\(604\) 0 0
\(605\) 27.2953 47.2768i 1.10971 1.92207i
\(606\) 0 0
\(607\) 8.10803 + 14.0435i 0.329095 + 0.570009i 0.982333 0.187144i \(-0.0599231\pi\)
−0.653238 + 0.757153i \(0.726590\pi\)
\(608\) 0 0
\(609\) −29.0272 20.0759i −1.17624 0.813515i
\(610\) 0 0
\(611\) 5.29985 9.17961i 0.214409 0.371367i
\(612\) 0 0
\(613\) 21.6357 + 37.4741i 0.873857 + 1.51357i 0.857975 + 0.513691i \(0.171722\pi\)
0.0158822 + 0.999874i \(0.494944\pi\)
\(614\) 0 0
\(615\) 38.9142 23.6691i 1.56917 0.954429i
\(616\) 0 0
\(617\) −5.92248 + 10.2580i −0.238430 + 0.412973i −0.960264 0.279093i \(-0.909966\pi\)
0.721834 + 0.692066i \(0.243299\pi\)
\(618\) 0 0
\(619\) 20.1644 34.9257i 0.810475 1.40378i −0.102057 0.994779i \(-0.532542\pi\)
0.912532 0.409006i \(-0.134124\pi\)
\(620\) 0 0
\(621\) 2.87897 1.93667i 0.115529 0.0777158i
\(622\) 0 0
\(623\) −3.70215 + 5.09967i −0.148323 + 0.204314i
\(624\) 0 0
\(625\) 14.9809 + 25.9478i 0.599238 + 1.03791i
\(626\) 0 0
\(627\) 0.0666521 + 0.0364766i 0.00266183 + 0.00145674i
\(628\) 0 0
\(629\) −31.8902 −1.27154
\(630\) 0 0
\(631\) −13.9489 −0.555298 −0.277649 0.960683i \(-0.589555\pi\)
−0.277649 + 0.960683i \(0.589555\pi\)
\(632\) 0 0
\(633\) −1.10541 48.3576i −0.0439362 1.92204i
\(634\) 0 0
\(635\) 2.47259 + 4.28265i 0.0981217 + 0.169952i
\(636\) 0 0
\(637\) −22.9546 + 25.5329i −0.909496 + 1.01165i
\(638\) 0 0
\(639\) 7.84328 15.1435i 0.310275 0.599068i
\(640\) 0 0
\(641\) −8.76975 + 15.1896i −0.346384 + 0.599955i −0.985604 0.169069i \(-0.945924\pi\)
0.639220 + 0.769024i \(0.279257\pi\)
\(642\) 0 0
\(643\) 13.5329 23.4397i 0.533686 0.924371i −0.465540 0.885027i \(-0.654140\pi\)
0.999226 0.0393443i \(-0.0125269\pi\)
\(644\) 0 0
\(645\) −0.884662 38.7006i −0.0348335 1.52383i
\(646\) 0 0
\(647\) −11.3252 19.6159i −0.445240 0.771179i 0.552828 0.833295i \(-0.313548\pi\)
−0.998069 + 0.0621160i \(0.980215\pi\)
\(648\) 0 0
\(649\) −1.49564 + 2.59052i −0.0587089 + 0.101687i
\(650\) 0 0
\(651\) −32.1666 + 15.2267i −1.26071 + 0.596780i
\(652\) 0 0
\(653\) 0.392054 + 0.679058i 0.0153423 + 0.0265736i 0.873595 0.486654i \(-0.161783\pi\)
−0.858252 + 0.513228i \(0.828450\pi\)
\(654\) 0 0
\(655\) 5.03098 8.71392i 0.196577 0.340481i
\(656\) 0 0
\(657\) −9.11419 + 0.416903i −0.355578 + 0.0162649i
\(658\) 0 0
\(659\) 16.7219 + 28.9632i 0.651392 + 1.12824i 0.982785 + 0.184752i \(0.0591481\pi\)
−0.331393 + 0.943493i \(0.607519\pi\)
\(660\) 0 0
\(661\) 3.06516 0.119221 0.0596104 0.998222i \(-0.481014\pi\)
0.0596104 + 0.998222i \(0.481014\pi\)
\(662\) 0 0
\(663\) −36.2168 + 22.0284i −1.40654 + 0.855511i
\(664\) 0 0
\(665\) −0.0509756 0.00533805i −0.00197675 0.000207001i
\(666\) 0 0
\(667\) −2.57140 + 4.45379i −0.0995649 + 0.172451i
\(668\) 0 0
\(669\) 30.8899 + 16.9051i 1.19427 + 0.653588i
\(670\) 0 0
\(671\) 25.6821 44.4827i 0.991447 1.71724i
\(672\) 0 0
\(673\) 14.4618 + 25.0487i 0.557463 + 0.965555i 0.997707 + 0.0676766i \(0.0215586\pi\)
−0.440244 + 0.897878i \(0.645108\pi\)
\(674\) 0 0
\(675\) 6.37126 + 3.11732i 0.245230 + 0.119986i
\(676\) 0 0
\(677\) −11.7164 −0.450296 −0.225148 0.974325i \(-0.572287\pi\)
−0.225148 + 0.974325i \(0.572287\pi\)
\(678\) 0 0
\(679\) −9.32711 20.9275i −0.357942 0.803124i
\(680\) 0 0
\(681\) 0.225202 + 9.85174i 0.00862977 + 0.377520i
\(682\) 0 0
\(683\) −20.7190 35.8864i −0.792791 1.37315i −0.924232 0.381831i \(-0.875294\pi\)
0.131441 0.991324i \(-0.458040\pi\)
\(684\) 0 0
\(685\) 18.6908 0.714138
\(686\) 0 0
\(687\) −22.5694 12.3515i −0.861076 0.471240i
\(688\) 0 0
\(689\) 36.2824 1.38225
\(690\) 0 0
\(691\) 6.91350 0.263002 0.131501 0.991316i \(-0.458020\pi\)
0.131501 + 0.991316i \(0.458020\pi\)
\(692\) 0 0
\(693\) −20.3327 40.5311i −0.772375 1.53965i
\(694\) 0 0
\(695\) −34.9503 −1.32574
\(696\) 0 0
\(697\) 52.0081 1.96995
\(698\) 0 0
\(699\) −0.530926 23.2260i −0.0200815 0.878487i
\(700\) 0 0
\(701\) 39.1954 1.48039 0.740195 0.672392i \(-0.234733\pi\)
0.740195 + 0.672392i \(0.234733\pi\)
\(702\) 0 0
\(703\) 0.0245378 + 0.0425008i 0.000925462 + 0.00160295i
\(704\) 0 0
\(705\) −8.28392 4.53353i −0.311991 0.170743i
\(706\) 0 0
\(707\) −14.5106 + 19.9881i −0.545726 + 0.751731i
\(708\) 0 0
\(709\) 20.4871 0.769409 0.384705 0.923040i \(-0.374303\pi\)
0.384705 + 0.923040i \(0.374303\pi\)
\(710\) 0 0
\(711\) −8.50223 + 16.4158i −0.318858 + 0.615640i
\(712\) 0 0
\(713\) 2.59290 + 4.49104i 0.0971050 + 0.168191i
\(714\) 0 0
\(715\) 35.3479 61.2243i 1.32193 2.28966i
\(716\) 0 0
\(717\) −0.738713 32.3159i −0.0275877 1.20686i
\(718\) 0 0
\(719\) −17.1300 + 29.6700i −0.638840 + 1.10650i 0.346848 + 0.937921i \(0.387252\pi\)
−0.985688 + 0.168582i \(0.946081\pi\)
\(720\) 0 0
\(721\) −17.4681 39.1937i −0.650547 1.45965i
\(722\) 0 0
\(723\) −0.847704 37.0839i −0.0315265 1.37916i
\(724\) 0 0
\(725\) −10.5131 −0.390447
\(726\) 0 0
\(727\) −7.18914 12.4520i −0.266631 0.461818i 0.701359 0.712808i \(-0.252577\pi\)
−0.967990 + 0.250991i \(0.919244\pi\)
\(728\) 0 0
\(729\) −26.7465 + 3.69094i −0.990612 + 0.136701i
\(730\) 0 0
\(731\) 22.1010 38.2800i 0.817433 1.41584i
\(732\) 0 0
\(733\) −19.7887 34.2750i −0.730911 1.26597i −0.956494 0.291751i \(-0.905762\pi\)
0.225584 0.974224i \(-0.427571\pi\)
\(734\) 0 0
\(735\) 23.2088 + 19.9252i 0.856070 + 0.734952i
\(736\) 0 0
\(737\) −14.5561 + 25.2119i −0.536182 + 0.928694i
\(738\) 0 0
\(739\) −10.8407 18.7767i −0.398783 0.690712i 0.594793 0.803879i \(-0.297234\pi\)
−0.993576 + 0.113167i \(0.963901\pi\)
\(740\) 0 0
\(741\) 0.0572246 + 0.0313172i 0.00210220 + 0.00115047i
\(742\) 0 0
\(743\) −16.5692 + 28.6987i −0.607864 + 1.05285i 0.383727 + 0.923446i \(0.374640\pi\)
−0.991592 + 0.129406i \(0.958693\pi\)
\(744\) 0 0
\(745\) −17.7916 + 30.8159i −0.651832 + 1.12901i
\(746\) 0 0
\(747\) 1.55073 0.0709339i 0.0567384 0.00259533i
\(748\) 0 0
\(749\) 13.9941 19.2768i 0.511335 0.704358i
\(750\) 0 0
\(751\) −12.9662 22.4581i −0.473144 0.819509i 0.526384 0.850247i \(-0.323548\pi\)
−0.999527 + 0.0307381i \(0.990214\pi\)
\(752\) 0 0
\(753\) 0.685005 0.416645i 0.0249630 0.0151834i
\(754\) 0 0
\(755\) −26.7442 −0.973320
\(756\) 0 0
\(757\) −30.5846 −1.11162 −0.555808 0.831311i \(-0.687591\pi\)
−0.555808 + 0.831311i \(0.687591\pi\)
\(758\) 0 0
\(759\) −5.64528 + 3.43367i −0.204911 + 0.124634i
\(760\) 0 0
\(761\) 18.2648 + 31.6355i 0.662097 + 1.14679i 0.980064 + 0.198684i \(0.0636667\pi\)
−0.317967 + 0.948102i \(0.603000\pi\)
\(762\) 0 0
\(763\) −8.00382 17.9584i −0.289758 0.650138i
\(764\) 0 0
\(765\) 20.3574 + 31.8088i 0.736024 + 1.15005i
\(766\) 0 0
\(767\) −1.28409 + 2.22411i −0.0463658 + 0.0803079i
\(768\) 0 0
\(769\) −21.3107 + 36.9113i −0.768485 + 1.33105i 0.169900 + 0.985461i \(0.445656\pi\)
−0.938384 + 0.345593i \(0.887678\pi\)
\(770\) 0 0
\(771\) −1.21934 0.667305i −0.0439134 0.0240324i
\(772\) 0 0
\(773\) 16.1309 + 27.9395i 0.580187 + 1.00491i 0.995457 + 0.0952148i \(0.0303538\pi\)
−0.415270 + 0.909698i \(0.636313\pi\)
\(774\) 0 0
\(775\) −5.30051 + 9.18076i −0.190400 + 0.329783i
\(776\) 0 0
\(777\) 2.38384 29.1912i 0.0855200 1.04723i
\(778\) 0 0
\(779\) −0.0400175 0.0693124i −0.00143378 0.00248337i
\(780\) 0 0
\(781\) −16.2383 + 28.1255i −0.581051 + 1.00641i
\(782\) 0 0
\(783\) 33.2050 22.3368i 1.18665 0.798254i
\(784\) 0 0
\(785\) −0.327420 0.567107i −0.0116861 0.0202409i
\(786\) 0 0
\(787\) −30.7676 −1.09675 −0.548373 0.836234i \(-0.684753\pi\)
−0.548373 + 0.836234i \(0.684753\pi\)
\(788\) 0 0
\(789\) −0.00797146 0.348721i −0.000283791 0.0124148i
\(790\) 0 0
\(791\) −22.2156 + 30.6017i −0.789895 + 1.08807i
\(792\) 0 0
\(793\) 22.0496 38.1910i 0.783003 1.35620i
\(794\) 0 0
\(795\) −0.738708 32.3157i −0.0261993 1.14612i
\(796\) 0 0
\(797\) −3.59378 + 6.22460i −0.127298 + 0.220487i −0.922629 0.385689i \(-0.873964\pi\)
0.795331 + 0.606176i \(0.207297\pi\)
\(798\) 0 0
\(799\) −5.39144 9.33824i −0.190735 0.330363i
\(800\) 0 0
\(801\) −3.85181 6.01851i −0.136097 0.212654i
\(802\) 0 0
\(803\) 17.3745 0.613133
\(804\) 0 0
\(805\) 2.61852 3.60699i 0.0922908 0.127130i
\(806\) 0 0
\(807\) −33.9655 18.5882i −1.19564 0.654337i
\(808\) 0 0
\(809\) −23.3886 40.5103i −0.822301 1.42427i −0.903965 0.427607i \(-0.859357\pi\)
0.0816637 0.996660i \(-0.473977\pi\)
\(810\) 0 0
\(811\) −17.6946 −0.621341 −0.310671 0.950518i \(-0.600554\pi\)
−0.310671 + 0.950518i \(0.600554\pi\)
\(812\) 0 0
\(813\) −0.141647 6.19653i −0.00496779 0.217322i
\(814\) 0 0
\(815\) −31.8836 −1.11683
\(816\) 0 0
\(817\) −0.0680221 −0.00237979
\(818\) 0 0
\(819\) −17.4568 34.7983i −0.609989 1.21595i
\(820\) 0 0
\(821\) −17.2215 −0.601034 −0.300517 0.953776i \(-0.597159\pi\)
−0.300517 + 0.953776i \(0.597159\pi\)
\(822\) 0 0
\(823\) −11.5434 −0.402378 −0.201189 0.979552i \(-0.564480\pi\)
−0.201189 + 0.979552i \(0.564480\pi\)
\(824\) 0 0
\(825\) −11.8490 6.48458i −0.412529 0.225764i
\(826\) 0 0
\(827\) 20.1448 0.700503 0.350251 0.936656i \(-0.386096\pi\)
0.350251 + 0.936656i \(0.386096\pi\)
\(828\) 0 0
\(829\) −4.01358 6.95172i −0.139397 0.241443i 0.787871 0.615840i \(-0.211183\pi\)
−0.927269 + 0.374397i \(0.877850\pi\)
\(830\) 0 0
\(831\) −0.400052 17.5008i −0.0138777 0.607095i
\(832\) 0 0
\(833\) 10.8186 + 33.2099i 0.374843 + 1.15066i
\(834\) 0 0
\(835\) 29.0114 1.00398
\(836\) 0 0
\(837\) −2.76469 40.2588i −0.0955617 1.39155i
\(838\) 0 0
\(839\) 4.59341 + 7.95603i 0.158582 + 0.274673i 0.934358 0.356337i \(-0.115974\pi\)
−0.775775 + 0.631009i \(0.782641\pi\)
\(840\) 0 0
\(841\) −15.1576 + 26.2537i −0.522675 + 0.905299i
\(842\) 0 0
\(843\) 38.6273 + 21.1395i 1.33039 + 0.728083i
\(844\) 0 0
\(845\) 13.9493 24.1608i 0.479869 0.831158i
\(846\) 0 0
\(847\) 23.3051 + 52.2904i 0.800774 + 1.79672i
\(848\) 0 0
\(849\) −5.73674 + 3.48930i −0.196884 + 0.119752i
\(850\) 0 0
\(851\) −4.26778 −0.146298
\(852\) 0 0
\(853\) −10.7925 18.6931i −0.369527 0.640040i 0.619964 0.784630i \(-0.287147\pi\)
−0.989492 + 0.144590i \(0.953814\pi\)
\(854\) 0 0
\(855\) 0.0267283 0.0516060i 0.000914088 0.00176489i
\(856\) 0 0
\(857\) −12.0326 + 20.8410i −0.411024 + 0.711915i −0.995002 0.0998547i \(-0.968162\pi\)
0.583978 + 0.811770i \(0.301496\pi\)
\(858\) 0 0
\(859\) −8.15861 14.1311i −0.278368 0.482148i 0.692611 0.721311i \(-0.256460\pi\)
−0.970979 + 0.239163i \(0.923127\pi\)
\(860\) 0 0
\(861\) −3.88769 + 47.6065i −0.132492 + 1.62242i
\(862\) 0 0
\(863\) 9.64675 16.7087i 0.328379 0.568770i −0.653811 0.756658i \(-0.726831\pi\)
0.982190 + 0.187888i \(0.0601643\pi\)
\(864\) 0 0
\(865\) −19.9428 34.5420i −0.678077 1.17446i
\(866\) 0 0
\(867\) 0.312576 + 13.6740i 0.0106156 + 0.464393i
\(868\) 0 0
\(869\) 17.6025 30.4884i 0.597124 1.03425i
\(870\) 0 0
\(871\) −12.4973 + 21.6459i −0.423453 + 0.733443i
\(872\) 0 0
\(873\) 25.9525 1.18712i 0.878360 0.0401781i
\(874\) 0 0
\(875\) −24.1313 2.52697i −0.815786 0.0854273i
\(876\) 0 0
\(877\) −15.1464 26.2343i −0.511457 0.885870i −0.999912 0.0132808i \(-0.995772\pi\)
0.488454 0.872589i \(-0.337561\pi\)
\(878\) 0 0
\(879\) −0.0339489 1.48514i −0.00114507 0.0500924i
\(880\) 0 0
\(881\) 19.4943 0.656779 0.328390 0.944542i \(-0.393494\pi\)
0.328390 + 0.944542i \(0.393494\pi\)
\(882\) 0 0
\(883\) −47.5302 −1.59952 −0.799759 0.600321i \(-0.795040\pi\)
−0.799759 + 0.600321i \(0.795040\pi\)
\(884\) 0 0
\(885\) 2.00709 + 1.09842i 0.0674677 + 0.0369229i
\(886\) 0 0
\(887\) −2.05946 3.56709i −0.0691499 0.119771i 0.829377 0.558689i \(-0.188695\pi\)
−0.898527 + 0.438918i \(0.855362\pi\)
\(888\) 0 0
\(889\) −5.15777 0.540110i −0.172986 0.0181147i
\(890\) 0 0
\(891\) 51.2020 4.69400i 1.71533 0.157255i
\(892\) 0 0
\(893\) −0.00829686 + 0.0143706i −0.000277644 + 0.000480893i
\(894\) 0 0
\(895\) −21.4409 + 37.1367i −0.716689 + 1.24134i
\(896\) 0 0
\(897\) −4.84680 + 2.94800i −0.161830 + 0.0984309i
\(898\) 0 0
\(899\) 29.9056 + 51.7981i 0.997408 + 1.72756i
\(900\) 0 0
\(901\) 18.4547 31.9645i 0.614815 1.06489i
\(902\) 0 0
\(903\) 33.3881 + 23.0920i 1.11109 + 0.768452i
\(904\) 0 0
\(905\) 8.02083 + 13.8925i 0.266621 + 0.461802i
\(906\) 0 0
\(907\) 4.07084 7.05090i 0.135170 0.234121i −0.790492 0.612472i \(-0.790175\pi\)
0.925662 + 0.378351i \(0.123509\pi\)
\(908\) 0 0
\(909\) −15.0972 23.5895i −0.500741 0.782415i
\(910\) 0 0
\(911\) 24.6454 + 42.6871i 0.816540 + 1.41429i 0.908217 + 0.418499i \(0.137444\pi\)
−0.0916774 + 0.995789i \(0.529223\pi\)
\(912\) 0 0
\(913\) −2.95618 −0.0978354
\(914\) 0 0
\(915\) −34.4645 18.8613i −1.13936 0.623537i
\(916\) 0 0
\(917\) 4.29553 + 9.63801i 0.141851 + 0.318275i
\(918\) 0 0
\(919\) 4.71585 8.16809i 0.155561 0.269440i −0.777702 0.628633i \(-0.783615\pi\)
0.933263 + 0.359193i \(0.116948\pi\)
\(920\) 0 0
\(921\) 1.06243 0.646211i 0.0350084 0.0212934i
\(922\) 0 0
\(923\) −13.9415 + 24.1473i −0.458889 + 0.794819i
\(924\) 0 0
\(925\) −4.36218 7.55552i −0.143428 0.248424i
\(926\) 0 0
\(927\) 48.6047 2.22328i 1.59639 0.0730222i
\(928\) 0 0
\(929\) 29.4739 0.967006 0.483503 0.875343i \(-0.339364\pi\)
0.483503 + 0.875343i \(0.339364\pi\)
\(930\) 0 0
\(931\) 0.0359352 0.0399715i 0.00117773 0.00131001i
\(932\) 0 0
\(933\) 13.9874 8.50766i 0.457927 0.278528i
\(934\) 0 0
\(935\) −35.9587 62.2823i −1.17597 2.03685i
\(936\) 0 0
\(937\) −54.3451 −1.77538 −0.887688 0.460445i \(-0.847690\pi\)
−0.887688 + 0.460445i \(0.847690\pi\)
\(938\) 0 0
\(939\) −34.4257 + 20.9390i −1.12344 + 0.683317i
\(940\) 0 0
\(941\) −2.98173 −0.0972017 −0.0486008 0.998818i \(-0.515476\pi\)
−0.0486008 + 0.998818i \(0.515476\pi\)
\(942\) 0 0
\(943\) 6.96011 0.226652
\(944\) 0 0
\(945\) −30.6384 + 16.2567i −0.996668 + 0.528832i
\(946\) 0 0
\(947\) −30.3292 −0.985567 −0.492783 0.870152i \(-0.664021\pi\)
−0.492783 + 0.870152i \(0.664021\pi\)
\(948\) 0 0
\(949\) 14.9170 0.484226
\(950\) 0 0
\(951\) 19.5860 11.9129i 0.635119 0.386303i
\(952\) 0 0
\(953\) 0.380127 0.0123135 0.00615676 0.999981i \(-0.498040\pi\)
0.00615676 + 0.999981i \(0.498040\pi\)
\(954\) 0 0
\(955\) 5.22360 + 9.04754i 0.169032 + 0.292771i
\(956\) 0 0
\(957\) −65.1107 + 39.6027i −2.10473 + 1.28017i
\(958\) 0 0
\(959\) −11.5150 + 15.8618i −0.371840 + 0.512206i
\(960\) 0 0
\(961\) 29.3115 0.945533
\(962\) 0 0
\(963\) 14.5599 + 22.7500i 0.469185 + 0.733109i
\(964\) 0 0
\(965\) −9.70796 16.8147i −0.312510 0.541284i
\(966\) 0 0
\(967\) 22.6744 39.2732i 0.729160 1.26294i −0.228078 0.973643i \(-0.573244\pi\)
0.957239 0.289300i \(-0.0934224\pi\)
\(968\) 0 0
\(969\) 0.0566970 0.0344852i 0.00182137 0.00110782i
\(970\) 0 0
\(971\) 27.3746 47.4141i 0.878491 1.52159i 0.0254951 0.999675i \(-0.491884\pi\)
0.852996 0.521917i \(-0.174783\pi\)
\(972\) 0 0
\(973\) 21.5323 29.6604i 0.690292 0.950870i
\(974\) 0 0
\(975\) −10.1730 5.56738i −0.325798 0.178299i
\(976\) 0 0
\(977\) 2.71311 0.0868001 0.0434001 0.999058i \(-0.486181\pi\)
0.0434001 + 0.999058i \(0.486181\pi\)
\(978\) 0 0
\(979\) 6.80371 + 11.7844i 0.217448 + 0.376630i
\(980\) 0 0
\(981\) 22.2705 1.01870i 0.711042 0.0325246i
\(982\) 0 0
\(983\) 21.3828 37.0361i 0.682006 1.18127i −0.292362 0.956308i \(-0.594441\pi\)
0.974368 0.224961i \(-0.0722256\pi\)
\(984\) 0 0
\(985\) 4.15659 + 7.19943i 0.132440 + 0.229393i
\(986\) 0 0
\(987\) 8.95093 4.23709i 0.284911 0.134868i
\(988\) 0 0
\(989\) 2.95771 5.12291i 0.0940498 0.162899i
\(990\) 0 0
\(991\) −29.6731 51.3954i −0.942598 1.63263i −0.760491 0.649349i \(-0.775042\pi\)
−0.182107 0.983279i \(-0.558292\pi\)
\(992\) 0 0
\(993\) 45.0353 27.3921i 1.42915 0.869262i
\(994\) 0 0
\(995\) 20.4063 35.3447i 0.646922 1.12050i
\(996\) 0 0
\(997\) −22.0320 + 38.1606i −0.697762 + 1.20856i 0.271479 + 0.962444i \(0.412487\pi\)
−0.969241 + 0.246114i \(0.920846\pi\)
\(998\) 0 0
\(999\) 29.8307 + 14.5955i 0.943801 + 0.461781i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.q.k.625.9 22
3.2 odd 2 3024.2.q.k.2305.3 22
4.3 odd 2 504.2.q.d.121.3 yes 22
7.4 even 3 1008.2.t.k.193.2 22
9.2 odd 6 3024.2.t.l.289.9 22
9.7 even 3 1008.2.t.k.961.2 22
12.11 even 2 1512.2.q.c.793.3 22
21.11 odd 6 3024.2.t.l.1873.9 22
28.11 odd 6 504.2.t.d.193.10 yes 22
36.7 odd 6 504.2.t.d.457.10 yes 22
36.11 even 6 1512.2.t.d.289.9 22
63.11 odd 6 3024.2.q.k.2881.3 22
63.25 even 3 inner 1008.2.q.k.529.9 22
84.11 even 6 1512.2.t.d.361.9 22
252.11 even 6 1512.2.q.c.1369.3 22
252.151 odd 6 504.2.q.d.25.3 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.3 22 252.151 odd 6
504.2.q.d.121.3 yes 22 4.3 odd 2
504.2.t.d.193.10 yes 22 28.11 odd 6
504.2.t.d.457.10 yes 22 36.7 odd 6
1008.2.q.k.529.9 22 63.25 even 3 inner
1008.2.q.k.625.9 22 1.1 even 1 trivial
1008.2.t.k.193.2 22 7.4 even 3
1008.2.t.k.961.2 22 9.7 even 3
1512.2.q.c.793.3 22 12.11 even 2
1512.2.q.c.1369.3 22 252.11 even 6
1512.2.t.d.289.9 22 36.11 even 6
1512.2.t.d.361.9 22 84.11 even 6
3024.2.q.k.2305.3 22 3.2 odd 2
3024.2.q.k.2881.3 22 63.11 odd 6
3024.2.t.l.289.9 22 9.2 odd 6
3024.2.t.l.1873.9 22 21.11 odd 6