Properties

Label 304.8.a.j.1.1
Level $304$
Weight $8$
Character 304.1
Self dual yes
Analytic conductor $94.965$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [304,8,Mod(1,304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("304.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.9650477472\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6373x^{4} - 12403x^{3} + 11165936x^{2} + 51537728x - 4683020288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-60.0909\) of defining polynomial
Character \(\chi\) \(=\) 304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-65.0909 q^{3} +165.215 q^{5} +774.961 q^{7} +2049.82 q^{9} +O(q^{10})\) \(q-65.0909 q^{3} +165.215 q^{5} +774.961 q^{7} +2049.82 q^{9} +3411.22 q^{11} -10405.3 q^{13} -10754.0 q^{15} -21097.0 q^{17} +6859.00 q^{19} -50442.9 q^{21} +2513.10 q^{23} -50828.9 q^{25} +8929.03 q^{27} -58605.6 q^{29} +198151. q^{31} -222039. q^{33} +128035. q^{35} +556808. q^{37} +677289. q^{39} +323753. q^{41} -599201. q^{43} +338662. q^{45} -289931. q^{47} -222978. q^{49} +1.37322e6 q^{51} +119297. q^{53} +563585. q^{55} -446458. q^{57} +595531. q^{59} -364583. q^{61} +1.58853e6 q^{63} -1.71911e6 q^{65} +146835. q^{67} -163580. q^{69} -2.82634e6 q^{71} +3.60391e6 q^{73} +3.30850e6 q^{75} +2.64356e6 q^{77} +151550. q^{79} -5.06416e6 q^{81} +7.67819e6 q^{83} -3.48554e6 q^{85} +3.81469e6 q^{87} -9.88564e6 q^{89} -8.06369e6 q^{91} -1.28978e7 q^{93} +1.13321e6 q^{95} -1.03471e7 q^{97} +6.99239e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 29 q^{3} - 43 q^{5} + 908 q^{7} - 235 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 29 q^{3} - 43 q^{5} + 908 q^{7} - 235 q^{9} - 3935 q^{11} + 6449 q^{13} - 8422 q^{15} - 6920 q^{17} + 41154 q^{19} - 54471 q^{21} + 43633 q^{23} - 48003 q^{25} - 8705 q^{27} - 134097 q^{29} + 95448 q^{31} - 212700 q^{33} + 202017 q^{35} - 57516 q^{37} + 683975 q^{39} - 399254 q^{41} + 359107 q^{43} - 668039 q^{45} + 590285 q^{47} - 1140196 q^{49} + 2380541 q^{51} - 2926531 q^{53} + 1799465 q^{55} - 198911 q^{57} + 2933563 q^{59} - 4738005 q^{61} + 2126109 q^{63} - 7312896 q^{65} + 4389837 q^{67} - 5697861 q^{69} + 751308 q^{71} - 7310018 q^{73} + 8992379 q^{75} - 12493471 q^{77} + 2495758 q^{79} - 18423454 q^{81} + 4583082 q^{83} - 13253407 q^{85} + 4493999 q^{87} - 21914280 q^{89} + 8775919 q^{91} - 18623792 q^{93} - 294937 q^{95} - 21931958 q^{97} + 2897895 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −65.0909 −1.39186 −0.695930 0.718109i \(-0.745008\pi\)
−0.695930 + 0.718109i \(0.745008\pi\)
\(4\) 0 0
\(5\) 165.215 0.591092 0.295546 0.955328i \(-0.404498\pi\)
0.295546 + 0.955328i \(0.404498\pi\)
\(6\) 0 0
\(7\) 774.961 0.853958 0.426979 0.904261i \(-0.359578\pi\)
0.426979 + 0.904261i \(0.359578\pi\)
\(8\) 0 0
\(9\) 2049.82 0.937276
\(10\) 0 0
\(11\) 3411.22 0.772743 0.386372 0.922343i \(-0.373728\pi\)
0.386372 + 0.922343i \(0.373728\pi\)
\(12\) 0 0
\(13\) −10405.3 −1.31357 −0.656784 0.754079i \(-0.728084\pi\)
−0.656784 + 0.754079i \(0.728084\pi\)
\(14\) 0 0
\(15\) −10754.0 −0.822718
\(16\) 0 0
\(17\) −21097.0 −1.04147 −0.520737 0.853717i \(-0.674343\pi\)
−0.520737 + 0.853717i \(0.674343\pi\)
\(18\) 0 0
\(19\) 6859.00 0.229416
\(20\) 0 0
\(21\) −50442.9 −1.18859
\(22\) 0 0
\(23\) 2513.10 0.0430687 0.0215344 0.999768i \(-0.493145\pi\)
0.0215344 + 0.999768i \(0.493145\pi\)
\(24\) 0 0
\(25\) −50828.9 −0.650610
\(26\) 0 0
\(27\) 8929.03 0.0873034
\(28\) 0 0
\(29\) −58605.6 −0.446217 −0.223109 0.974794i \(-0.571620\pi\)
−0.223109 + 0.974794i \(0.571620\pi\)
\(30\) 0 0
\(31\) 198151. 1.19462 0.597312 0.802009i \(-0.296236\pi\)
0.597312 + 0.802009i \(0.296236\pi\)
\(32\) 0 0
\(33\) −222039. −1.07555
\(34\) 0 0
\(35\) 128035. 0.504768
\(36\) 0 0
\(37\) 556808. 1.80717 0.903586 0.428406i \(-0.140925\pi\)
0.903586 + 0.428406i \(0.140925\pi\)
\(38\) 0 0
\(39\) 677289. 1.82830
\(40\) 0 0
\(41\) 323753. 0.733619 0.366809 0.930296i \(-0.380450\pi\)
0.366809 + 0.930296i \(0.380450\pi\)
\(42\) 0 0
\(43\) −599201. −1.14930 −0.574649 0.818400i \(-0.694862\pi\)
−0.574649 + 0.818400i \(0.694862\pi\)
\(44\) 0 0
\(45\) 338662. 0.554016
\(46\) 0 0
\(47\) −289931. −0.407336 −0.203668 0.979040i \(-0.565286\pi\)
−0.203668 + 0.979040i \(0.565286\pi\)
\(48\) 0 0
\(49\) −222978. −0.270755
\(50\) 0 0
\(51\) 1.37322e6 1.44959
\(52\) 0 0
\(53\) 119297. 0.110069 0.0550345 0.998484i \(-0.482473\pi\)
0.0550345 + 0.998484i \(0.482473\pi\)
\(54\) 0 0
\(55\) 563585. 0.456762
\(56\) 0 0
\(57\) −446458. −0.319315
\(58\) 0 0
\(59\) 595531. 0.377505 0.188752 0.982025i \(-0.439556\pi\)
0.188752 + 0.982025i \(0.439556\pi\)
\(60\) 0 0
\(61\) −364583. −0.205656 −0.102828 0.994699i \(-0.532789\pi\)
−0.102828 + 0.994699i \(0.532789\pi\)
\(62\) 0 0
\(63\) 1.58853e6 0.800395
\(64\) 0 0
\(65\) −1.71911e6 −0.776439
\(66\) 0 0
\(67\) 146835. 0.0596443 0.0298221 0.999555i \(-0.490506\pi\)
0.0298221 + 0.999555i \(0.490506\pi\)
\(68\) 0 0
\(69\) −163580. −0.0599456
\(70\) 0 0
\(71\) −2.82634e6 −0.937175 −0.468588 0.883417i \(-0.655237\pi\)
−0.468588 + 0.883417i \(0.655237\pi\)
\(72\) 0 0
\(73\) 3.60391e6 1.08429 0.542144 0.840286i \(-0.317613\pi\)
0.542144 + 0.840286i \(0.317613\pi\)
\(74\) 0 0
\(75\) 3.30850e6 0.905559
\(76\) 0 0
\(77\) 2.64356e6 0.659891
\(78\) 0 0
\(79\) 151550. 0.0345829 0.0172915 0.999850i \(-0.494496\pi\)
0.0172915 + 0.999850i \(0.494496\pi\)
\(80\) 0 0
\(81\) −5.06416e6 −1.05879
\(82\) 0 0
\(83\) 7.67819e6 1.47396 0.736979 0.675915i \(-0.236251\pi\)
0.736979 + 0.675915i \(0.236251\pi\)
\(84\) 0 0
\(85\) −3.48554e6 −0.615607
\(86\) 0 0
\(87\) 3.81469e6 0.621072
\(88\) 0 0
\(89\) −9.88564e6 −1.48641 −0.743207 0.669062i \(-0.766696\pi\)
−0.743207 + 0.669062i \(0.766696\pi\)
\(90\) 0 0
\(91\) −8.06369e6 −1.12173
\(92\) 0 0
\(93\) −1.28978e7 −1.66275
\(94\) 0 0
\(95\) 1.13321e6 0.135606
\(96\) 0 0
\(97\) −1.03471e7 −1.15111 −0.575556 0.817763i \(-0.695214\pi\)
−0.575556 + 0.817763i \(0.695214\pi\)
\(98\) 0 0
\(99\) 6.99239e6 0.724273
\(100\) 0 0
\(101\) −9.56905e6 −0.924153 −0.462076 0.886840i \(-0.652895\pi\)
−0.462076 + 0.886840i \(0.652895\pi\)
\(102\) 0 0
\(103\) −8.56696e6 −0.772497 −0.386248 0.922395i \(-0.626229\pi\)
−0.386248 + 0.922395i \(0.626229\pi\)
\(104\) 0 0
\(105\) −8.33394e6 −0.702567
\(106\) 0 0
\(107\) 2.09406e7 1.65252 0.826259 0.563290i \(-0.190465\pi\)
0.826259 + 0.563290i \(0.190465\pi\)
\(108\) 0 0
\(109\) −6.42242e6 −0.475014 −0.237507 0.971386i \(-0.576330\pi\)
−0.237507 + 0.971386i \(0.576330\pi\)
\(110\) 0 0
\(111\) −3.62431e7 −2.51533
\(112\) 0 0
\(113\) 1.27156e7 0.829014 0.414507 0.910046i \(-0.363954\pi\)
0.414507 + 0.910046i \(0.363954\pi\)
\(114\) 0 0
\(115\) 415202. 0.0254576
\(116\) 0 0
\(117\) −2.13290e7 −1.23118
\(118\) 0 0
\(119\) −1.63493e7 −0.889376
\(120\) 0 0
\(121\) −7.85076e6 −0.402868
\(122\) 0 0
\(123\) −2.10734e7 −1.02109
\(124\) 0 0
\(125\) −2.13052e7 −0.975663
\(126\) 0 0
\(127\) −1.02338e7 −0.443327 −0.221664 0.975123i \(-0.571149\pi\)
−0.221664 + 0.975123i \(0.571149\pi\)
\(128\) 0 0
\(129\) 3.90025e7 1.59966
\(130\) 0 0
\(131\) −2.92044e7 −1.13501 −0.567503 0.823371i \(-0.692091\pi\)
−0.567503 + 0.823371i \(0.692091\pi\)
\(132\) 0 0
\(133\) 5.31546e6 0.195911
\(134\) 0 0
\(135\) 1.47521e6 0.0516043
\(136\) 0 0
\(137\) 2.96546e7 0.985304 0.492652 0.870226i \(-0.336028\pi\)
0.492652 + 0.870226i \(0.336028\pi\)
\(138\) 0 0
\(139\) −3.24201e7 −1.02391 −0.511957 0.859011i \(-0.671079\pi\)
−0.511957 + 0.859011i \(0.671079\pi\)
\(140\) 0 0
\(141\) 1.88719e7 0.566955
\(142\) 0 0
\(143\) −3.54947e7 −1.01505
\(144\) 0 0
\(145\) −9.68254e6 −0.263755
\(146\) 0 0
\(147\) 1.45139e7 0.376853
\(148\) 0 0
\(149\) −4.77590e7 −1.18278 −0.591389 0.806387i \(-0.701420\pi\)
−0.591389 + 0.806387i \(0.701420\pi\)
\(150\) 0 0
\(151\) −3.87182e7 −0.915157 −0.457578 0.889169i \(-0.651283\pi\)
−0.457578 + 0.889169i \(0.651283\pi\)
\(152\) 0 0
\(153\) −4.32450e7 −0.976148
\(154\) 0 0
\(155\) 3.27376e7 0.706132
\(156\) 0 0
\(157\) 3.28145e7 0.676731 0.338366 0.941015i \(-0.390126\pi\)
0.338366 + 0.941015i \(0.390126\pi\)
\(158\) 0 0
\(159\) −7.76517e6 −0.153201
\(160\) 0 0
\(161\) 1.94755e6 0.0367789
\(162\) 0 0
\(163\) −6.19904e6 −0.112116 −0.0560580 0.998428i \(-0.517853\pi\)
−0.0560580 + 0.998428i \(0.517853\pi\)
\(164\) 0 0
\(165\) −3.66843e7 −0.635750
\(166\) 0 0
\(167\) −3.65382e7 −0.607071 −0.303536 0.952820i \(-0.598167\pi\)
−0.303536 + 0.952820i \(0.598167\pi\)
\(168\) 0 0
\(169\) 4.55216e7 0.725460
\(170\) 0 0
\(171\) 1.40597e7 0.215026
\(172\) 0 0
\(173\) 3.89600e7 0.572081 0.286040 0.958218i \(-0.407661\pi\)
0.286040 + 0.958218i \(0.407661\pi\)
\(174\) 0 0
\(175\) −3.93904e7 −0.555594
\(176\) 0 0
\(177\) −3.87637e7 −0.525434
\(178\) 0 0
\(179\) 1.99920e7 0.260538 0.130269 0.991479i \(-0.458416\pi\)
0.130269 + 0.991479i \(0.458416\pi\)
\(180\) 0 0
\(181\) 8.72640e7 1.09386 0.546928 0.837180i \(-0.315797\pi\)
0.546928 + 0.837180i \(0.315797\pi\)
\(182\) 0 0
\(183\) 2.37310e7 0.286245
\(184\) 0 0
\(185\) 9.19932e7 1.06821
\(186\) 0 0
\(187\) −7.19663e7 −0.804792
\(188\) 0 0
\(189\) 6.91965e6 0.0745535
\(190\) 0 0
\(191\) −7.61798e6 −0.0791084 −0.0395542 0.999217i \(-0.512594\pi\)
−0.0395542 + 0.999217i \(0.512594\pi\)
\(192\) 0 0
\(193\) −1.91424e8 −1.91666 −0.958330 0.285664i \(-0.907786\pi\)
−0.958330 + 0.285664i \(0.907786\pi\)
\(194\) 0 0
\(195\) 1.11899e8 1.08070
\(196\) 0 0
\(197\) −1.38828e8 −1.29373 −0.646866 0.762603i \(-0.723921\pi\)
−0.646866 + 0.762603i \(0.723921\pi\)
\(198\) 0 0
\(199\) 2.41077e7 0.216856 0.108428 0.994104i \(-0.465418\pi\)
0.108428 + 0.994104i \(0.465418\pi\)
\(200\) 0 0
\(201\) −9.55764e6 −0.0830165
\(202\) 0 0
\(203\) −4.54171e7 −0.381051
\(204\) 0 0
\(205\) 5.34889e7 0.433636
\(206\) 0 0
\(207\) 5.15140e6 0.0403673
\(208\) 0 0
\(209\) 2.33975e7 0.177279
\(210\) 0 0
\(211\) 5.12714e7 0.375740 0.187870 0.982194i \(-0.439842\pi\)
0.187870 + 0.982194i \(0.439842\pi\)
\(212\) 0 0
\(213\) 1.83969e8 1.30442
\(214\) 0 0
\(215\) −9.89972e7 −0.679341
\(216\) 0 0
\(217\) 1.53560e8 1.02016
\(218\) 0 0
\(219\) −2.34582e8 −1.50918
\(220\) 0 0
\(221\) 2.19520e8 1.36805
\(222\) 0 0
\(223\) −6.90522e7 −0.416976 −0.208488 0.978025i \(-0.566854\pi\)
−0.208488 + 0.978025i \(0.566854\pi\)
\(224\) 0 0
\(225\) −1.04190e8 −0.609801
\(226\) 0 0
\(227\) 1.54103e8 0.874420 0.437210 0.899359i \(-0.355967\pi\)
0.437210 + 0.899359i \(0.355967\pi\)
\(228\) 0 0
\(229\) −3.07698e8 −1.69317 −0.846586 0.532252i \(-0.821346\pi\)
−0.846586 + 0.532252i \(0.821346\pi\)
\(230\) 0 0
\(231\) −1.72072e8 −0.918476
\(232\) 0 0
\(233\) −1.29029e8 −0.668252 −0.334126 0.942528i \(-0.608441\pi\)
−0.334126 + 0.942528i \(0.608441\pi\)
\(234\) 0 0
\(235\) −4.79011e7 −0.240773
\(236\) 0 0
\(237\) −9.86454e6 −0.0481346
\(238\) 0 0
\(239\) −3.62543e8 −1.71778 −0.858888 0.512163i \(-0.828844\pi\)
−0.858888 + 0.512163i \(0.828844\pi\)
\(240\) 0 0
\(241\) 9.46614e7 0.435626 0.217813 0.975991i \(-0.430108\pi\)
0.217813 + 0.975991i \(0.430108\pi\)
\(242\) 0 0
\(243\) 3.10103e8 1.38638
\(244\) 0 0
\(245\) −3.68394e7 −0.160041
\(246\) 0 0
\(247\) −7.13699e7 −0.301353
\(248\) 0 0
\(249\) −4.99780e8 −2.05154
\(250\) 0 0
\(251\) −3.24944e8 −1.29703 −0.648516 0.761201i \(-0.724610\pi\)
−0.648516 + 0.761201i \(0.724610\pi\)
\(252\) 0 0
\(253\) 8.57272e6 0.0332810
\(254\) 0 0
\(255\) 2.26877e8 0.856839
\(256\) 0 0
\(257\) −2.16885e8 −0.797008 −0.398504 0.917166i \(-0.630471\pi\)
−0.398504 + 0.917166i \(0.630471\pi\)
\(258\) 0 0
\(259\) 4.31505e8 1.54325
\(260\) 0 0
\(261\) −1.20131e8 −0.418228
\(262\) 0 0
\(263\) −3.00135e8 −1.01735 −0.508676 0.860958i \(-0.669865\pi\)
−0.508676 + 0.860958i \(0.669865\pi\)
\(264\) 0 0
\(265\) 1.97097e7 0.0650609
\(266\) 0 0
\(267\) 6.43465e8 2.06888
\(268\) 0 0
\(269\) 1.54514e8 0.483988 0.241994 0.970278i \(-0.422199\pi\)
0.241994 + 0.970278i \(0.422199\pi\)
\(270\) 0 0
\(271\) 8.08530e7 0.246776 0.123388 0.992358i \(-0.460624\pi\)
0.123388 + 0.992358i \(0.460624\pi\)
\(272\) 0 0
\(273\) 5.24873e8 1.56129
\(274\) 0 0
\(275\) −1.73389e8 −0.502755
\(276\) 0 0
\(277\) −4.37320e8 −1.23629 −0.618144 0.786065i \(-0.712115\pi\)
−0.618144 + 0.786065i \(0.712115\pi\)
\(278\) 0 0
\(279\) 4.06175e8 1.11969
\(280\) 0 0
\(281\) −4.96748e8 −1.33556 −0.667781 0.744357i \(-0.732756\pi\)
−0.667781 + 0.744357i \(0.732756\pi\)
\(282\) 0 0
\(283\) −3.11985e8 −0.818240 −0.409120 0.912481i \(-0.634164\pi\)
−0.409120 + 0.912481i \(0.634164\pi\)
\(284\) 0 0
\(285\) −7.37617e7 −0.188744
\(286\) 0 0
\(287\) 2.50896e8 0.626480
\(288\) 0 0
\(289\) 3.47427e7 0.0846682
\(290\) 0 0
\(291\) 6.73501e8 1.60219
\(292\) 0 0
\(293\) 7.62569e7 0.177110 0.0885549 0.996071i \(-0.471775\pi\)
0.0885549 + 0.996071i \(0.471775\pi\)
\(294\) 0 0
\(295\) 9.83909e7 0.223140
\(296\) 0 0
\(297\) 3.04589e7 0.0674631
\(298\) 0 0
\(299\) −2.61495e7 −0.0565737
\(300\) 0 0
\(301\) −4.64357e8 −0.981453
\(302\) 0 0
\(303\) 6.22858e8 1.28629
\(304\) 0 0
\(305\) −6.02346e7 −0.121562
\(306\) 0 0
\(307\) 6.84432e8 1.35004 0.675019 0.737800i \(-0.264135\pi\)
0.675019 + 0.737800i \(0.264135\pi\)
\(308\) 0 0
\(309\) 5.57631e8 1.07521
\(310\) 0 0
\(311\) −7.85903e8 −1.48152 −0.740760 0.671770i \(-0.765534\pi\)
−0.740760 + 0.671770i \(0.765534\pi\)
\(312\) 0 0
\(313\) 1.40680e8 0.259315 0.129657 0.991559i \(-0.458612\pi\)
0.129657 + 0.991559i \(0.458612\pi\)
\(314\) 0 0
\(315\) 2.62450e8 0.473107
\(316\) 0 0
\(317\) 4.01045e8 0.707108 0.353554 0.935414i \(-0.384973\pi\)
0.353554 + 0.935414i \(0.384973\pi\)
\(318\) 0 0
\(319\) −1.99917e8 −0.344811
\(320\) 0 0
\(321\) −1.36304e9 −2.30007
\(322\) 0 0
\(323\) −1.44704e8 −0.238931
\(324\) 0 0
\(325\) 5.28890e8 0.854621
\(326\) 0 0
\(327\) 4.18041e8 0.661153
\(328\) 0 0
\(329\) −2.24685e8 −0.347848
\(330\) 0 0
\(331\) 6.72089e8 1.01866 0.509329 0.860572i \(-0.329893\pi\)
0.509329 + 0.860572i \(0.329893\pi\)
\(332\) 0 0
\(333\) 1.14136e9 1.69382
\(334\) 0 0
\(335\) 2.42594e7 0.0352553
\(336\) 0 0
\(337\) 7.40374e8 1.05377 0.526886 0.849936i \(-0.323360\pi\)
0.526886 + 0.849936i \(0.323360\pi\)
\(338\) 0 0
\(339\) −8.27669e8 −1.15387
\(340\) 0 0
\(341\) 6.75937e8 0.923137
\(342\) 0 0
\(343\) −8.11013e8 −1.08517
\(344\) 0 0
\(345\) −2.70259e7 −0.0354334
\(346\) 0 0
\(347\) 1.18124e9 1.51770 0.758851 0.651264i \(-0.225761\pi\)
0.758851 + 0.651264i \(0.225761\pi\)
\(348\) 0 0
\(349\) 1.12031e9 1.41074 0.705371 0.708838i \(-0.250780\pi\)
0.705371 + 0.708838i \(0.250780\pi\)
\(350\) 0 0
\(351\) −9.29091e7 −0.114679
\(352\) 0 0
\(353\) 5.86760e8 0.709985 0.354993 0.934869i \(-0.384483\pi\)
0.354993 + 0.934869i \(0.384483\pi\)
\(354\) 0 0
\(355\) −4.66955e8 −0.553957
\(356\) 0 0
\(357\) 1.06419e9 1.23789
\(358\) 0 0
\(359\) 1.17182e9 1.33669 0.668347 0.743850i \(-0.267002\pi\)
0.668347 + 0.743850i \(0.267002\pi\)
\(360\) 0 0
\(361\) 4.70459e7 0.0526316
\(362\) 0 0
\(363\) 5.11013e8 0.560736
\(364\) 0 0
\(365\) 5.95422e8 0.640914
\(366\) 0 0
\(367\) −6.79549e8 −0.717611 −0.358806 0.933412i \(-0.616816\pi\)
−0.358806 + 0.933412i \(0.616816\pi\)
\(368\) 0 0
\(369\) 6.63636e8 0.687603
\(370\) 0 0
\(371\) 9.24508e7 0.0939944
\(372\) 0 0
\(373\) −1.65814e9 −1.65440 −0.827199 0.561909i \(-0.810067\pi\)
−0.827199 + 0.561909i \(0.810067\pi\)
\(374\) 0 0
\(375\) 1.38677e9 1.35799
\(376\) 0 0
\(377\) 6.09808e8 0.586136
\(378\) 0 0
\(379\) −1.08999e9 −1.02846 −0.514230 0.857652i \(-0.671922\pi\)
−0.514230 + 0.857652i \(0.671922\pi\)
\(380\) 0 0
\(381\) 6.66128e8 0.617050
\(382\) 0 0
\(383\) 1.10982e7 0.0100939 0.00504693 0.999987i \(-0.498394\pi\)
0.00504693 + 0.999987i \(0.498394\pi\)
\(384\) 0 0
\(385\) 4.36757e8 0.390056
\(386\) 0 0
\(387\) −1.22826e9 −1.07721
\(388\) 0 0
\(389\) 9.82638e8 0.846389 0.423195 0.906039i \(-0.360909\pi\)
0.423195 + 0.906039i \(0.360909\pi\)
\(390\) 0 0
\(391\) −5.30187e7 −0.0448549
\(392\) 0 0
\(393\) 1.90094e9 1.57977
\(394\) 0 0
\(395\) 2.50384e7 0.0204417
\(396\) 0 0
\(397\) −1.51430e9 −1.21463 −0.607316 0.794460i \(-0.707754\pi\)
−0.607316 + 0.794460i \(0.707754\pi\)
\(398\) 0 0
\(399\) −3.45988e8 −0.272681
\(400\) 0 0
\(401\) −1.31500e9 −1.01841 −0.509203 0.860647i \(-0.670060\pi\)
−0.509203 + 0.860647i \(0.670060\pi\)
\(402\) 0 0
\(403\) −2.06182e9 −1.56922
\(404\) 0 0
\(405\) −8.36676e8 −0.625842
\(406\) 0 0
\(407\) 1.89939e9 1.39648
\(408\) 0 0
\(409\) −2.37384e8 −0.171562 −0.0857809 0.996314i \(-0.527338\pi\)
−0.0857809 + 0.996314i \(0.527338\pi\)
\(410\) 0 0
\(411\) −1.93024e9 −1.37141
\(412\) 0 0
\(413\) 4.61514e8 0.322373
\(414\) 0 0
\(415\) 1.26855e9 0.871245
\(416\) 0 0
\(417\) 2.11026e9 1.42514
\(418\) 0 0
\(419\) 4.34834e8 0.288785 0.144393 0.989520i \(-0.453877\pi\)
0.144393 + 0.989520i \(0.453877\pi\)
\(420\) 0 0
\(421\) −2.36164e9 −1.54251 −0.771253 0.636528i \(-0.780370\pi\)
−0.771253 + 0.636528i \(0.780370\pi\)
\(422\) 0 0
\(423\) −5.94307e8 −0.381786
\(424\) 0 0
\(425\) 1.07234e9 0.677594
\(426\) 0 0
\(427\) −2.82537e8 −0.175622
\(428\) 0 0
\(429\) 2.31038e9 1.41281
\(430\) 0 0
\(431\) −1.13403e9 −0.682265 −0.341132 0.940015i \(-0.610810\pi\)
−0.341132 + 0.940015i \(0.610810\pi\)
\(432\) 0 0
\(433\) −6.53938e7 −0.0387105 −0.0193553 0.999813i \(-0.506161\pi\)
−0.0193553 + 0.999813i \(0.506161\pi\)
\(434\) 0 0
\(435\) 6.30245e8 0.367111
\(436\) 0 0
\(437\) 1.72373e7 0.00988064
\(438\) 0 0
\(439\) 2.47000e9 1.39338 0.696692 0.717370i \(-0.254654\pi\)
0.696692 + 0.717370i \(0.254654\pi\)
\(440\) 0 0
\(441\) −4.57066e8 −0.253772
\(442\) 0 0
\(443\) −1.25272e9 −0.684604 −0.342302 0.939590i \(-0.611207\pi\)
−0.342302 + 0.939590i \(0.611207\pi\)
\(444\) 0 0
\(445\) −1.63326e9 −0.878608
\(446\) 0 0
\(447\) 3.10867e9 1.64626
\(448\) 0 0
\(449\) −1.02696e9 −0.535416 −0.267708 0.963500i \(-0.586266\pi\)
−0.267708 + 0.963500i \(0.586266\pi\)
\(450\) 0 0
\(451\) 1.10439e9 0.566899
\(452\) 0 0
\(453\) 2.52020e9 1.27377
\(454\) 0 0
\(455\) −1.33225e9 −0.663047
\(456\) 0 0
\(457\) −1.62331e9 −0.795601 −0.397800 0.917472i \(-0.630226\pi\)
−0.397800 + 0.917472i \(0.630226\pi\)
\(458\) 0 0
\(459\) −1.88375e8 −0.0909242
\(460\) 0 0
\(461\) 6.81445e8 0.323950 0.161975 0.986795i \(-0.448214\pi\)
0.161975 + 0.986795i \(0.448214\pi\)
\(462\) 0 0
\(463\) 1.21102e9 0.567046 0.283523 0.958965i \(-0.408497\pi\)
0.283523 + 0.958965i \(0.408497\pi\)
\(464\) 0 0
\(465\) −2.13092e9 −0.982838
\(466\) 0 0
\(467\) −2.44385e9 −1.11036 −0.555182 0.831729i \(-0.687351\pi\)
−0.555182 + 0.831729i \(0.687351\pi\)
\(468\) 0 0
\(469\) 1.13792e8 0.0509337
\(470\) 0 0
\(471\) −2.13592e9 −0.941916
\(472\) 0 0
\(473\) −2.04401e9 −0.888113
\(474\) 0 0
\(475\) −3.48636e8 −0.149260
\(476\) 0 0
\(477\) 2.44538e8 0.103165
\(478\) 0 0
\(479\) −2.57537e9 −1.07069 −0.535347 0.844632i \(-0.679819\pi\)
−0.535347 + 0.844632i \(0.679819\pi\)
\(480\) 0 0
\(481\) −5.79375e9 −2.37384
\(482\) 0 0
\(483\) −1.26768e8 −0.0511911
\(484\) 0 0
\(485\) −1.70950e9 −0.680413
\(486\) 0 0
\(487\) −7.15399e8 −0.280671 −0.140335 0.990104i \(-0.544818\pi\)
−0.140335 + 0.990104i \(0.544818\pi\)
\(488\) 0 0
\(489\) 4.03501e8 0.156050
\(490\) 0 0
\(491\) −5.53548e8 −0.211043 −0.105521 0.994417i \(-0.533651\pi\)
−0.105521 + 0.994417i \(0.533651\pi\)
\(492\) 0 0
\(493\) 1.23640e9 0.464724
\(494\) 0 0
\(495\) 1.15525e9 0.428112
\(496\) 0 0
\(497\) −2.19031e9 −0.800308
\(498\) 0 0
\(499\) −2.94359e9 −1.06054 −0.530268 0.847830i \(-0.677909\pi\)
−0.530268 + 0.847830i \(0.677909\pi\)
\(500\) 0 0
\(501\) 2.37830e9 0.844958
\(502\) 0 0
\(503\) 3.25069e9 1.13890 0.569452 0.822025i \(-0.307155\pi\)
0.569452 + 0.822025i \(0.307155\pi\)
\(504\) 0 0
\(505\) −1.58095e9 −0.546260
\(506\) 0 0
\(507\) −2.96304e9 −1.00974
\(508\) 0 0
\(509\) 4.28218e9 1.43930 0.719651 0.694335i \(-0.244302\pi\)
0.719651 + 0.694335i \(0.244302\pi\)
\(510\) 0 0
\(511\) 2.79289e9 0.925936
\(512\) 0 0
\(513\) 6.12442e7 0.0200288
\(514\) 0 0
\(515\) −1.41539e9 −0.456617
\(516\) 0 0
\(517\) −9.89019e8 −0.314766
\(518\) 0 0
\(519\) −2.53594e9 −0.796257
\(520\) 0 0
\(521\) −6.10596e9 −1.89157 −0.945784 0.324795i \(-0.894705\pi\)
−0.945784 + 0.324795i \(0.894705\pi\)
\(522\) 0 0
\(523\) −2.70645e9 −0.827263 −0.413631 0.910444i \(-0.635740\pi\)
−0.413631 + 0.910444i \(0.635740\pi\)
\(524\) 0 0
\(525\) 2.56396e9 0.773309
\(526\) 0 0
\(527\) −4.18039e9 −1.24417
\(528\) 0 0
\(529\) −3.39851e9 −0.998145
\(530\) 0 0
\(531\) 1.22073e9 0.353826
\(532\) 0 0
\(533\) −3.36874e9 −0.963658
\(534\) 0 0
\(535\) 3.45971e9 0.976790
\(536\) 0 0
\(537\) −1.30130e9 −0.362632
\(538\) 0 0
\(539\) −7.60628e8 −0.209224
\(540\) 0 0
\(541\) −3.93980e9 −1.06975 −0.534877 0.844930i \(-0.679642\pi\)
−0.534877 + 0.844930i \(0.679642\pi\)
\(542\) 0 0
\(543\) −5.68009e9 −1.52249
\(544\) 0 0
\(545\) −1.06108e9 −0.280777
\(546\) 0 0
\(547\) 1.23208e9 0.321871 0.160936 0.986965i \(-0.448549\pi\)
0.160936 + 0.986965i \(0.448549\pi\)
\(548\) 0 0
\(549\) −7.47329e8 −0.192756
\(550\) 0 0
\(551\) −4.01976e8 −0.102369
\(552\) 0 0
\(553\) 1.17446e8 0.0295324
\(554\) 0 0
\(555\) −5.98792e9 −1.48679
\(556\) 0 0
\(557\) −1.28810e8 −0.0315831 −0.0157916 0.999875i \(-0.505027\pi\)
−0.0157916 + 0.999875i \(0.505027\pi\)
\(558\) 0 0
\(559\) 6.23486e9 1.50968
\(560\) 0 0
\(561\) 4.68435e9 1.12016
\(562\) 0 0
\(563\) 2.97889e9 0.703518 0.351759 0.936091i \(-0.385584\pi\)
0.351759 + 0.936091i \(0.385584\pi\)
\(564\) 0 0
\(565\) 2.10081e9 0.490023
\(566\) 0 0
\(567\) −3.92453e9 −0.904163
\(568\) 0 0
\(569\) −6.25314e9 −1.42300 −0.711500 0.702686i \(-0.751984\pi\)
−0.711500 + 0.702686i \(0.751984\pi\)
\(570\) 0 0
\(571\) 8.21409e9 1.84643 0.923216 0.384281i \(-0.125551\pi\)
0.923216 + 0.384281i \(0.125551\pi\)
\(572\) 0 0
\(573\) 4.95861e8 0.110108
\(574\) 0 0
\(575\) −1.27738e8 −0.0280209
\(576\) 0 0
\(577\) 4.79043e9 1.03815 0.519074 0.854729i \(-0.326277\pi\)
0.519074 + 0.854729i \(0.326277\pi\)
\(578\) 0 0
\(579\) 1.24599e10 2.66772
\(580\) 0 0
\(581\) 5.95029e9 1.25870
\(582\) 0 0
\(583\) 4.06949e8 0.0850551
\(584\) 0 0
\(585\) −3.52388e9 −0.727738
\(586\) 0 0
\(587\) 3.18914e9 0.650789 0.325394 0.945578i \(-0.394503\pi\)
0.325394 + 0.945578i \(0.394503\pi\)
\(588\) 0 0
\(589\) 1.35912e9 0.274065
\(590\) 0 0
\(591\) 9.03642e9 1.80070
\(592\) 0 0
\(593\) −6.00794e9 −1.18313 −0.591567 0.806256i \(-0.701491\pi\)
−0.591567 + 0.806256i \(0.701491\pi\)
\(594\) 0 0
\(595\) −2.70116e9 −0.525703
\(596\) 0 0
\(597\) −1.56919e9 −0.301833
\(598\) 0 0
\(599\) 1.10866e9 0.210768 0.105384 0.994432i \(-0.466393\pi\)
0.105384 + 0.994432i \(0.466393\pi\)
\(600\) 0 0
\(601\) −7.07923e9 −1.33023 −0.665113 0.746743i \(-0.731616\pi\)
−0.665113 + 0.746743i \(0.731616\pi\)
\(602\) 0 0
\(603\) 3.00986e8 0.0559032
\(604\) 0 0
\(605\) −1.29706e9 −0.238132
\(606\) 0 0
\(607\) 9.69356e9 1.75923 0.879615 0.475686i \(-0.157800\pi\)
0.879615 + 0.475686i \(0.157800\pi\)
\(608\) 0 0
\(609\) 2.95624e9 0.530370
\(610\) 0 0
\(611\) 3.01682e9 0.535063
\(612\) 0 0
\(613\) 3.80418e9 0.667036 0.333518 0.942744i \(-0.391764\pi\)
0.333518 + 0.942744i \(0.391764\pi\)
\(614\) 0 0
\(615\) −3.48164e9 −0.603561
\(616\) 0 0
\(617\) 7.03189e9 1.20524 0.602621 0.798028i \(-0.294123\pi\)
0.602621 + 0.798028i \(0.294123\pi\)
\(618\) 0 0
\(619\) 1.00612e10 1.70503 0.852515 0.522703i \(-0.175076\pi\)
0.852515 + 0.522703i \(0.175076\pi\)
\(620\) 0 0
\(621\) 2.24395e7 0.00376004
\(622\) 0 0
\(623\) −7.66099e9 −1.26934
\(624\) 0 0
\(625\) 4.51073e8 0.0739038
\(626\) 0 0
\(627\) −1.52297e9 −0.246748
\(628\) 0 0
\(629\) −1.17470e10 −1.88212
\(630\) 0 0
\(631\) −2.85699e9 −0.452696 −0.226348 0.974046i \(-0.572679\pi\)
−0.226348 + 0.974046i \(0.572679\pi\)
\(632\) 0 0
\(633\) −3.33730e9 −0.522977
\(634\) 0 0
\(635\) −1.69078e9 −0.262047
\(636\) 0 0
\(637\) 2.32016e9 0.355655
\(638\) 0 0
\(639\) −5.79350e9 −0.878391
\(640\) 0 0
\(641\) 1.04843e9 0.157230 0.0786151 0.996905i \(-0.474950\pi\)
0.0786151 + 0.996905i \(0.474950\pi\)
\(642\) 0 0
\(643\) −5.72938e9 −0.849903 −0.424951 0.905216i \(-0.639709\pi\)
−0.424951 + 0.905216i \(0.639709\pi\)
\(644\) 0 0
\(645\) 6.44381e9 0.945549
\(646\) 0 0
\(647\) −1.03797e10 −1.50667 −0.753336 0.657636i \(-0.771557\pi\)
−0.753336 + 0.657636i \(0.771557\pi\)
\(648\) 0 0
\(649\) 2.03149e9 0.291714
\(650\) 0 0
\(651\) −9.99532e9 −1.41992
\(652\) 0 0
\(653\) 8.00890e9 1.12558 0.562790 0.826600i \(-0.309728\pi\)
0.562790 + 0.826600i \(0.309728\pi\)
\(654\) 0 0
\(655\) −4.82501e9 −0.670893
\(656\) 0 0
\(657\) 7.38738e9 1.01628
\(658\) 0 0
\(659\) −1.45006e9 −0.197373 −0.0986863 0.995119i \(-0.531464\pi\)
−0.0986863 + 0.995119i \(0.531464\pi\)
\(660\) 0 0
\(661\) 6.16554e9 0.830359 0.415180 0.909740i \(-0.363719\pi\)
0.415180 + 0.909740i \(0.363719\pi\)
\(662\) 0 0
\(663\) −1.42887e10 −1.90413
\(664\) 0 0
\(665\) 8.78195e8 0.115802
\(666\) 0 0
\(667\) −1.47282e8 −0.0192180
\(668\) 0 0
\(669\) 4.49467e9 0.580372
\(670\) 0 0
\(671\) −1.24367e9 −0.158919
\(672\) 0 0
\(673\) −9.21834e9 −1.16574 −0.582868 0.812567i \(-0.698069\pi\)
−0.582868 + 0.812567i \(0.698069\pi\)
\(674\) 0 0
\(675\) −4.53853e8 −0.0568005
\(676\) 0 0
\(677\) −8.79564e9 −1.08945 −0.544725 0.838615i \(-0.683366\pi\)
−0.544725 + 0.838615i \(0.683366\pi\)
\(678\) 0 0
\(679\) −8.01859e9 −0.983001
\(680\) 0 0
\(681\) −1.00307e10 −1.21707
\(682\) 0 0
\(683\) −1.11750e10 −1.34207 −0.671036 0.741425i \(-0.734151\pi\)
−0.671036 + 0.741425i \(0.734151\pi\)
\(684\) 0 0
\(685\) 4.89939e9 0.582405
\(686\) 0 0
\(687\) 2.00284e10 2.35666
\(688\) 0 0
\(689\) −1.24132e9 −0.144583
\(690\) 0 0
\(691\) −5.87182e9 −0.677017 −0.338509 0.940963i \(-0.609922\pi\)
−0.338509 + 0.940963i \(0.609922\pi\)
\(692\) 0 0
\(693\) 5.41883e9 0.618499
\(694\) 0 0
\(695\) −5.35630e9 −0.605227
\(696\) 0 0
\(697\) −6.83020e9 −0.764045
\(698\) 0 0
\(699\) 8.39858e9 0.930113
\(700\) 0 0
\(701\) 1.66708e10 1.82787 0.913933 0.405865i \(-0.133030\pi\)
0.913933 + 0.405865i \(0.133030\pi\)
\(702\) 0 0
\(703\) 3.81915e9 0.414594
\(704\) 0 0
\(705\) 3.11792e9 0.335122
\(706\) 0 0
\(707\) −7.41564e9 −0.789188
\(708\) 0 0
\(709\) −1.24511e10 −1.31203 −0.656017 0.754746i \(-0.727760\pi\)
−0.656017 + 0.754746i \(0.727760\pi\)
\(710\) 0 0
\(711\) 3.10651e8 0.0324137
\(712\) 0 0
\(713\) 4.97973e8 0.0514509
\(714\) 0 0
\(715\) −5.86427e9 −0.599988
\(716\) 0 0
\(717\) 2.35982e10 2.39090
\(718\) 0 0
\(719\) −1.45709e10 −1.46196 −0.730980 0.682399i \(-0.760937\pi\)
−0.730980 + 0.682399i \(0.760937\pi\)
\(720\) 0 0
\(721\) −6.63906e9 −0.659680
\(722\) 0 0
\(723\) −6.16160e9 −0.606330
\(724\) 0 0
\(725\) 2.97886e9 0.290313
\(726\) 0 0
\(727\) 1.12315e10 1.08410 0.542050 0.840346i \(-0.317648\pi\)
0.542050 + 0.840346i \(0.317648\pi\)
\(728\) 0 0
\(729\) −9.10954e9 −0.870864
\(730\) 0 0
\(731\) 1.26413e10 1.19697
\(732\) 0 0
\(733\) 8.47485e8 0.0794819 0.0397410 0.999210i \(-0.487347\pi\)
0.0397410 + 0.999210i \(0.487347\pi\)
\(734\) 0 0
\(735\) 2.39791e9 0.222755
\(736\) 0 0
\(737\) 5.00888e8 0.0460897
\(738\) 0 0
\(739\) 1.96528e10 1.79130 0.895652 0.444757i \(-0.146710\pi\)
0.895652 + 0.444757i \(0.146710\pi\)
\(740\) 0 0
\(741\) 4.64553e9 0.419442
\(742\) 0 0
\(743\) −2.10434e10 −1.88216 −0.941078 0.338189i \(-0.890186\pi\)
−0.941078 + 0.338189i \(0.890186\pi\)
\(744\) 0 0
\(745\) −7.89051e9 −0.699130
\(746\) 0 0
\(747\) 1.57389e10 1.38151
\(748\) 0 0
\(749\) 1.62282e10 1.41118
\(750\) 0 0
\(751\) 5.53354e9 0.476720 0.238360 0.971177i \(-0.423390\pi\)
0.238360 + 0.971177i \(0.423390\pi\)
\(752\) 0 0
\(753\) 2.11509e10 1.80529
\(754\) 0 0
\(755\) −6.39683e9 −0.540942
\(756\) 0 0
\(757\) −9.53196e9 −0.798632 −0.399316 0.916813i \(-0.630752\pi\)
−0.399316 + 0.916813i \(0.630752\pi\)
\(758\) 0 0
\(759\) −5.58006e8 −0.0463226
\(760\) 0 0
\(761\) −2.57729e9 −0.211991 −0.105995 0.994367i \(-0.533803\pi\)
−0.105995 + 0.994367i \(0.533803\pi\)
\(762\) 0 0
\(763\) −4.97713e9 −0.405642
\(764\) 0 0
\(765\) −7.14473e9 −0.576994
\(766\) 0 0
\(767\) −6.19668e9 −0.495878
\(768\) 0 0
\(769\) 1.81272e10 1.43743 0.718717 0.695303i \(-0.244730\pi\)
0.718717 + 0.695303i \(0.244730\pi\)
\(770\) 0 0
\(771\) 1.41172e10 1.10932
\(772\) 0 0
\(773\) 7.82920e9 0.609662 0.304831 0.952406i \(-0.401400\pi\)
0.304831 + 0.952406i \(0.401400\pi\)
\(774\) 0 0
\(775\) −1.00718e10 −0.777234
\(776\) 0 0
\(777\) −2.80870e10 −2.14799
\(778\) 0 0
\(779\) 2.22062e9 0.168304
\(780\) 0 0
\(781\) −9.64128e9 −0.724196
\(782\) 0 0
\(783\) −5.23291e8 −0.0389563
\(784\) 0 0
\(785\) 5.42145e9 0.400011
\(786\) 0 0
\(787\) 2.57850e10 1.88563 0.942813 0.333323i \(-0.108170\pi\)
0.942813 + 0.333323i \(0.108170\pi\)
\(788\) 0 0
\(789\) 1.95360e10 1.41601
\(790\) 0 0
\(791\) 9.85408e9 0.707943
\(792\) 0 0
\(793\) 3.79359e9 0.270143
\(794\) 0 0
\(795\) −1.28292e9 −0.0905557
\(796\) 0 0
\(797\) −4.79964e9 −0.335819 −0.167909 0.985802i \(-0.553702\pi\)
−0.167909 + 0.985802i \(0.553702\pi\)
\(798\) 0 0
\(799\) 6.11667e9 0.424230
\(800\) 0 0
\(801\) −2.02638e10 −1.39318
\(802\) 0 0
\(803\) 1.22937e10 0.837876
\(804\) 0 0
\(805\) 3.21765e8 0.0217397
\(806\) 0 0
\(807\) −1.00574e10 −0.673643
\(808\) 0 0
\(809\) −5.26908e9 −0.349876 −0.174938 0.984579i \(-0.555973\pi\)
−0.174938 + 0.984579i \(0.555973\pi\)
\(810\) 0 0
\(811\) 7.97328e9 0.524885 0.262442 0.964948i \(-0.415472\pi\)
0.262442 + 0.964948i \(0.415472\pi\)
\(812\) 0 0
\(813\) −5.26279e9 −0.343478
\(814\) 0 0
\(815\) −1.02418e9 −0.0662709
\(816\) 0 0
\(817\) −4.10992e9 −0.263667
\(818\) 0 0
\(819\) −1.65291e10 −1.05137
\(820\) 0 0
\(821\) −7.53735e9 −0.475355 −0.237677 0.971344i \(-0.576386\pi\)
−0.237677 + 0.971344i \(0.576386\pi\)
\(822\) 0 0
\(823\) 2.38435e10 1.49098 0.745489 0.666518i \(-0.232216\pi\)
0.745489 + 0.666518i \(0.232216\pi\)
\(824\) 0 0
\(825\) 1.12860e10 0.699764
\(826\) 0 0
\(827\) 1.63705e10 1.00645 0.503226 0.864155i \(-0.332146\pi\)
0.503226 + 0.864155i \(0.332146\pi\)
\(828\) 0 0
\(829\) 2.89876e10 1.76714 0.883570 0.468300i \(-0.155133\pi\)
0.883570 + 0.468300i \(0.155133\pi\)
\(830\) 0 0
\(831\) 2.84655e10 1.72074
\(832\) 0 0
\(833\) 4.70416e9 0.281984
\(834\) 0 0
\(835\) −6.03667e9 −0.358835
\(836\) 0 0
\(837\) 1.76930e9 0.104295
\(838\) 0 0
\(839\) 2.33866e10 1.36710 0.683551 0.729902i \(-0.260435\pi\)
0.683551 + 0.729902i \(0.260435\pi\)
\(840\) 0 0
\(841\) −1.38153e10 −0.800890
\(842\) 0 0
\(843\) 3.23338e10 1.85892
\(844\) 0 0
\(845\) 7.52086e9 0.428814
\(846\) 0 0
\(847\) −6.08403e9 −0.344032
\(848\) 0 0
\(849\) 2.03074e10 1.13888
\(850\) 0 0
\(851\) 1.39931e9 0.0778326
\(852\) 0 0
\(853\) 1.42926e10 0.788478 0.394239 0.919008i \(-0.371008\pi\)
0.394239 + 0.919008i \(0.371008\pi\)
\(854\) 0 0
\(855\) 2.32288e9 0.127100
\(856\) 0 0
\(857\) −8.17620e9 −0.443730 −0.221865 0.975077i \(-0.571214\pi\)
−0.221865 + 0.975077i \(0.571214\pi\)
\(858\) 0 0
\(859\) −1.32272e10 −0.712020 −0.356010 0.934482i \(-0.615863\pi\)
−0.356010 + 0.934482i \(0.615863\pi\)
\(860\) 0 0
\(861\) −1.63310e10 −0.871973
\(862\) 0 0
\(863\) −2.20566e10 −1.16816 −0.584078 0.811698i \(-0.698544\pi\)
−0.584078 + 0.811698i \(0.698544\pi\)
\(864\) 0 0
\(865\) 6.43678e9 0.338152
\(866\) 0 0
\(867\) −2.26143e9 −0.117846
\(868\) 0 0
\(869\) 5.16971e8 0.0267237
\(870\) 0 0
\(871\) −1.52786e9 −0.0783468
\(872\) 0 0
\(873\) −2.12097e10 −1.07891
\(874\) 0 0
\(875\) −1.65107e10 −0.833175
\(876\) 0 0
\(877\) 3.09262e10 1.54820 0.774102 0.633061i \(-0.218202\pi\)
0.774102 + 0.633061i \(0.218202\pi\)
\(878\) 0 0
\(879\) −4.96363e9 −0.246512
\(880\) 0 0
\(881\) 3.43105e10 1.69049 0.845244 0.534381i \(-0.179455\pi\)
0.845244 + 0.534381i \(0.179455\pi\)
\(882\) 0 0
\(883\) 2.04637e9 0.100028 0.0500141 0.998749i \(-0.484073\pi\)
0.0500141 + 0.998749i \(0.484073\pi\)
\(884\) 0 0
\(885\) −6.40435e9 −0.310580
\(886\) 0 0
\(887\) 2.39442e10 1.15204 0.576020 0.817436i \(-0.304605\pi\)
0.576020 + 0.817436i \(0.304605\pi\)
\(888\) 0 0
\(889\) −7.93081e9 −0.378583
\(890\) 0 0
\(891\) −1.72750e10 −0.818173
\(892\) 0 0
\(893\) −1.98864e9 −0.0934492
\(894\) 0 0
\(895\) 3.30298e9 0.154002
\(896\) 0 0
\(897\) 1.70209e9 0.0787427
\(898\) 0 0
\(899\) −1.16128e10 −0.533061
\(900\) 0 0
\(901\) −2.51681e9 −0.114634
\(902\) 0 0
\(903\) 3.02254e10 1.36605
\(904\) 0 0
\(905\) 1.44173e10 0.646570
\(906\) 0 0
\(907\) 3.15992e10 1.40621 0.703105 0.711086i \(-0.251796\pi\)
0.703105 + 0.711086i \(0.251796\pi\)
\(908\) 0 0
\(909\) −1.96148e10 −0.866186
\(910\) 0 0
\(911\) −2.22131e10 −0.973410 −0.486705 0.873566i \(-0.661801\pi\)
−0.486705 + 0.873566i \(0.661801\pi\)
\(912\) 0 0
\(913\) 2.61920e10 1.13899
\(914\) 0 0
\(915\) 3.92072e9 0.169197
\(916\) 0 0
\(917\) −2.26323e10 −0.969249
\(918\) 0 0
\(919\) 3.55547e10 1.51110 0.755548 0.655093i \(-0.227370\pi\)
0.755548 + 0.655093i \(0.227370\pi\)
\(920\) 0 0
\(921\) −4.45503e10 −1.87907
\(922\) 0 0
\(923\) 2.94089e10 1.23104
\(924\) 0 0
\(925\) −2.83020e10 −1.17576
\(926\) 0 0
\(927\) −1.75608e10 −0.724043
\(928\) 0 0
\(929\) 7.16237e9 0.293091 0.146545 0.989204i \(-0.453185\pi\)
0.146545 + 0.989204i \(0.453185\pi\)
\(930\) 0 0
\(931\) −1.52941e9 −0.0621155
\(932\) 0 0
\(933\) 5.11551e10 2.06207
\(934\) 0 0
\(935\) −1.18899e10 −0.475706
\(936\) 0 0
\(937\) −1.18833e10 −0.471897 −0.235948 0.971766i \(-0.575820\pi\)
−0.235948 + 0.971766i \(0.575820\pi\)
\(938\) 0 0
\(939\) −9.15698e9 −0.360930
\(940\) 0 0
\(941\) −1.59820e9 −0.0625270 −0.0312635 0.999511i \(-0.509953\pi\)
−0.0312635 + 0.999511i \(0.509953\pi\)
\(942\) 0 0
\(943\) 8.13623e8 0.0315960
\(944\) 0 0
\(945\) 1.14323e9 0.0440680
\(946\) 0 0
\(947\) −3.17909e10 −1.21641 −0.608203 0.793782i \(-0.708109\pi\)
−0.608203 + 0.793782i \(0.708109\pi\)
\(948\) 0 0
\(949\) −3.74998e10 −1.42428
\(950\) 0 0
\(951\) −2.61044e10 −0.984196
\(952\) 0 0
\(953\) 1.26693e10 0.474161 0.237081 0.971490i \(-0.423809\pi\)
0.237081 + 0.971490i \(0.423809\pi\)
\(954\) 0 0
\(955\) −1.25861e9 −0.0467604
\(956\) 0 0
\(957\) 1.30127e10 0.479929
\(958\) 0 0
\(959\) 2.29812e10 0.841408
\(960\) 0 0
\(961\) 1.17513e10 0.427125
\(962\) 0 0
\(963\) 4.29245e10 1.54887
\(964\) 0 0
\(965\) −3.16261e10 −1.13292
\(966\) 0 0
\(967\) 2.08359e10 0.741003 0.370502 0.928832i \(-0.379186\pi\)
0.370502 + 0.928832i \(0.379186\pi\)
\(968\) 0 0
\(969\) 9.41891e9 0.332558
\(970\) 0 0
\(971\) −5.10058e10 −1.78794 −0.893968 0.448131i \(-0.852090\pi\)
−0.893968 + 0.448131i \(0.852090\pi\)
\(972\) 0 0
\(973\) −2.51243e10 −0.874379
\(974\) 0 0
\(975\) −3.44259e10 −1.18951
\(976\) 0 0
\(977\) 2.28581e10 0.784169 0.392085 0.919929i \(-0.371754\pi\)
0.392085 + 0.919929i \(0.371754\pi\)
\(978\) 0 0
\(979\) −3.37221e10 −1.14862
\(980\) 0 0
\(981\) −1.31648e10 −0.445219
\(982\) 0 0
\(983\) 3.39199e10 1.13898 0.569491 0.821998i \(-0.307140\pi\)
0.569491 + 0.821998i \(0.307140\pi\)
\(984\) 0 0
\(985\) −2.29365e10 −0.764715
\(986\) 0 0
\(987\) 1.46250e10 0.484156
\(988\) 0 0
\(989\) −1.50585e9 −0.0494988
\(990\) 0 0
\(991\) 1.49529e9 0.0488053 0.0244026 0.999702i \(-0.492232\pi\)
0.0244026 + 0.999702i \(0.492232\pi\)
\(992\) 0 0
\(993\) −4.37469e10 −1.41783
\(994\) 0 0
\(995\) 3.98296e9 0.128182
\(996\) 0 0
\(997\) −5.93902e10 −1.89794 −0.948969 0.315370i \(-0.897871\pi\)
−0.948969 + 0.315370i \(0.897871\pi\)
\(998\) 0 0
\(999\) 4.97176e9 0.157772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.8.a.j.1.1 6
4.3 odd 2 152.8.a.a.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.8.a.a.1.6 6 4.3 odd 2
304.8.a.j.1.1 6 1.1 even 1 trivial