Properties

Label 304.8.a.j.1.1
Level 304304
Weight 88
Character 304.1
Self dual yes
Analytic conductor 94.96594.965
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [304,8,Mod(1,304)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(304, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("304.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: N N == 304=2419 304 = 2^{4} \cdot 19
Weight: k k == 8 8
Character orbit: [χ][\chi] == 304.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-29,0,-43] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 94.965047747294.9650477472
Analytic rank: 11
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6x56373x412403x3+11165936x2+51537728x4683020288 x^{6} - x^{5} - 6373x^{4} - 12403x^{3} + 11165936x^{2} + 51537728x - 4683020288 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2103 2^{10}\cdot 3
Twist minimal: no (minimal twist has level 152)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 60.0909-60.0909 of defining polynomial
Character χ\chi == 304.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q65.0909q3+165.215q5+774.961q7+2049.82q9+3411.22q1110405.3q1310754.0q1521097.0q17+6859.00q1950442.9q21+2513.10q2350828.9q25+8929.03q2758605.6q29+198151.q31222039.q33+128035.q35+556808.q37+677289.q39+323753.q41599201.q43+338662.q45289931.q47222978.q49+1.37322e6q51+119297.q53+563585.q55446458.q57+595531.q59364583.q61+1.58853e6q631.71911e6q65+146835.q67163580.q692.82634e6q71+3.60391e6q73+3.30850e6q75+2.64356e6q77+151550.q795.06416e6q81+7.67819e6q833.48554e6q85+3.81469e6q879.88564e6q898.06369e6q911.28978e7q93+1.13321e6q951.03471e7q97+6.99239e6q99+O(q100)q-65.0909 q^{3} +165.215 q^{5} +774.961 q^{7} +2049.82 q^{9} +3411.22 q^{11} -10405.3 q^{13} -10754.0 q^{15} -21097.0 q^{17} +6859.00 q^{19} -50442.9 q^{21} +2513.10 q^{23} -50828.9 q^{25} +8929.03 q^{27} -58605.6 q^{29} +198151. q^{31} -222039. q^{33} +128035. q^{35} +556808. q^{37} +677289. q^{39} +323753. q^{41} -599201. q^{43} +338662. q^{45} -289931. q^{47} -222978. q^{49} +1.37322e6 q^{51} +119297. q^{53} +563585. q^{55} -446458. q^{57} +595531. q^{59} -364583. q^{61} +1.58853e6 q^{63} -1.71911e6 q^{65} +146835. q^{67} -163580. q^{69} -2.82634e6 q^{71} +3.60391e6 q^{73} +3.30850e6 q^{75} +2.64356e6 q^{77} +151550. q^{79} -5.06416e6 q^{81} +7.67819e6 q^{83} -3.48554e6 q^{85} +3.81469e6 q^{87} -9.88564e6 q^{89} -8.06369e6 q^{91} -1.28978e7 q^{93} +1.13321e6 q^{95} -1.03471e7 q^{97} +6.99239e6 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q29q343q5+908q7235q93935q11+6449q138422q156920q17+41154q1954471q21+43633q2348003q258705q27134097q29+95448q31++2897895q99+O(q100) 6 q - 29 q^{3} - 43 q^{5} + 908 q^{7} - 235 q^{9} - 3935 q^{11} + 6449 q^{13} - 8422 q^{15} - 6920 q^{17} + 41154 q^{19} - 54471 q^{21} + 43633 q^{23} - 48003 q^{25} - 8705 q^{27} - 134097 q^{29} + 95448 q^{31}+ \cdots + 2897895 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −65.0909 −1.39186 −0.695930 0.718109i 0.745008π-0.745008\pi
−0.695930 + 0.718109i 0.745008π0.745008\pi
44 0 0
55 165.215 0.591092 0.295546 0.955328i 0.404498π-0.404498\pi
0.295546 + 0.955328i 0.404498π0.404498\pi
66 0 0
77 774.961 0.853958 0.426979 0.904261i 0.359578π-0.359578\pi
0.426979 + 0.904261i 0.359578π0.359578\pi
88 0 0
99 2049.82 0.937276
1010 0 0
1111 3411.22 0.772743 0.386372 0.922343i 0.373728π-0.373728\pi
0.386372 + 0.922343i 0.373728π0.373728\pi
1212 0 0
1313 −10405.3 −1.31357 −0.656784 0.754079i 0.728084π-0.728084\pi
−0.656784 + 0.754079i 0.728084π0.728084\pi
1414 0 0
1515 −10754.0 −0.822718
1616 0 0
1717 −21097.0 −1.04147 −0.520737 0.853717i 0.674343π-0.674343\pi
−0.520737 + 0.853717i 0.674343π0.674343\pi
1818 0 0
1919 6859.00 0.229416
2020 0 0
2121 −50442.9 −1.18859
2222 0 0
2323 2513.10 0.0430687 0.0215344 0.999768i 0.493145π-0.493145\pi
0.0215344 + 0.999768i 0.493145π0.493145\pi
2424 0 0
2525 −50828.9 −0.650610
2626 0 0
2727 8929.03 0.0873034
2828 0 0
2929 −58605.6 −0.446217 −0.223109 0.974794i 0.571620π-0.571620\pi
−0.223109 + 0.974794i 0.571620π0.571620\pi
3030 0 0
3131 198151. 1.19462 0.597312 0.802009i 0.296236π-0.296236\pi
0.597312 + 0.802009i 0.296236π0.296236\pi
3232 0 0
3333 −222039. −1.07555
3434 0 0
3535 128035. 0.504768
3636 0 0
3737 556808. 1.80717 0.903586 0.428406i 0.140925π-0.140925\pi
0.903586 + 0.428406i 0.140925π0.140925\pi
3838 0 0
3939 677289. 1.82830
4040 0 0
4141 323753. 0.733619 0.366809 0.930296i 0.380450π-0.380450\pi
0.366809 + 0.930296i 0.380450π0.380450\pi
4242 0 0
4343 −599201. −1.14930 −0.574649 0.818400i 0.694862π-0.694862\pi
−0.574649 + 0.818400i 0.694862π0.694862\pi
4444 0 0
4545 338662. 0.554016
4646 0 0
4747 −289931. −0.407336 −0.203668 0.979040i 0.565286π-0.565286\pi
−0.203668 + 0.979040i 0.565286π0.565286\pi
4848 0 0
4949 −222978. −0.270755
5050 0 0
5151 1.37322e6 1.44959
5252 0 0
5353 119297. 0.110069 0.0550345 0.998484i 0.482473π-0.482473\pi
0.0550345 + 0.998484i 0.482473π0.482473\pi
5454 0 0
5555 563585. 0.456762
5656 0 0
5757 −446458. −0.319315
5858 0 0
5959 595531. 0.377505 0.188752 0.982025i 0.439556π-0.439556\pi
0.188752 + 0.982025i 0.439556π0.439556\pi
6060 0 0
6161 −364583. −0.205656 −0.102828 0.994699i 0.532789π-0.532789\pi
−0.102828 + 0.994699i 0.532789π0.532789\pi
6262 0 0
6363 1.58853e6 0.800395
6464 0 0
6565 −1.71911e6 −0.776439
6666 0 0
6767 146835. 0.0596443 0.0298221 0.999555i 0.490506π-0.490506\pi
0.0298221 + 0.999555i 0.490506π0.490506\pi
6868 0 0
6969 −163580. −0.0599456
7070 0 0
7171 −2.82634e6 −0.937175 −0.468588 0.883417i 0.655237π-0.655237\pi
−0.468588 + 0.883417i 0.655237π0.655237\pi
7272 0 0
7373 3.60391e6 1.08429 0.542144 0.840286i 0.317613π-0.317613\pi
0.542144 + 0.840286i 0.317613π0.317613\pi
7474 0 0
7575 3.30850e6 0.905559
7676 0 0
7777 2.64356e6 0.659891
7878 0 0
7979 151550. 0.0345829 0.0172915 0.999850i 0.494496π-0.494496\pi
0.0172915 + 0.999850i 0.494496π0.494496\pi
8080 0 0
8181 −5.06416e6 −1.05879
8282 0 0
8383 7.67819e6 1.47396 0.736979 0.675915i 0.236251π-0.236251\pi
0.736979 + 0.675915i 0.236251π0.236251\pi
8484 0 0
8585 −3.48554e6 −0.615607
8686 0 0
8787 3.81469e6 0.621072
8888 0 0
8989 −9.88564e6 −1.48641 −0.743207 0.669062i 0.766696π-0.766696\pi
−0.743207 + 0.669062i 0.766696π0.766696\pi
9090 0 0
9191 −8.06369e6 −1.12173
9292 0 0
9393 −1.28978e7 −1.66275
9494 0 0
9595 1.13321e6 0.135606
9696 0 0
9797 −1.03471e7 −1.15111 −0.575556 0.817763i 0.695214π-0.695214\pi
−0.575556 + 0.817763i 0.695214π0.695214\pi
9898 0 0
9999 6.99239e6 0.724273
100100 0 0
101101 −9.56905e6 −0.924153 −0.462076 0.886840i 0.652895π-0.652895\pi
−0.462076 + 0.886840i 0.652895π0.652895\pi
102102 0 0
103103 −8.56696e6 −0.772497 −0.386248 0.922395i 0.626229π-0.626229\pi
−0.386248 + 0.922395i 0.626229π0.626229\pi
104104 0 0
105105 −8.33394e6 −0.702567
106106 0 0
107107 2.09406e7 1.65252 0.826259 0.563290i 0.190465π-0.190465\pi
0.826259 + 0.563290i 0.190465π0.190465\pi
108108 0 0
109109 −6.42242e6 −0.475014 −0.237507 0.971386i 0.576330π-0.576330\pi
−0.237507 + 0.971386i 0.576330π0.576330\pi
110110 0 0
111111 −3.62431e7 −2.51533
112112 0 0
113113 1.27156e7 0.829014 0.414507 0.910046i 0.363954π-0.363954\pi
0.414507 + 0.910046i 0.363954π0.363954\pi
114114 0 0
115115 415202. 0.0254576
116116 0 0
117117 −2.13290e7 −1.23118
118118 0 0
119119 −1.63493e7 −0.889376
120120 0 0
121121 −7.85076e6 −0.402868
122122 0 0
123123 −2.10734e7 −1.02109
124124 0 0
125125 −2.13052e7 −0.975663
126126 0 0
127127 −1.02338e7 −0.443327 −0.221664 0.975123i 0.571149π-0.571149\pi
−0.221664 + 0.975123i 0.571149π0.571149\pi
128128 0 0
129129 3.90025e7 1.59966
130130 0 0
131131 −2.92044e7 −1.13501 −0.567503 0.823371i 0.692091π-0.692091\pi
−0.567503 + 0.823371i 0.692091π0.692091\pi
132132 0 0
133133 5.31546e6 0.195911
134134 0 0
135135 1.47521e6 0.0516043
136136 0 0
137137 2.96546e7 0.985304 0.492652 0.870226i 0.336028π-0.336028\pi
0.492652 + 0.870226i 0.336028π0.336028\pi
138138 0 0
139139 −3.24201e7 −1.02391 −0.511957 0.859011i 0.671079π-0.671079\pi
−0.511957 + 0.859011i 0.671079π0.671079\pi
140140 0 0
141141 1.88719e7 0.566955
142142 0 0
143143 −3.54947e7 −1.01505
144144 0 0
145145 −9.68254e6 −0.263755
146146 0 0
147147 1.45139e7 0.376853
148148 0 0
149149 −4.77590e7 −1.18278 −0.591389 0.806387i 0.701420π-0.701420\pi
−0.591389 + 0.806387i 0.701420π0.701420\pi
150150 0 0
151151 −3.87182e7 −0.915157 −0.457578 0.889169i 0.651283π-0.651283\pi
−0.457578 + 0.889169i 0.651283π0.651283\pi
152152 0 0
153153 −4.32450e7 −0.976148
154154 0 0
155155 3.27376e7 0.706132
156156 0 0
157157 3.28145e7 0.676731 0.338366 0.941015i 0.390126π-0.390126\pi
0.338366 + 0.941015i 0.390126π0.390126\pi
158158 0 0
159159 −7.76517e6 −0.153201
160160 0 0
161161 1.94755e6 0.0367789
162162 0 0
163163 −6.19904e6 −0.112116 −0.0560580 0.998428i 0.517853π-0.517853\pi
−0.0560580 + 0.998428i 0.517853π0.517853\pi
164164 0 0
165165 −3.66843e7 −0.635750
166166 0 0
167167 −3.65382e7 −0.607071 −0.303536 0.952820i 0.598167π-0.598167\pi
−0.303536 + 0.952820i 0.598167π0.598167\pi
168168 0 0
169169 4.55216e7 0.725460
170170 0 0
171171 1.40597e7 0.215026
172172 0 0
173173 3.89600e7 0.572081 0.286040 0.958218i 0.407661π-0.407661\pi
0.286040 + 0.958218i 0.407661π0.407661\pi
174174 0 0
175175 −3.93904e7 −0.555594
176176 0 0
177177 −3.87637e7 −0.525434
178178 0 0
179179 1.99920e7 0.260538 0.130269 0.991479i 0.458416π-0.458416\pi
0.130269 + 0.991479i 0.458416π0.458416\pi
180180 0 0
181181 8.72640e7 1.09386 0.546928 0.837180i 0.315797π-0.315797\pi
0.546928 + 0.837180i 0.315797π0.315797\pi
182182 0 0
183183 2.37310e7 0.286245
184184 0 0
185185 9.19932e7 1.06821
186186 0 0
187187 −7.19663e7 −0.804792
188188 0 0
189189 6.91965e6 0.0745535
190190 0 0
191191 −7.61798e6 −0.0791084 −0.0395542 0.999217i 0.512594π-0.512594\pi
−0.0395542 + 0.999217i 0.512594π0.512594\pi
192192 0 0
193193 −1.91424e8 −1.91666 −0.958330 0.285664i 0.907786π-0.907786\pi
−0.958330 + 0.285664i 0.907786π0.907786\pi
194194 0 0
195195 1.11899e8 1.08070
196196 0 0
197197 −1.38828e8 −1.29373 −0.646866 0.762603i 0.723921π-0.723921\pi
−0.646866 + 0.762603i 0.723921π0.723921\pi
198198 0 0
199199 2.41077e7 0.216856 0.108428 0.994104i 0.465418π-0.465418\pi
0.108428 + 0.994104i 0.465418π0.465418\pi
200200 0 0
201201 −9.55764e6 −0.0830165
202202 0 0
203203 −4.54171e7 −0.381051
204204 0 0
205205 5.34889e7 0.433636
206206 0 0
207207 5.15140e6 0.0403673
208208 0 0
209209 2.33975e7 0.177279
210210 0 0
211211 5.12714e7 0.375740 0.187870 0.982194i 0.439842π-0.439842\pi
0.187870 + 0.982194i 0.439842π0.439842\pi
212212 0 0
213213 1.83969e8 1.30442
214214 0 0
215215 −9.89972e7 −0.679341
216216 0 0
217217 1.53560e8 1.02016
218218 0 0
219219 −2.34582e8 −1.50918
220220 0 0
221221 2.19520e8 1.36805
222222 0 0
223223 −6.90522e7 −0.416976 −0.208488 0.978025i 0.566854π-0.566854\pi
−0.208488 + 0.978025i 0.566854π0.566854\pi
224224 0 0
225225 −1.04190e8 −0.609801
226226 0 0
227227 1.54103e8 0.874420 0.437210 0.899359i 0.355967π-0.355967\pi
0.437210 + 0.899359i 0.355967π0.355967\pi
228228 0 0
229229 −3.07698e8 −1.69317 −0.846586 0.532252i 0.821346π-0.821346\pi
−0.846586 + 0.532252i 0.821346π0.821346\pi
230230 0 0
231231 −1.72072e8 −0.918476
232232 0 0
233233 −1.29029e8 −0.668252 −0.334126 0.942528i 0.608441π-0.608441\pi
−0.334126 + 0.942528i 0.608441π0.608441\pi
234234 0 0
235235 −4.79011e7 −0.240773
236236 0 0
237237 −9.86454e6 −0.0481346
238238 0 0
239239 −3.62543e8 −1.71778 −0.858888 0.512163i 0.828844π-0.828844\pi
−0.858888 + 0.512163i 0.828844π0.828844\pi
240240 0 0
241241 9.46614e7 0.435626 0.217813 0.975991i 0.430108π-0.430108\pi
0.217813 + 0.975991i 0.430108π0.430108\pi
242242 0 0
243243 3.10103e8 1.38638
244244 0 0
245245 −3.68394e7 −0.160041
246246 0 0
247247 −7.13699e7 −0.301353
248248 0 0
249249 −4.99780e8 −2.05154
250250 0 0
251251 −3.24944e8 −1.29703 −0.648516 0.761201i 0.724610π-0.724610\pi
−0.648516 + 0.761201i 0.724610π0.724610\pi
252252 0 0
253253 8.57272e6 0.0332810
254254 0 0
255255 2.26877e8 0.856839
256256 0 0
257257 −2.16885e8 −0.797008 −0.398504 0.917166i 0.630471π-0.630471\pi
−0.398504 + 0.917166i 0.630471π0.630471\pi
258258 0 0
259259 4.31505e8 1.54325
260260 0 0
261261 −1.20131e8 −0.418228
262262 0 0
263263 −3.00135e8 −1.01735 −0.508676 0.860958i 0.669865π-0.669865\pi
−0.508676 + 0.860958i 0.669865π0.669865\pi
264264 0 0
265265 1.97097e7 0.0650609
266266 0 0
267267 6.43465e8 2.06888
268268 0 0
269269 1.54514e8 0.483988 0.241994 0.970278i 0.422199π-0.422199\pi
0.241994 + 0.970278i 0.422199π0.422199\pi
270270 0 0
271271 8.08530e7 0.246776 0.123388 0.992358i 0.460624π-0.460624\pi
0.123388 + 0.992358i 0.460624π0.460624\pi
272272 0 0
273273 5.24873e8 1.56129
274274 0 0
275275 −1.73389e8 −0.502755
276276 0 0
277277 −4.37320e8 −1.23629 −0.618144 0.786065i 0.712115π-0.712115\pi
−0.618144 + 0.786065i 0.712115π0.712115\pi
278278 0 0
279279 4.06175e8 1.11969
280280 0 0
281281 −4.96748e8 −1.33556 −0.667781 0.744357i 0.732756π-0.732756\pi
−0.667781 + 0.744357i 0.732756π0.732756\pi
282282 0 0
283283 −3.11985e8 −0.818240 −0.409120 0.912481i 0.634164π-0.634164\pi
−0.409120 + 0.912481i 0.634164π0.634164\pi
284284 0 0
285285 −7.37617e7 −0.188744
286286 0 0
287287 2.50896e8 0.626480
288288 0 0
289289 3.47427e7 0.0846682
290290 0 0
291291 6.73501e8 1.60219
292292 0 0
293293 7.62569e7 0.177110 0.0885549 0.996071i 0.471775π-0.471775\pi
0.0885549 + 0.996071i 0.471775π0.471775\pi
294294 0 0
295295 9.83909e7 0.223140
296296 0 0
297297 3.04589e7 0.0674631
298298 0 0
299299 −2.61495e7 −0.0565737
300300 0 0
301301 −4.64357e8 −0.981453
302302 0 0
303303 6.22858e8 1.28629
304304 0 0
305305 −6.02346e7 −0.121562
306306 0 0
307307 6.84432e8 1.35004 0.675019 0.737800i 0.264135π-0.264135\pi
0.675019 + 0.737800i 0.264135π0.264135\pi
308308 0 0
309309 5.57631e8 1.07521
310310 0 0
311311 −7.85903e8 −1.48152 −0.740760 0.671770i 0.765534π-0.765534\pi
−0.740760 + 0.671770i 0.765534π0.765534\pi
312312 0 0
313313 1.40680e8 0.259315 0.129657 0.991559i 0.458612π-0.458612\pi
0.129657 + 0.991559i 0.458612π0.458612\pi
314314 0 0
315315 2.62450e8 0.473107
316316 0 0
317317 4.01045e8 0.707108 0.353554 0.935414i 0.384973π-0.384973\pi
0.353554 + 0.935414i 0.384973π0.384973\pi
318318 0 0
319319 −1.99917e8 −0.344811
320320 0 0
321321 −1.36304e9 −2.30007
322322 0 0
323323 −1.44704e8 −0.238931
324324 0 0
325325 5.28890e8 0.854621
326326 0 0
327327 4.18041e8 0.661153
328328 0 0
329329 −2.24685e8 −0.347848
330330 0 0
331331 6.72089e8 1.01866 0.509329 0.860572i 0.329893π-0.329893\pi
0.509329 + 0.860572i 0.329893π0.329893\pi
332332 0 0
333333 1.14136e9 1.69382
334334 0 0
335335 2.42594e7 0.0352553
336336 0 0
337337 7.40374e8 1.05377 0.526886 0.849936i 0.323360π-0.323360\pi
0.526886 + 0.849936i 0.323360π0.323360\pi
338338 0 0
339339 −8.27669e8 −1.15387
340340 0 0
341341 6.75937e8 0.923137
342342 0 0
343343 −8.11013e8 −1.08517
344344 0 0
345345 −2.70259e7 −0.0354334
346346 0 0
347347 1.18124e9 1.51770 0.758851 0.651264i 0.225761π-0.225761\pi
0.758851 + 0.651264i 0.225761π0.225761\pi
348348 0 0
349349 1.12031e9 1.41074 0.705371 0.708838i 0.250780π-0.250780\pi
0.705371 + 0.708838i 0.250780π0.250780\pi
350350 0 0
351351 −9.29091e7 −0.114679
352352 0 0
353353 5.86760e8 0.709985 0.354993 0.934869i 0.384483π-0.384483\pi
0.354993 + 0.934869i 0.384483π0.384483\pi
354354 0 0
355355 −4.66955e8 −0.553957
356356 0 0
357357 1.06419e9 1.23789
358358 0 0
359359 1.17182e9 1.33669 0.668347 0.743850i 0.267002π-0.267002\pi
0.668347 + 0.743850i 0.267002π0.267002\pi
360360 0 0
361361 4.70459e7 0.0526316
362362 0 0
363363 5.11013e8 0.560736
364364 0 0
365365 5.95422e8 0.640914
366366 0 0
367367 −6.79549e8 −0.717611 −0.358806 0.933412i 0.616816π-0.616816\pi
−0.358806 + 0.933412i 0.616816π0.616816\pi
368368 0 0
369369 6.63636e8 0.687603
370370 0 0
371371 9.24508e7 0.0939944
372372 0 0
373373 −1.65814e9 −1.65440 −0.827199 0.561909i 0.810067π-0.810067\pi
−0.827199 + 0.561909i 0.810067π0.810067\pi
374374 0 0
375375 1.38677e9 1.35799
376376 0 0
377377 6.09808e8 0.586136
378378 0 0
379379 −1.08999e9 −1.02846 −0.514230 0.857652i 0.671922π-0.671922\pi
−0.514230 + 0.857652i 0.671922π0.671922\pi
380380 0 0
381381 6.66128e8 0.617050
382382 0 0
383383 1.10982e7 0.0100939 0.00504693 0.999987i 0.498394π-0.498394\pi
0.00504693 + 0.999987i 0.498394π0.498394\pi
384384 0 0
385385 4.36757e8 0.390056
386386 0 0
387387 −1.22826e9 −1.07721
388388 0 0
389389 9.82638e8 0.846389 0.423195 0.906039i 0.360909π-0.360909\pi
0.423195 + 0.906039i 0.360909π0.360909\pi
390390 0 0
391391 −5.30187e7 −0.0448549
392392 0 0
393393 1.90094e9 1.57977
394394 0 0
395395 2.50384e7 0.0204417
396396 0 0
397397 −1.51430e9 −1.21463 −0.607316 0.794460i 0.707754π-0.707754\pi
−0.607316 + 0.794460i 0.707754π0.707754\pi
398398 0 0
399399 −3.45988e8 −0.272681
400400 0 0
401401 −1.31500e9 −1.01841 −0.509203 0.860647i 0.670060π-0.670060\pi
−0.509203 + 0.860647i 0.670060π0.670060\pi
402402 0 0
403403 −2.06182e9 −1.56922
404404 0 0
405405 −8.36676e8 −0.625842
406406 0 0
407407 1.89939e9 1.39648
408408 0 0
409409 −2.37384e8 −0.171562 −0.0857809 0.996314i 0.527338π-0.527338\pi
−0.0857809 + 0.996314i 0.527338π0.527338\pi
410410 0 0
411411 −1.93024e9 −1.37141
412412 0 0
413413 4.61514e8 0.322373
414414 0 0
415415 1.26855e9 0.871245
416416 0 0
417417 2.11026e9 1.42514
418418 0 0
419419 4.34834e8 0.288785 0.144393 0.989520i 0.453877π-0.453877\pi
0.144393 + 0.989520i 0.453877π0.453877\pi
420420 0 0
421421 −2.36164e9 −1.54251 −0.771253 0.636528i 0.780370π-0.780370\pi
−0.771253 + 0.636528i 0.780370π0.780370\pi
422422 0 0
423423 −5.94307e8 −0.381786
424424 0 0
425425 1.07234e9 0.677594
426426 0 0
427427 −2.82537e8 −0.175622
428428 0 0
429429 2.31038e9 1.41281
430430 0 0
431431 −1.13403e9 −0.682265 −0.341132 0.940015i 0.610810π-0.610810\pi
−0.341132 + 0.940015i 0.610810π0.610810\pi
432432 0 0
433433 −6.53938e7 −0.0387105 −0.0193553 0.999813i 0.506161π-0.506161\pi
−0.0193553 + 0.999813i 0.506161π0.506161\pi
434434 0 0
435435 6.30245e8 0.367111
436436 0 0
437437 1.72373e7 0.00988064
438438 0 0
439439 2.47000e9 1.39338 0.696692 0.717370i 0.254654π-0.254654\pi
0.696692 + 0.717370i 0.254654π0.254654\pi
440440 0 0
441441 −4.57066e8 −0.253772
442442 0 0
443443 −1.25272e9 −0.684604 −0.342302 0.939590i 0.611207π-0.611207\pi
−0.342302 + 0.939590i 0.611207π0.611207\pi
444444 0 0
445445 −1.63326e9 −0.878608
446446 0 0
447447 3.10867e9 1.64626
448448 0 0
449449 −1.02696e9 −0.535416 −0.267708 0.963500i 0.586266π-0.586266\pi
−0.267708 + 0.963500i 0.586266π0.586266\pi
450450 0 0
451451 1.10439e9 0.566899
452452 0 0
453453 2.52020e9 1.27377
454454 0 0
455455 −1.33225e9 −0.663047
456456 0 0
457457 −1.62331e9 −0.795601 −0.397800 0.917472i 0.630226π-0.630226\pi
−0.397800 + 0.917472i 0.630226π0.630226\pi
458458 0 0
459459 −1.88375e8 −0.0909242
460460 0 0
461461 6.81445e8 0.323950 0.161975 0.986795i 0.448214π-0.448214\pi
0.161975 + 0.986795i 0.448214π0.448214\pi
462462 0 0
463463 1.21102e9 0.567046 0.283523 0.958965i 0.408497π-0.408497\pi
0.283523 + 0.958965i 0.408497π0.408497\pi
464464 0 0
465465 −2.13092e9 −0.982838
466466 0 0
467467 −2.44385e9 −1.11036 −0.555182 0.831729i 0.687351π-0.687351\pi
−0.555182 + 0.831729i 0.687351π0.687351\pi
468468 0 0
469469 1.13792e8 0.0509337
470470 0 0
471471 −2.13592e9 −0.941916
472472 0 0
473473 −2.04401e9 −0.888113
474474 0 0
475475 −3.48636e8 −0.149260
476476 0 0
477477 2.44538e8 0.103165
478478 0 0
479479 −2.57537e9 −1.07069 −0.535347 0.844632i 0.679819π-0.679819\pi
−0.535347 + 0.844632i 0.679819π0.679819\pi
480480 0 0
481481 −5.79375e9 −2.37384
482482 0 0
483483 −1.26768e8 −0.0511911
484484 0 0
485485 −1.70950e9 −0.680413
486486 0 0
487487 −7.15399e8 −0.280671 −0.140335 0.990104i 0.544818π-0.544818\pi
−0.140335 + 0.990104i 0.544818π0.544818\pi
488488 0 0
489489 4.03501e8 0.156050
490490 0 0
491491 −5.53548e8 −0.211043 −0.105521 0.994417i 0.533651π-0.533651\pi
−0.105521 + 0.994417i 0.533651π0.533651\pi
492492 0 0
493493 1.23640e9 0.464724
494494 0 0
495495 1.15525e9 0.428112
496496 0 0
497497 −2.19031e9 −0.800308
498498 0 0
499499 −2.94359e9 −1.06054 −0.530268 0.847830i 0.677909π-0.677909\pi
−0.530268 + 0.847830i 0.677909π0.677909\pi
500500 0 0
501501 2.37830e9 0.844958
502502 0 0
503503 3.25069e9 1.13890 0.569452 0.822025i 0.307155π-0.307155\pi
0.569452 + 0.822025i 0.307155π0.307155\pi
504504 0 0
505505 −1.58095e9 −0.546260
506506 0 0
507507 −2.96304e9 −1.00974
508508 0 0
509509 4.28218e9 1.43930 0.719651 0.694335i 0.244302π-0.244302\pi
0.719651 + 0.694335i 0.244302π0.244302\pi
510510 0 0
511511 2.79289e9 0.925936
512512 0 0
513513 6.12442e7 0.0200288
514514 0 0
515515 −1.41539e9 −0.456617
516516 0 0
517517 −9.89019e8 −0.314766
518518 0 0
519519 −2.53594e9 −0.796257
520520 0 0
521521 −6.10596e9 −1.89157 −0.945784 0.324795i 0.894705π-0.894705\pi
−0.945784 + 0.324795i 0.894705π0.894705\pi
522522 0 0
523523 −2.70645e9 −0.827263 −0.413631 0.910444i 0.635740π-0.635740\pi
−0.413631 + 0.910444i 0.635740π0.635740\pi
524524 0 0
525525 2.56396e9 0.773309
526526 0 0
527527 −4.18039e9 −1.24417
528528 0 0
529529 −3.39851e9 −0.998145
530530 0 0
531531 1.22073e9 0.353826
532532 0 0
533533 −3.36874e9 −0.963658
534534 0 0
535535 3.45971e9 0.976790
536536 0 0
537537 −1.30130e9 −0.362632
538538 0 0
539539 −7.60628e8 −0.209224
540540 0 0
541541 −3.93980e9 −1.06975 −0.534877 0.844930i 0.679642π-0.679642\pi
−0.534877 + 0.844930i 0.679642π0.679642\pi
542542 0 0
543543 −5.68009e9 −1.52249
544544 0 0
545545 −1.06108e9 −0.280777
546546 0 0
547547 1.23208e9 0.321871 0.160936 0.986965i 0.448549π-0.448549\pi
0.160936 + 0.986965i 0.448549π0.448549\pi
548548 0 0
549549 −7.47329e8 −0.192756
550550 0 0
551551 −4.01976e8 −0.102369
552552 0 0
553553 1.17446e8 0.0295324
554554 0 0
555555 −5.98792e9 −1.48679
556556 0 0
557557 −1.28810e8 −0.0315831 −0.0157916 0.999875i 0.505027π-0.505027\pi
−0.0157916 + 0.999875i 0.505027π0.505027\pi
558558 0 0
559559 6.23486e9 1.50968
560560 0 0
561561 4.68435e9 1.12016
562562 0 0
563563 2.97889e9 0.703518 0.351759 0.936091i 0.385584π-0.385584\pi
0.351759 + 0.936091i 0.385584π0.385584\pi
564564 0 0
565565 2.10081e9 0.490023
566566 0 0
567567 −3.92453e9 −0.904163
568568 0 0
569569 −6.25314e9 −1.42300 −0.711500 0.702686i 0.751984π-0.751984\pi
−0.711500 + 0.702686i 0.751984π0.751984\pi
570570 0 0
571571 8.21409e9 1.84643 0.923216 0.384281i 0.125551π-0.125551\pi
0.923216 + 0.384281i 0.125551π0.125551\pi
572572 0 0
573573 4.95861e8 0.110108
574574 0 0
575575 −1.27738e8 −0.0280209
576576 0 0
577577 4.79043e9 1.03815 0.519074 0.854729i 0.326277π-0.326277\pi
0.519074 + 0.854729i 0.326277π0.326277\pi
578578 0 0
579579 1.24599e10 2.66772
580580 0 0
581581 5.95029e9 1.25870
582582 0 0
583583 4.06949e8 0.0850551
584584 0 0
585585 −3.52388e9 −0.727738
586586 0 0
587587 3.18914e9 0.650789 0.325394 0.945578i 0.394503π-0.394503\pi
0.325394 + 0.945578i 0.394503π0.394503\pi
588588 0 0
589589 1.35912e9 0.274065
590590 0 0
591591 9.03642e9 1.80070
592592 0 0
593593 −6.00794e9 −1.18313 −0.591567 0.806256i 0.701491π-0.701491\pi
−0.591567 + 0.806256i 0.701491π0.701491\pi
594594 0 0
595595 −2.70116e9 −0.525703
596596 0 0
597597 −1.56919e9 −0.301833
598598 0 0
599599 1.10866e9 0.210768 0.105384 0.994432i 0.466393π-0.466393\pi
0.105384 + 0.994432i 0.466393π0.466393\pi
600600 0 0
601601 −7.07923e9 −1.33023 −0.665113 0.746743i 0.731616π-0.731616\pi
−0.665113 + 0.746743i 0.731616π0.731616\pi
602602 0 0
603603 3.00986e8 0.0559032
604604 0 0
605605 −1.29706e9 −0.238132
606606 0 0
607607 9.69356e9 1.75923 0.879615 0.475686i 0.157800π-0.157800\pi
0.879615 + 0.475686i 0.157800π0.157800\pi
608608 0 0
609609 2.95624e9 0.530370
610610 0 0
611611 3.01682e9 0.535063
612612 0 0
613613 3.80418e9 0.667036 0.333518 0.942744i 0.391764π-0.391764\pi
0.333518 + 0.942744i 0.391764π0.391764\pi
614614 0 0
615615 −3.48164e9 −0.603561
616616 0 0
617617 7.03189e9 1.20524 0.602621 0.798028i 0.294123π-0.294123\pi
0.602621 + 0.798028i 0.294123π0.294123\pi
618618 0 0
619619 1.00612e10 1.70503 0.852515 0.522703i 0.175076π-0.175076\pi
0.852515 + 0.522703i 0.175076π0.175076\pi
620620 0 0
621621 2.24395e7 0.00376004
622622 0 0
623623 −7.66099e9 −1.26934
624624 0 0
625625 4.51073e8 0.0739038
626626 0 0
627627 −1.52297e9 −0.246748
628628 0 0
629629 −1.17470e10 −1.88212
630630 0 0
631631 −2.85699e9 −0.452696 −0.226348 0.974046i 0.572679π-0.572679\pi
−0.226348 + 0.974046i 0.572679π0.572679\pi
632632 0 0
633633 −3.33730e9 −0.522977
634634 0 0
635635 −1.69078e9 −0.262047
636636 0 0
637637 2.32016e9 0.355655
638638 0 0
639639 −5.79350e9 −0.878391
640640 0 0
641641 1.04843e9 0.157230 0.0786151 0.996905i 0.474950π-0.474950\pi
0.0786151 + 0.996905i 0.474950π0.474950\pi
642642 0 0
643643 −5.72938e9 −0.849903 −0.424951 0.905216i 0.639709π-0.639709\pi
−0.424951 + 0.905216i 0.639709π0.639709\pi
644644 0 0
645645 6.44381e9 0.945549
646646 0 0
647647 −1.03797e10 −1.50667 −0.753336 0.657636i 0.771557π-0.771557\pi
−0.753336 + 0.657636i 0.771557π0.771557\pi
648648 0 0
649649 2.03149e9 0.291714
650650 0 0
651651 −9.99532e9 −1.41992
652652 0 0
653653 8.00890e9 1.12558 0.562790 0.826600i 0.309728π-0.309728\pi
0.562790 + 0.826600i 0.309728π0.309728\pi
654654 0 0
655655 −4.82501e9 −0.670893
656656 0 0
657657 7.38738e9 1.01628
658658 0 0
659659 −1.45006e9 −0.197373 −0.0986863 0.995119i 0.531464π-0.531464\pi
−0.0986863 + 0.995119i 0.531464π0.531464\pi
660660 0 0
661661 6.16554e9 0.830359 0.415180 0.909740i 0.363719π-0.363719\pi
0.415180 + 0.909740i 0.363719π0.363719\pi
662662 0 0
663663 −1.42887e10 −1.90413
664664 0 0
665665 8.78195e8 0.115802
666666 0 0
667667 −1.47282e8 −0.0192180
668668 0 0
669669 4.49467e9 0.580372
670670 0 0
671671 −1.24367e9 −0.158919
672672 0 0
673673 −9.21834e9 −1.16574 −0.582868 0.812567i 0.698069π-0.698069\pi
−0.582868 + 0.812567i 0.698069π0.698069\pi
674674 0 0
675675 −4.53853e8 −0.0568005
676676 0 0
677677 −8.79564e9 −1.08945 −0.544725 0.838615i 0.683366π-0.683366\pi
−0.544725 + 0.838615i 0.683366π0.683366\pi
678678 0 0
679679 −8.01859e9 −0.983001
680680 0 0
681681 −1.00307e10 −1.21707
682682 0 0
683683 −1.11750e10 −1.34207 −0.671036 0.741425i 0.734151π-0.734151\pi
−0.671036 + 0.741425i 0.734151π0.734151\pi
684684 0 0
685685 4.89939e9 0.582405
686686 0 0
687687 2.00284e10 2.35666
688688 0 0
689689 −1.24132e9 −0.144583
690690 0 0
691691 −5.87182e9 −0.677017 −0.338509 0.940963i 0.609922π-0.609922\pi
−0.338509 + 0.940963i 0.609922π0.609922\pi
692692 0 0
693693 5.41883e9 0.618499
694694 0 0
695695 −5.35630e9 −0.605227
696696 0 0
697697 −6.83020e9 −0.764045
698698 0 0
699699 8.39858e9 0.930113
700700 0 0
701701 1.66708e10 1.82787 0.913933 0.405865i 0.133030π-0.133030\pi
0.913933 + 0.405865i 0.133030π0.133030\pi
702702 0 0
703703 3.81915e9 0.414594
704704 0 0
705705 3.11792e9 0.335122
706706 0 0
707707 −7.41564e9 −0.789188
708708 0 0
709709 −1.24511e10 −1.31203 −0.656017 0.754746i 0.727760π-0.727760\pi
−0.656017 + 0.754746i 0.727760π0.727760\pi
710710 0 0
711711 3.10651e8 0.0324137
712712 0 0
713713 4.97973e8 0.0514509
714714 0 0
715715 −5.86427e9 −0.599988
716716 0 0
717717 2.35982e10 2.39090
718718 0 0
719719 −1.45709e10 −1.46196 −0.730980 0.682399i 0.760937π-0.760937\pi
−0.730980 + 0.682399i 0.760937π0.760937\pi
720720 0 0
721721 −6.63906e9 −0.659680
722722 0 0
723723 −6.16160e9 −0.606330
724724 0 0
725725 2.97886e9 0.290313
726726 0 0
727727 1.12315e10 1.08410 0.542050 0.840346i 0.317648π-0.317648\pi
0.542050 + 0.840346i 0.317648π0.317648\pi
728728 0 0
729729 −9.10954e9 −0.870864
730730 0 0
731731 1.26413e10 1.19697
732732 0 0
733733 8.47485e8 0.0794819 0.0397410 0.999210i 0.487347π-0.487347\pi
0.0397410 + 0.999210i 0.487347π0.487347\pi
734734 0 0
735735 2.39791e9 0.222755
736736 0 0
737737 5.00888e8 0.0460897
738738 0 0
739739 1.96528e10 1.79130 0.895652 0.444757i 0.146710π-0.146710\pi
0.895652 + 0.444757i 0.146710π0.146710\pi
740740 0 0
741741 4.64553e9 0.419442
742742 0 0
743743 −2.10434e10 −1.88216 −0.941078 0.338189i 0.890186π-0.890186\pi
−0.941078 + 0.338189i 0.890186π0.890186\pi
744744 0 0
745745 −7.89051e9 −0.699130
746746 0 0
747747 1.57389e10 1.38151
748748 0 0
749749 1.62282e10 1.41118
750750 0 0
751751 5.53354e9 0.476720 0.238360 0.971177i 0.423390π-0.423390\pi
0.238360 + 0.971177i 0.423390π0.423390\pi
752752 0 0
753753 2.11509e10 1.80529
754754 0 0
755755 −6.39683e9 −0.540942
756756 0 0
757757 −9.53196e9 −0.798632 −0.399316 0.916813i 0.630752π-0.630752\pi
−0.399316 + 0.916813i 0.630752π0.630752\pi
758758 0 0
759759 −5.58006e8 −0.0463226
760760 0 0
761761 −2.57729e9 −0.211991 −0.105995 0.994367i 0.533803π-0.533803\pi
−0.105995 + 0.994367i 0.533803π0.533803\pi
762762 0 0
763763 −4.97713e9 −0.405642
764764 0 0
765765 −7.14473e9 −0.576994
766766 0 0
767767 −6.19668e9 −0.495878
768768 0 0
769769 1.81272e10 1.43743 0.718717 0.695303i 0.244730π-0.244730\pi
0.718717 + 0.695303i 0.244730π0.244730\pi
770770 0 0
771771 1.41172e10 1.10932
772772 0 0
773773 7.82920e9 0.609662 0.304831 0.952406i 0.401400π-0.401400\pi
0.304831 + 0.952406i 0.401400π0.401400\pi
774774 0 0
775775 −1.00718e10 −0.777234
776776 0 0
777777 −2.80870e10 −2.14799
778778 0 0
779779 2.22062e9 0.168304
780780 0 0
781781 −9.64128e9 −0.724196
782782 0 0
783783 −5.23291e8 −0.0389563
784784 0 0
785785 5.42145e9 0.400011
786786 0 0
787787 2.57850e10 1.88563 0.942813 0.333323i 0.108170π-0.108170\pi
0.942813 + 0.333323i 0.108170π0.108170\pi
788788 0 0
789789 1.95360e10 1.41601
790790 0 0
791791 9.85408e9 0.707943
792792 0 0
793793 3.79359e9 0.270143
794794 0 0
795795 −1.28292e9 −0.0905557
796796 0 0
797797 −4.79964e9 −0.335819 −0.167909 0.985802i 0.553702π-0.553702\pi
−0.167909 + 0.985802i 0.553702π0.553702\pi
798798 0 0
799799 6.11667e9 0.424230
800800 0 0
801801 −2.02638e10 −1.39318
802802 0 0
803803 1.22937e10 0.837876
804804 0 0
805805 3.21765e8 0.0217397
806806 0 0
807807 −1.00574e10 −0.673643
808808 0 0
809809 −5.26908e9 −0.349876 −0.174938 0.984579i 0.555973π-0.555973\pi
−0.174938 + 0.984579i 0.555973π0.555973\pi
810810 0 0
811811 7.97328e9 0.524885 0.262442 0.964948i 0.415472π-0.415472\pi
0.262442 + 0.964948i 0.415472π0.415472\pi
812812 0 0
813813 −5.26279e9 −0.343478
814814 0 0
815815 −1.02418e9 −0.0662709
816816 0 0
817817 −4.10992e9 −0.263667
818818 0 0
819819 −1.65291e10 −1.05137
820820 0 0
821821 −7.53735e9 −0.475355 −0.237677 0.971344i 0.576386π-0.576386\pi
−0.237677 + 0.971344i 0.576386π0.576386\pi
822822 0 0
823823 2.38435e10 1.49098 0.745489 0.666518i 0.232216π-0.232216\pi
0.745489 + 0.666518i 0.232216π0.232216\pi
824824 0 0
825825 1.12860e10 0.699764
826826 0 0
827827 1.63705e10 1.00645 0.503226 0.864155i 0.332146π-0.332146\pi
0.503226 + 0.864155i 0.332146π0.332146\pi
828828 0 0
829829 2.89876e10 1.76714 0.883570 0.468300i 0.155133π-0.155133\pi
0.883570 + 0.468300i 0.155133π0.155133\pi
830830 0 0
831831 2.84655e10 1.72074
832832 0 0
833833 4.70416e9 0.281984
834834 0 0
835835 −6.03667e9 −0.358835
836836 0 0
837837 1.76930e9 0.104295
838838 0 0
839839 2.33866e10 1.36710 0.683551 0.729902i 0.260435π-0.260435\pi
0.683551 + 0.729902i 0.260435π0.260435\pi
840840 0 0
841841 −1.38153e10 −0.800890
842842 0 0
843843 3.23338e10 1.85892
844844 0 0
845845 7.52086e9 0.428814
846846 0 0
847847 −6.08403e9 −0.344032
848848 0 0
849849 2.03074e10 1.13888
850850 0 0
851851 1.39931e9 0.0778326
852852 0 0
853853 1.42926e10 0.788478 0.394239 0.919008i 0.371008π-0.371008\pi
0.394239 + 0.919008i 0.371008π0.371008\pi
854854 0 0
855855 2.32288e9 0.127100
856856 0 0
857857 −8.17620e9 −0.443730 −0.221865 0.975077i 0.571214π-0.571214\pi
−0.221865 + 0.975077i 0.571214π0.571214\pi
858858 0 0
859859 −1.32272e10 −0.712020 −0.356010 0.934482i 0.615863π-0.615863\pi
−0.356010 + 0.934482i 0.615863π0.615863\pi
860860 0 0
861861 −1.63310e10 −0.871973
862862 0 0
863863 −2.20566e10 −1.16816 −0.584078 0.811698i 0.698544π-0.698544\pi
−0.584078 + 0.811698i 0.698544π0.698544\pi
864864 0 0
865865 6.43678e9 0.338152
866866 0 0
867867 −2.26143e9 −0.117846
868868 0 0
869869 5.16971e8 0.0267237
870870 0 0
871871 −1.52786e9 −0.0783468
872872 0 0
873873 −2.12097e10 −1.07891
874874 0 0
875875 −1.65107e10 −0.833175
876876 0 0
877877 3.09262e10 1.54820 0.774102 0.633061i 0.218202π-0.218202\pi
0.774102 + 0.633061i 0.218202π0.218202\pi
878878 0 0
879879 −4.96363e9 −0.246512
880880 0 0
881881 3.43105e10 1.69049 0.845244 0.534381i 0.179455π-0.179455\pi
0.845244 + 0.534381i 0.179455π0.179455\pi
882882 0 0
883883 2.04637e9 0.100028 0.0500141 0.998749i 0.484073π-0.484073\pi
0.0500141 + 0.998749i 0.484073π0.484073\pi
884884 0 0
885885 −6.40435e9 −0.310580
886886 0 0
887887 2.39442e10 1.15204 0.576020 0.817436i 0.304605π-0.304605\pi
0.576020 + 0.817436i 0.304605π0.304605\pi
888888 0 0
889889 −7.93081e9 −0.378583
890890 0 0
891891 −1.72750e10 −0.818173
892892 0 0
893893 −1.98864e9 −0.0934492
894894 0 0
895895 3.30298e9 0.154002
896896 0 0
897897 1.70209e9 0.0787427
898898 0 0
899899 −1.16128e10 −0.533061
900900 0 0
901901 −2.51681e9 −0.114634
902902 0 0
903903 3.02254e10 1.36605
904904 0 0
905905 1.44173e10 0.646570
906906 0 0
907907 3.15992e10 1.40621 0.703105 0.711086i 0.251796π-0.251796\pi
0.703105 + 0.711086i 0.251796π0.251796\pi
908908 0 0
909909 −1.96148e10 −0.866186
910910 0 0
911911 −2.22131e10 −0.973410 −0.486705 0.873566i 0.661801π-0.661801\pi
−0.486705 + 0.873566i 0.661801π0.661801\pi
912912 0 0
913913 2.61920e10 1.13899
914914 0 0
915915 3.92072e9 0.169197
916916 0 0
917917 −2.26323e10 −0.969249
918918 0 0
919919 3.55547e10 1.51110 0.755548 0.655093i 0.227370π-0.227370\pi
0.755548 + 0.655093i 0.227370π0.227370\pi
920920 0 0
921921 −4.45503e10 −1.87907
922922 0 0
923923 2.94089e10 1.23104
924924 0 0
925925 −2.83020e10 −1.17576
926926 0 0
927927 −1.75608e10 −0.724043
928928 0 0
929929 7.16237e9 0.293091 0.146545 0.989204i 0.453185π-0.453185\pi
0.146545 + 0.989204i 0.453185π0.453185\pi
930930 0 0
931931 −1.52941e9 −0.0621155
932932 0 0
933933 5.11551e10 2.06207
934934 0 0
935935 −1.18899e10 −0.475706
936936 0 0
937937 −1.18833e10 −0.471897 −0.235948 0.971766i 0.575820π-0.575820\pi
−0.235948 + 0.971766i 0.575820π0.575820\pi
938938 0 0
939939 −9.15698e9 −0.360930
940940 0 0
941941 −1.59820e9 −0.0625270 −0.0312635 0.999511i 0.509953π-0.509953\pi
−0.0312635 + 0.999511i 0.509953π0.509953\pi
942942 0 0
943943 8.13623e8 0.0315960
944944 0 0
945945 1.14323e9 0.0440680
946946 0 0
947947 −3.17909e10 −1.21641 −0.608203 0.793782i 0.708109π-0.708109\pi
−0.608203 + 0.793782i 0.708109π0.708109\pi
948948 0 0
949949 −3.74998e10 −1.42428
950950 0 0
951951 −2.61044e10 −0.984196
952952 0 0
953953 1.26693e10 0.474161 0.237081 0.971490i 0.423809π-0.423809\pi
0.237081 + 0.971490i 0.423809π0.423809\pi
954954 0 0
955955 −1.25861e9 −0.0467604
956956 0 0
957957 1.30127e10 0.479929
958958 0 0
959959 2.29812e10 0.841408
960960 0 0
961961 1.17513e10 0.427125
962962 0 0
963963 4.29245e10 1.54887
964964 0 0
965965 −3.16261e10 −1.13292
966966 0 0
967967 2.08359e10 0.741003 0.370502 0.928832i 0.379186π-0.379186\pi
0.370502 + 0.928832i 0.379186π0.379186\pi
968968 0 0
969969 9.41891e9 0.332558
970970 0 0
971971 −5.10058e10 −1.78794 −0.893968 0.448131i 0.852090π-0.852090\pi
−0.893968 + 0.448131i 0.852090π0.852090\pi
972972 0 0
973973 −2.51243e10 −0.874379
974974 0 0
975975 −3.44259e10 −1.18951
976976 0 0
977977 2.28581e10 0.784169 0.392085 0.919929i 0.371754π-0.371754\pi
0.392085 + 0.919929i 0.371754π0.371754\pi
978978 0 0
979979 −3.37221e10 −1.14862
980980 0 0
981981 −1.31648e10 −0.445219
982982 0 0
983983 3.39199e10 1.13898 0.569491 0.821998i 0.307140π-0.307140\pi
0.569491 + 0.821998i 0.307140π0.307140\pi
984984 0 0
985985 −2.29365e10 −0.764715
986986 0 0
987987 1.46250e10 0.484156
988988 0 0
989989 −1.50585e9 −0.0494988
990990 0 0
991991 1.49529e9 0.0488053 0.0244026 0.999702i 0.492232π-0.492232\pi
0.0244026 + 0.999702i 0.492232π0.492232\pi
992992 0 0
993993 −4.37469e10 −1.41783
994994 0 0
995995 3.98296e9 0.128182
996996 0 0
997997 −5.93902e10 −1.89794 −0.948969 0.315370i 0.897871π-0.897871\pi
−0.948969 + 0.315370i 0.897871π0.897871\pi
998998 0 0
999999 4.97176e9 0.157772
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.8.a.j.1.1 6
4.3 odd 2 152.8.a.a.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.8.a.a.1.6 6 4.3 odd 2
304.8.a.j.1.1 6 1.1 even 1 trivial