Properties

Label 3042.2.b.p.1351.4
Level $3042$
Weight $2$
Character 3042.1351
Analytic conductor $24.290$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1351,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.4
Root \(-1.80194i\) of defining polynomial
Character \(\chi\) \(=\) 3042.1351
Dual form 3042.2.b.p.1351.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} -1.80194i q^{5} +4.85086i q^{7} -1.00000i q^{8} +1.80194 q^{10} +6.04892i q^{11} -4.85086 q^{14} +1.00000 q^{16} -4.89008 q^{17} +4.49396i q^{19} +1.80194i q^{20} -6.04892 q^{22} -6.71379 q^{23} +1.75302 q^{25} -4.85086i q^{28} +3.55496 q^{29} -3.82908i q^{31} +1.00000i q^{32} -4.89008i q^{34} +8.74094 q^{35} -3.78017i q^{37} -4.49396 q^{38} -1.80194 q^{40} -5.70171i q^{41} +3.78017 q^{43} -6.04892i q^{44} -6.71379i q^{46} -3.82371i q^{47} -16.5308 q^{49} +1.75302i q^{50} -2.78986 q^{53} +10.8998 q^{55} +4.85086 q^{56} +3.55496i q^{58} -8.41119i q^{59} +0.219833 q^{61} +3.82908 q^{62} -1.00000 q^{64} +11.4819i q^{67} +4.89008 q^{68} +8.74094i q^{70} +13.5254i q^{71} -0.417895i q^{73} +3.78017 q^{74} -4.49396i q^{76} -29.3424 q^{77} -10.5526 q^{79} -1.80194i q^{80} +5.70171 q^{82} -3.42327i q^{83} +8.81163i q^{85} +3.78017i q^{86} +6.04892 q^{88} -17.3599i q^{89} +6.71379 q^{92} +3.82371 q^{94} +8.09783 q^{95} +1.00969i q^{97} -16.5308i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 2 q^{10} - 2 q^{14} + 6 q^{16} - 28 q^{17} - 18 q^{22} - 24 q^{23} + 20 q^{25} + 22 q^{29} + 24 q^{35} - 8 q^{38} - 2 q^{40} + 20 q^{43} - 24 q^{49} + 30 q^{53} + 20 q^{55} + 2 q^{56} + 4 q^{61}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3042\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) − 1.80194i − 0.805851i −0.915233 0.402926i \(-0.867993\pi\)
0.915233 0.402926i \(-0.132007\pi\)
\(6\) 0 0
\(7\) 4.85086i 1.83345i 0.399518 + 0.916725i \(0.369178\pi\)
−0.399518 + 0.916725i \(0.630822\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 1.80194 0.569823
\(11\) 6.04892i 1.82382i 0.410393 + 0.911909i \(0.365391\pi\)
−0.410393 + 0.911909i \(0.634609\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −4.85086 −1.29645
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.89008 −1.18602 −0.593010 0.805195i \(-0.702060\pi\)
−0.593010 + 0.805195i \(0.702060\pi\)
\(18\) 0 0
\(19\) 4.49396i 1.03098i 0.856894 + 0.515492i \(0.172391\pi\)
−0.856894 + 0.515492i \(0.827609\pi\)
\(20\) 1.80194i 0.402926i
\(21\) 0 0
\(22\) −6.04892 −1.28963
\(23\) −6.71379 −1.39992 −0.699961 0.714181i \(-0.746799\pi\)
−0.699961 + 0.714181i \(0.746799\pi\)
\(24\) 0 0
\(25\) 1.75302 0.350604
\(26\) 0 0
\(27\) 0 0
\(28\) − 4.85086i − 0.916725i
\(29\) 3.55496 0.660139 0.330070 0.943957i \(-0.392928\pi\)
0.330070 + 0.943957i \(0.392928\pi\)
\(30\) 0 0
\(31\) − 3.82908i − 0.687724i −0.939020 0.343862i \(-0.888265\pi\)
0.939020 0.343862i \(-0.111735\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) − 4.89008i − 0.838642i
\(35\) 8.74094 1.47749
\(36\) 0 0
\(37\) − 3.78017i − 0.621456i −0.950499 0.310728i \(-0.899427\pi\)
0.950499 0.310728i \(-0.100573\pi\)
\(38\) −4.49396 −0.729016
\(39\) 0 0
\(40\) −1.80194 −0.284911
\(41\) − 5.70171i − 0.890458i −0.895417 0.445229i \(-0.853122\pi\)
0.895417 0.445229i \(-0.146878\pi\)
\(42\) 0 0
\(43\) 3.78017 0.576470 0.288235 0.957560i \(-0.406932\pi\)
0.288235 + 0.957560i \(0.406932\pi\)
\(44\) − 6.04892i − 0.911909i
\(45\) 0 0
\(46\) − 6.71379i − 0.989895i
\(47\) − 3.82371i − 0.557745i −0.960328 0.278873i \(-0.910039\pi\)
0.960328 0.278873i \(-0.0899607\pi\)
\(48\) 0 0
\(49\) −16.5308 −2.36154
\(50\) 1.75302i 0.247915i
\(51\) 0 0
\(52\) 0 0
\(53\) −2.78986 −0.383216 −0.191608 0.981472i \(-0.561370\pi\)
−0.191608 + 0.981472i \(0.561370\pi\)
\(54\) 0 0
\(55\) 10.8998 1.46973
\(56\) 4.85086 0.648223
\(57\) 0 0
\(58\) 3.55496i 0.466789i
\(59\) − 8.41119i − 1.09504i −0.836791 0.547522i \(-0.815571\pi\)
0.836791 0.547522i \(-0.184429\pi\)
\(60\) 0 0
\(61\) 0.219833 0.0281467 0.0140733 0.999901i \(-0.495520\pi\)
0.0140733 + 0.999901i \(0.495520\pi\)
\(62\) 3.82908 0.486294
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 11.4819i 1.40273i 0.712800 + 0.701367i \(0.247427\pi\)
−0.712800 + 0.701367i \(0.752573\pi\)
\(68\) 4.89008 0.593010
\(69\) 0 0
\(70\) 8.74094i 1.04474i
\(71\) 13.5254i 1.60517i 0.596537 + 0.802586i \(0.296543\pi\)
−0.596537 + 0.802586i \(0.703457\pi\)
\(72\) 0 0
\(73\) − 0.417895i − 0.0489109i −0.999701 0.0244554i \(-0.992215\pi\)
0.999701 0.0244554i \(-0.00778519\pi\)
\(74\) 3.78017 0.439436
\(75\) 0 0
\(76\) − 4.49396i − 0.515492i
\(77\) −29.3424 −3.34388
\(78\) 0 0
\(79\) −10.5526 −1.18726 −0.593628 0.804739i \(-0.702305\pi\)
−0.593628 + 0.804739i \(0.702305\pi\)
\(80\) − 1.80194i − 0.201463i
\(81\) 0 0
\(82\) 5.70171 0.629649
\(83\) − 3.42327i − 0.375753i −0.982193 0.187876i \(-0.939840\pi\)
0.982193 0.187876i \(-0.0601605\pi\)
\(84\) 0 0
\(85\) 8.81163i 0.955755i
\(86\) 3.78017i 0.407626i
\(87\) 0 0
\(88\) 6.04892 0.644817
\(89\) − 17.3599i − 1.84014i −0.391750 0.920072i \(-0.628130\pi\)
0.391750 0.920072i \(-0.371870\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.71379 0.699961
\(93\) 0 0
\(94\) 3.82371 0.394385
\(95\) 8.09783 0.830820
\(96\) 0 0
\(97\) 1.00969i 0.102518i 0.998685 + 0.0512592i \(0.0163235\pi\)
−0.998685 + 0.0512592i \(0.983677\pi\)
\(98\) − 16.5308i − 1.66986i
\(99\) 0 0
\(100\) −1.75302 −0.175302
\(101\) −5.68664 −0.565842 −0.282921 0.959143i \(-0.591303\pi\)
−0.282921 + 0.959143i \(0.591303\pi\)
\(102\) 0 0
\(103\) 6.73556 0.663675 0.331837 0.943337i \(-0.392331\pi\)
0.331837 + 0.943337i \(0.392331\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) − 2.78986i − 0.270975i
\(107\) −0.0586060 −0.00566566 −0.00283283 0.999996i \(-0.500902\pi\)
−0.00283283 + 0.999996i \(0.500902\pi\)
\(108\) 0 0
\(109\) 15.5254i 1.48707i 0.668700 + 0.743533i \(0.266851\pi\)
−0.668700 + 0.743533i \(0.733149\pi\)
\(110\) 10.8998i 1.03925i
\(111\) 0 0
\(112\) 4.85086i 0.458363i
\(113\) 1.95646 0.184048 0.0920241 0.995757i \(-0.470666\pi\)
0.0920241 + 0.995757i \(0.470666\pi\)
\(114\) 0 0
\(115\) 12.0978i 1.12813i
\(116\) −3.55496 −0.330070
\(117\) 0 0
\(118\) 8.41119 0.774313
\(119\) − 23.7211i − 2.17451i
\(120\) 0 0
\(121\) −25.5894 −2.32631
\(122\) 0.219833i 0.0199027i
\(123\) 0 0
\(124\) 3.82908i 0.343862i
\(125\) − 12.1685i − 1.08839i
\(126\) 0 0
\(127\) 8.11960 0.720498 0.360249 0.932856i \(-0.382692\pi\)
0.360249 + 0.932856i \(0.382692\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −12.6679 −1.10680 −0.553398 0.832917i \(-0.686669\pi\)
−0.553398 + 0.832917i \(0.686669\pi\)
\(132\) 0 0
\(133\) −21.7995 −1.89026
\(134\) −11.4819 −0.991883
\(135\) 0 0
\(136\) 4.89008i 0.419321i
\(137\) − 15.3599i − 1.31228i −0.754638 0.656142i \(-0.772187\pi\)
0.754638 0.656142i \(-0.227813\pi\)
\(138\) 0 0
\(139\) −11.7995 −1.00082 −0.500412 0.865787i \(-0.666818\pi\)
−0.500412 + 0.865787i \(0.666818\pi\)
\(140\) −8.74094 −0.738744
\(141\) 0 0
\(142\) −13.5254 −1.13503
\(143\) 0 0
\(144\) 0 0
\(145\) − 6.40581i − 0.531974i
\(146\) 0.417895 0.0345852
\(147\) 0 0
\(148\) 3.78017i 0.310728i
\(149\) − 3.21313i − 0.263230i −0.991301 0.131615i \(-0.957984\pi\)
0.991301 0.131615i \(-0.0420162\pi\)
\(150\) 0 0
\(151\) 9.15883i 0.745335i 0.927965 + 0.372668i \(0.121557\pi\)
−0.927965 + 0.372668i \(0.878443\pi\)
\(152\) 4.49396 0.364508
\(153\) 0 0
\(154\) − 29.3424i − 2.36448i
\(155\) −6.89977 −0.554203
\(156\) 0 0
\(157\) −17.9323 −1.43115 −0.715577 0.698534i \(-0.753836\pi\)
−0.715577 + 0.698534i \(0.753836\pi\)
\(158\) − 10.5526i − 0.839517i
\(159\) 0 0
\(160\) 1.80194 0.142456
\(161\) − 32.5676i − 2.56669i
\(162\) 0 0
\(163\) − 0.591794i − 0.0463529i −0.999731 0.0231764i \(-0.992622\pi\)
0.999731 0.0231764i \(-0.00737795\pi\)
\(164\) 5.70171i 0.445229i
\(165\) 0 0
\(166\) 3.42327 0.265697
\(167\) 14.0000i 1.08335i 0.840587 + 0.541676i \(0.182210\pi\)
−0.840587 + 0.541676i \(0.817790\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −8.81163 −0.675821
\(171\) 0 0
\(172\) −3.78017 −0.288235
\(173\) 0.982542 0.0747013 0.0373506 0.999302i \(-0.488108\pi\)
0.0373506 + 0.999302i \(0.488108\pi\)
\(174\) 0 0
\(175\) 8.50365i 0.642815i
\(176\) 6.04892i 0.455954i
\(177\) 0 0
\(178\) 17.3599 1.30118
\(179\) −9.94331 −0.743198 −0.371599 0.928393i \(-0.621190\pi\)
−0.371599 + 0.928393i \(0.621190\pi\)
\(180\) 0 0
\(181\) 5.87800 0.436908 0.218454 0.975847i \(-0.429899\pi\)
0.218454 + 0.975847i \(0.429899\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 6.71379i 0.494947i
\(185\) −6.81163 −0.500801
\(186\) 0 0
\(187\) − 29.5797i − 2.16308i
\(188\) 3.82371i 0.278873i
\(189\) 0 0
\(190\) 8.09783i 0.587479i
\(191\) 11.0422 0.798986 0.399493 0.916736i \(-0.369186\pi\)
0.399493 + 0.916736i \(0.369186\pi\)
\(192\) 0 0
\(193\) 20.9638i 1.50900i 0.656298 + 0.754502i \(0.272122\pi\)
−0.656298 + 0.754502i \(0.727878\pi\)
\(194\) −1.00969 −0.0724914
\(195\) 0 0
\(196\) 16.5308 1.18077
\(197\) 15.7409i 1.12150i 0.827987 + 0.560748i \(0.189486\pi\)
−0.827987 + 0.560748i \(0.810514\pi\)
\(198\) 0 0
\(199\) 1.51142 0.107142 0.0535708 0.998564i \(-0.482940\pi\)
0.0535708 + 0.998564i \(0.482940\pi\)
\(200\) − 1.75302i − 0.123957i
\(201\) 0 0
\(202\) − 5.68664i − 0.400111i
\(203\) 17.2446i 1.21033i
\(204\) 0 0
\(205\) −10.2741 −0.717576
\(206\) 6.73556i 0.469289i
\(207\) 0 0
\(208\) 0 0
\(209\) −27.1836 −1.88033
\(210\) 0 0
\(211\) 5.65817 0.389524 0.194762 0.980850i \(-0.437606\pi\)
0.194762 + 0.980850i \(0.437606\pi\)
\(212\) 2.78986 0.191608
\(213\) 0 0
\(214\) − 0.0586060i − 0.00400622i
\(215\) − 6.81163i − 0.464549i
\(216\) 0 0
\(217\) 18.5743 1.26091
\(218\) −15.5254 −1.05151
\(219\) 0 0
\(220\) −10.8998 −0.734863
\(221\) 0 0
\(222\) 0 0
\(223\) 1.97584i 0.132312i 0.997809 + 0.0661559i \(0.0210735\pi\)
−0.997809 + 0.0661559i \(0.978927\pi\)
\(224\) −4.85086 −0.324111
\(225\) 0 0
\(226\) 1.95646i 0.130142i
\(227\) 25.0640i 1.66355i 0.555109 + 0.831777i \(0.312676\pi\)
−0.555109 + 0.831777i \(0.687324\pi\)
\(228\) 0 0
\(229\) − 24.5133i − 1.61989i −0.586508 0.809943i \(-0.699498\pi\)
0.586508 0.809943i \(-0.300502\pi\)
\(230\) −12.0978 −0.797708
\(231\) 0 0
\(232\) − 3.55496i − 0.233394i
\(233\) 8.37196 0.548465 0.274233 0.961663i \(-0.411576\pi\)
0.274233 + 0.961663i \(0.411576\pi\)
\(234\) 0 0
\(235\) −6.89008 −0.449460
\(236\) 8.41119i 0.547522i
\(237\) 0 0
\(238\) 23.7211 1.53761
\(239\) − 14.0194i − 0.906838i −0.891297 0.453419i \(-0.850204\pi\)
0.891297 0.453419i \(-0.149796\pi\)
\(240\) 0 0
\(241\) − 21.1183i − 1.36035i −0.733051 0.680174i \(-0.761904\pi\)
0.733051 0.680174i \(-0.238096\pi\)
\(242\) − 25.5894i − 1.64495i
\(243\) 0 0
\(244\) −0.219833 −0.0140733
\(245\) 29.7875i 1.90305i
\(246\) 0 0
\(247\) 0 0
\(248\) −3.82908 −0.243147
\(249\) 0 0
\(250\) 12.1685 0.769605
\(251\) −26.1129 −1.64823 −0.824116 0.566421i \(-0.808328\pi\)
−0.824116 + 0.566421i \(0.808328\pi\)
\(252\) 0 0
\(253\) − 40.6112i − 2.55320i
\(254\) 8.11960i 0.509469i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −16.5918 −1.03497 −0.517484 0.855693i \(-0.673131\pi\)
−0.517484 + 0.855693i \(0.673131\pi\)
\(258\) 0 0
\(259\) 18.3370 1.13941
\(260\) 0 0
\(261\) 0 0
\(262\) − 12.6679i − 0.782623i
\(263\) 9.64742 0.594885 0.297443 0.954740i \(-0.403866\pi\)
0.297443 + 0.954740i \(0.403866\pi\)
\(264\) 0 0
\(265\) 5.02715i 0.308815i
\(266\) − 21.7995i − 1.33662i
\(267\) 0 0
\(268\) − 11.4819i − 0.701367i
\(269\) 10.1981 0.621787 0.310893 0.950445i \(-0.399372\pi\)
0.310893 + 0.950445i \(0.399372\pi\)
\(270\) 0 0
\(271\) 27.6799i 1.68144i 0.541473 + 0.840718i \(0.317867\pi\)
−0.541473 + 0.840718i \(0.682133\pi\)
\(272\) −4.89008 −0.296505
\(273\) 0 0
\(274\) 15.3599 0.927924
\(275\) 10.6039i 0.639438i
\(276\) 0 0
\(277\) −6.32842 −0.380238 −0.190119 0.981761i \(-0.560887\pi\)
−0.190119 + 0.981761i \(0.560887\pi\)
\(278\) − 11.7995i − 0.707690i
\(279\) 0 0
\(280\) − 8.74094i − 0.522371i
\(281\) 9.26205i 0.552527i 0.961082 + 0.276264i \(0.0890963\pi\)
−0.961082 + 0.276264i \(0.910904\pi\)
\(282\) 0 0
\(283\) −0.561663 −0.0333874 −0.0166937 0.999861i \(-0.505314\pi\)
−0.0166937 + 0.999861i \(0.505314\pi\)
\(284\) − 13.5254i − 0.802586i
\(285\) 0 0
\(286\) 0 0
\(287\) 27.6582 1.63261
\(288\) 0 0
\(289\) 6.91292 0.406642
\(290\) 6.40581 0.376162
\(291\) 0 0
\(292\) 0.417895i 0.0244554i
\(293\) 11.7506i 0.686479i 0.939248 + 0.343239i \(0.111524\pi\)
−0.939248 + 0.343239i \(0.888476\pi\)
\(294\) 0 0
\(295\) −15.1564 −0.882442
\(296\) −3.78017 −0.219718
\(297\) 0 0
\(298\) 3.21313 0.186131
\(299\) 0 0
\(300\) 0 0
\(301\) 18.3370i 1.05693i
\(302\) −9.15883 −0.527032
\(303\) 0 0
\(304\) 4.49396i 0.257746i
\(305\) − 0.396125i − 0.0226820i
\(306\) 0 0
\(307\) 1.09054i 0.0622403i 0.999516 + 0.0311202i \(0.00990746\pi\)
−0.999516 + 0.0311202i \(0.990093\pi\)
\(308\) 29.3424 1.67194
\(309\) 0 0
\(310\) − 6.89977i − 0.391881i
\(311\) −8.09783 −0.459186 −0.229593 0.973287i \(-0.573740\pi\)
−0.229593 + 0.973287i \(0.573740\pi\)
\(312\) 0 0
\(313\) 19.4252 1.09798 0.548988 0.835830i \(-0.315013\pi\)
0.548988 + 0.835830i \(0.315013\pi\)
\(314\) − 17.9323i − 1.01198i
\(315\) 0 0
\(316\) 10.5526 0.593628
\(317\) 24.5719i 1.38010i 0.723763 + 0.690049i \(0.242411\pi\)
−0.723763 + 0.690049i \(0.757589\pi\)
\(318\) 0 0
\(319\) 21.5036i 1.20397i
\(320\) 1.80194i 0.100731i
\(321\) 0 0
\(322\) 32.5676 1.81492
\(323\) − 21.9758i − 1.22277i
\(324\) 0 0
\(325\) 0 0
\(326\) 0.591794 0.0327764
\(327\) 0 0
\(328\) −5.70171 −0.314824
\(329\) 18.5483 1.02260
\(330\) 0 0
\(331\) − 25.9758i − 1.42776i −0.700267 0.713881i \(-0.746936\pi\)
0.700267 0.713881i \(-0.253064\pi\)
\(332\) 3.42327i 0.187876i
\(333\) 0 0
\(334\) −14.0000 −0.766046
\(335\) 20.6896 1.13040
\(336\) 0 0
\(337\) −1.87263 −0.102008 −0.0510042 0.998698i \(-0.516242\pi\)
−0.0510042 + 0.998698i \(0.516242\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) − 8.81163i − 0.477878i
\(341\) 23.1618 1.25428
\(342\) 0 0
\(343\) − 46.2325i − 2.49632i
\(344\) − 3.78017i − 0.203813i
\(345\) 0 0
\(346\) 0.982542i 0.0528218i
\(347\) −16.6853 −0.895715 −0.447857 0.894105i \(-0.647813\pi\)
−0.447857 + 0.894105i \(0.647813\pi\)
\(348\) 0 0
\(349\) 4.01938i 0.215152i 0.994197 + 0.107576i \(0.0343090\pi\)
−0.994197 + 0.107576i \(0.965691\pi\)
\(350\) −8.50365 −0.454539
\(351\) 0 0
\(352\) −6.04892 −0.322408
\(353\) − 21.6039i − 1.14986i −0.818203 0.574929i \(-0.805030\pi\)
0.818203 0.574929i \(-0.194970\pi\)
\(354\) 0 0
\(355\) 24.3720 1.29353
\(356\) 17.3599i 0.920072i
\(357\) 0 0
\(358\) − 9.94331i − 0.525520i
\(359\) 0.835790i 0.0441113i 0.999757 + 0.0220556i \(0.00702110\pi\)
−0.999757 + 0.0220556i \(0.992979\pi\)
\(360\) 0 0
\(361\) −1.19567 −0.0629300
\(362\) 5.87800i 0.308941i
\(363\) 0 0
\(364\) 0 0
\(365\) −0.753020 −0.0394149
\(366\) 0 0
\(367\) −21.1250 −1.10272 −0.551358 0.834269i \(-0.685890\pi\)
−0.551358 + 0.834269i \(0.685890\pi\)
\(368\) −6.71379 −0.349981
\(369\) 0 0
\(370\) − 6.81163i − 0.354120i
\(371\) − 13.5332i − 0.702608i
\(372\) 0 0
\(373\) 21.3840 1.10722 0.553612 0.832775i \(-0.313249\pi\)
0.553612 + 0.832775i \(0.313249\pi\)
\(374\) 29.5797 1.52953
\(375\) 0 0
\(376\) −3.82371 −0.197193
\(377\) 0 0
\(378\) 0 0
\(379\) − 13.5496i − 0.695995i −0.937495 0.347998i \(-0.886862\pi\)
0.937495 0.347998i \(-0.113138\pi\)
\(380\) −8.09783 −0.415410
\(381\) 0 0
\(382\) 11.0422i 0.564969i
\(383\) − 9.10992i − 0.465495i −0.972537 0.232747i \(-0.925228\pi\)
0.972537 0.232747i \(-0.0747716\pi\)
\(384\) 0 0
\(385\) 52.8732i 2.69467i
\(386\) −20.9638 −1.06703
\(387\) 0 0
\(388\) − 1.00969i − 0.0512592i
\(389\) 14.8498 0.752914 0.376457 0.926434i \(-0.377142\pi\)
0.376457 + 0.926434i \(0.377142\pi\)
\(390\) 0 0
\(391\) 32.8310 1.66034
\(392\) 16.5308i 0.834931i
\(393\) 0 0
\(394\) −15.7409 −0.793017
\(395\) 19.0151i 0.956752i
\(396\) 0 0
\(397\) 33.7453i 1.69363i 0.531891 + 0.846813i \(0.321482\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(398\) 1.51142i 0.0757605i
\(399\) 0 0
\(400\) 1.75302 0.0876510
\(401\) − 19.7017i − 0.983856i −0.870636 0.491928i \(-0.836292\pi\)
0.870636 0.491928i \(-0.163708\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 5.68664 0.282921
\(405\) 0 0
\(406\) −17.2446 −0.855834
\(407\) 22.8659 1.13342
\(408\) 0 0
\(409\) 35.9366i 1.77695i 0.458924 + 0.888475i \(0.348235\pi\)
−0.458924 + 0.888475i \(0.651765\pi\)
\(410\) − 10.2741i − 0.507403i
\(411\) 0 0
\(412\) −6.73556 −0.331837
\(413\) 40.8015 2.00771
\(414\) 0 0
\(415\) −6.16852 −0.302801
\(416\) 0 0
\(417\) 0 0
\(418\) − 27.1836i − 1.32959i
\(419\) 18.7928 0.918090 0.459045 0.888413i \(-0.348192\pi\)
0.459045 + 0.888413i \(0.348192\pi\)
\(420\) 0 0
\(421\) − 3.90217i − 0.190180i −0.995469 0.0950900i \(-0.969686\pi\)
0.995469 0.0950900i \(-0.0303139\pi\)
\(422\) 5.65817i 0.275435i
\(423\) 0 0
\(424\) 2.78986i 0.135487i
\(425\) −8.57242 −0.415823
\(426\) 0 0
\(427\) 1.06638i 0.0516055i
\(428\) 0.0586060 0.00283283
\(429\) 0 0
\(430\) 6.81163 0.328486
\(431\) 18.8310i 0.907058i 0.891242 + 0.453529i \(0.149835\pi\)
−0.891242 + 0.453529i \(0.850165\pi\)
\(432\) 0 0
\(433\) −24.8364 −1.19356 −0.596780 0.802405i \(-0.703554\pi\)
−0.596780 + 0.802405i \(0.703554\pi\)
\(434\) 18.5743i 0.891597i
\(435\) 0 0
\(436\) − 15.5254i − 0.743533i
\(437\) − 30.1715i − 1.44330i
\(438\) 0 0
\(439\) −22.2784 −1.06329 −0.531646 0.846967i \(-0.678426\pi\)
−0.531646 + 0.846967i \(0.678426\pi\)
\(440\) − 10.8998i − 0.519626i
\(441\) 0 0
\(442\) 0 0
\(443\) 26.6359 1.26551 0.632756 0.774352i \(-0.281924\pi\)
0.632756 + 0.774352i \(0.281924\pi\)
\(444\) 0 0
\(445\) −31.2814 −1.48288
\(446\) −1.97584 −0.0935586
\(447\) 0 0
\(448\) − 4.85086i − 0.229181i
\(449\) 21.8538i 1.03135i 0.856785 + 0.515673i \(0.172458\pi\)
−0.856785 + 0.515673i \(0.827542\pi\)
\(450\) 0 0
\(451\) 34.4892 1.62403
\(452\) −1.95646 −0.0920241
\(453\) 0 0
\(454\) −25.0640 −1.17631
\(455\) 0 0
\(456\) 0 0
\(457\) 20.7278i 0.969605i 0.874624 + 0.484803i \(0.161109\pi\)
−0.874624 + 0.484803i \(0.838891\pi\)
\(458\) 24.5133 1.14543
\(459\) 0 0
\(460\) − 12.0978i − 0.564064i
\(461\) 10.7832i 0.502221i 0.967958 + 0.251111i \(0.0807958\pi\)
−0.967958 + 0.251111i \(0.919204\pi\)
\(462\) 0 0
\(463\) − 23.1594i − 1.07631i −0.842846 0.538155i \(-0.819122\pi\)
0.842846 0.538155i \(-0.180878\pi\)
\(464\) 3.55496 0.165035
\(465\) 0 0
\(466\) 8.37196i 0.387824i
\(467\) −13.3515 −0.617835 −0.308917 0.951089i \(-0.599967\pi\)
−0.308917 + 0.951089i \(0.599967\pi\)
\(468\) 0 0
\(469\) −55.6969 −2.57185
\(470\) − 6.89008i − 0.317816i
\(471\) 0 0
\(472\) −8.41119 −0.387156
\(473\) 22.8659i 1.05138i
\(474\) 0 0
\(475\) 7.87800i 0.361468i
\(476\) 23.7211i 1.08725i
\(477\) 0 0
\(478\) 14.0194 0.641231
\(479\) − 4.38537i − 0.200373i −0.994969 0.100186i \(-0.968056\pi\)
0.994969 0.100186i \(-0.0319439\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 21.1183 0.961911
\(483\) 0 0
\(484\) 25.5894 1.16315
\(485\) 1.81940 0.0826145
\(486\) 0 0
\(487\) − 7.33214i − 0.332251i −0.986105 0.166126i \(-0.946874\pi\)
0.986105 0.166126i \(-0.0531257\pi\)
\(488\) − 0.219833i − 0.00995135i
\(489\) 0 0
\(490\) −29.7875 −1.34566
\(491\) 16.8062 0.758455 0.379228 0.925303i \(-0.376190\pi\)
0.379228 + 0.925303i \(0.376190\pi\)
\(492\) 0 0
\(493\) −17.3840 −0.782938
\(494\) 0 0
\(495\) 0 0
\(496\) − 3.82908i − 0.171931i
\(497\) −65.6098 −2.94300
\(498\) 0 0
\(499\) 6.59658i 0.295303i 0.989039 + 0.147652i \(0.0471715\pi\)
−0.989039 + 0.147652i \(0.952829\pi\)
\(500\) 12.1685i 0.544193i
\(501\) 0 0
\(502\) − 26.1129i − 1.16548i
\(503\) −27.8297 −1.24086 −0.620432 0.784260i \(-0.713043\pi\)
−0.620432 + 0.784260i \(0.713043\pi\)
\(504\) 0 0
\(505\) 10.2470i 0.455985i
\(506\) 40.6112 1.80539
\(507\) 0 0
\(508\) −8.11960 −0.360249
\(509\) − 4.13275i − 0.183181i −0.995797 0.0915905i \(-0.970805\pi\)
0.995797 0.0915905i \(-0.0291951\pi\)
\(510\) 0 0
\(511\) 2.02715 0.0896757
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) − 16.5918i − 0.731833i
\(515\) − 12.1371i − 0.534823i
\(516\) 0 0
\(517\) 23.1293 1.01723
\(518\) 18.3370i 0.805683i
\(519\) 0 0
\(520\) 0 0
\(521\) 11.7995 0.516947 0.258474 0.966018i \(-0.416780\pi\)
0.258474 + 0.966018i \(0.416780\pi\)
\(522\) 0 0
\(523\) 38.2887 1.67425 0.837124 0.547013i \(-0.184235\pi\)
0.837124 + 0.547013i \(0.184235\pi\)
\(524\) 12.6679 0.553398
\(525\) 0 0
\(526\) 9.64742i 0.420647i
\(527\) 18.7245i 0.815654i
\(528\) 0 0
\(529\) 22.0750 0.959783
\(530\) −5.02715 −0.218365
\(531\) 0 0
\(532\) 21.7995 0.945130
\(533\) 0 0
\(534\) 0 0
\(535\) 0.105604i 0.00456568i
\(536\) 11.4819 0.495942
\(537\) 0 0
\(538\) 10.1981i 0.439670i
\(539\) − 99.9934i − 4.30702i
\(540\) 0 0
\(541\) 17.4142i 0.748694i 0.927289 + 0.374347i \(0.122133\pi\)
−0.927289 + 0.374347i \(0.877867\pi\)
\(542\) −27.6799 −1.18896
\(543\) 0 0
\(544\) − 4.89008i − 0.209661i
\(545\) 27.9758 1.19835
\(546\) 0 0
\(547\) 16.9444 0.724489 0.362245 0.932083i \(-0.382010\pi\)
0.362245 + 0.932083i \(0.382010\pi\)
\(548\) 15.3599i 0.656142i
\(549\) 0 0
\(550\) −10.6039 −0.452151
\(551\) 15.9758i 0.680594i
\(552\) 0 0
\(553\) − 51.1890i − 2.17678i
\(554\) − 6.32842i − 0.268869i
\(555\) 0 0
\(556\) 11.7995 0.500412
\(557\) 11.9758i 0.507432i 0.967279 + 0.253716i \(0.0816529\pi\)
−0.967279 + 0.253716i \(0.918347\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 8.74094 0.369372
\(561\) 0 0
\(562\) −9.26205 −0.390696
\(563\) −42.2911 −1.78236 −0.891179 0.453652i \(-0.850121\pi\)
−0.891179 + 0.453652i \(0.850121\pi\)
\(564\) 0 0
\(565\) − 3.52542i − 0.148315i
\(566\) − 0.561663i − 0.0236085i
\(567\) 0 0
\(568\) 13.5254 0.567514
\(569\) −8.26934 −0.346669 −0.173334 0.984863i \(-0.555454\pi\)
−0.173334 + 0.984863i \(0.555454\pi\)
\(570\) 0 0
\(571\) 16.8552 0.705367 0.352683 0.935743i \(-0.385269\pi\)
0.352683 + 0.935743i \(0.385269\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 27.6582i 1.15443i
\(575\) −11.7694 −0.490818
\(576\) 0 0
\(577\) 37.9995i 1.58194i 0.611854 + 0.790970i \(0.290424\pi\)
−0.611854 + 0.790970i \(0.709576\pi\)
\(578\) 6.91292i 0.287540i
\(579\) 0 0
\(580\) 6.40581i 0.265987i
\(581\) 16.6058 0.688924
\(582\) 0 0
\(583\) − 16.8756i − 0.698916i
\(584\) −0.417895 −0.0172926
\(585\) 0 0
\(586\) −11.7506 −0.485414
\(587\) 31.4282i 1.29718i 0.761138 + 0.648590i \(0.224641\pi\)
−0.761138 + 0.648590i \(0.775359\pi\)
\(588\) 0 0
\(589\) 17.2078 0.709033
\(590\) − 15.1564i − 0.623981i
\(591\) 0 0
\(592\) − 3.78017i − 0.155364i
\(593\) 41.8866i 1.72008i 0.510229 + 0.860039i \(0.329561\pi\)
−0.510229 + 0.860039i \(0.670439\pi\)
\(594\) 0 0
\(595\) −42.7439 −1.75233
\(596\) 3.21313i 0.131615i
\(597\) 0 0
\(598\) 0 0
\(599\) −36.0194 −1.47171 −0.735856 0.677138i \(-0.763220\pi\)
−0.735856 + 0.677138i \(0.763220\pi\)
\(600\) 0 0
\(601\) 5.13946 0.209643 0.104821 0.994491i \(-0.466573\pi\)
0.104821 + 0.994491i \(0.466573\pi\)
\(602\) −18.3370 −0.747362
\(603\) 0 0
\(604\) − 9.15883i − 0.372668i
\(605\) 46.1105i 1.87466i
\(606\) 0 0
\(607\) −17.6517 −0.716462 −0.358231 0.933633i \(-0.616620\pi\)
−0.358231 + 0.933633i \(0.616620\pi\)
\(608\) −4.49396 −0.182254
\(609\) 0 0
\(610\) 0.396125 0.0160386
\(611\) 0 0
\(612\) 0 0
\(613\) 45.8974i 1.85378i 0.375336 + 0.926889i \(0.377527\pi\)
−0.375336 + 0.926889i \(0.622473\pi\)
\(614\) −1.09054 −0.0440106
\(615\) 0 0
\(616\) 29.3424i 1.18224i
\(617\) − 5.12929i − 0.206498i −0.994656 0.103249i \(-0.967076\pi\)
0.994656 0.103249i \(-0.0329238\pi\)
\(618\) 0 0
\(619\) − 43.5448i − 1.75021i −0.483930 0.875107i \(-0.660791\pi\)
0.483930 0.875107i \(-0.339209\pi\)
\(620\) 6.89977 0.277102
\(621\) 0 0
\(622\) − 8.09783i − 0.324694i
\(623\) 84.2103 3.37381
\(624\) 0 0
\(625\) −13.1618 −0.526473
\(626\) 19.4252i 0.776387i
\(627\) 0 0
\(628\) 17.9323 0.715577
\(629\) 18.4853i 0.737059i
\(630\) 0 0
\(631\) 30.4655i 1.21281i 0.795155 + 0.606406i \(0.207389\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(632\) 10.5526i 0.419759i
\(633\) 0 0
\(634\) −24.5719 −0.975877
\(635\) − 14.6310i − 0.580614i
\(636\) 0 0
\(637\) 0 0
\(638\) −21.5036 −0.851338
\(639\) 0 0
\(640\) −1.80194 −0.0712278
\(641\) 32.3370 1.27724 0.638618 0.769524i \(-0.279506\pi\)
0.638618 + 0.769524i \(0.279506\pi\)
\(642\) 0 0
\(643\) − 1.79092i − 0.0706270i −0.999376 0.0353135i \(-0.988757\pi\)
0.999376 0.0353135i \(-0.0112430\pi\)
\(644\) 32.5676i 1.28334i
\(645\) 0 0
\(646\) 21.9758 0.864628
\(647\) −41.4685 −1.63029 −0.815147 0.579254i \(-0.803344\pi\)
−0.815147 + 0.579254i \(0.803344\pi\)
\(648\) 0 0
\(649\) 50.8786 1.99716
\(650\) 0 0
\(651\) 0 0
\(652\) 0.591794i 0.0231764i
\(653\) −2.39181 −0.0935989 −0.0467994 0.998904i \(-0.514902\pi\)
−0.0467994 + 0.998904i \(0.514902\pi\)
\(654\) 0 0
\(655\) 22.8267i 0.891913i
\(656\) − 5.70171i − 0.222614i
\(657\) 0 0
\(658\) 18.5483i 0.723086i
\(659\) 1.76032 0.0685722 0.0342861 0.999412i \(-0.489084\pi\)
0.0342861 + 0.999412i \(0.489084\pi\)
\(660\) 0 0
\(661\) − 44.7138i − 1.73916i −0.493788 0.869582i \(-0.664388\pi\)
0.493788 0.869582i \(-0.335612\pi\)
\(662\) 25.9758 1.00958
\(663\) 0 0
\(664\) −3.42327 −0.132849
\(665\) 39.2814i 1.52327i
\(666\) 0 0
\(667\) −23.8672 −0.924144
\(668\) − 14.0000i − 0.541676i
\(669\) 0 0
\(670\) 20.6896i 0.799310i
\(671\) 1.32975i 0.0513344i
\(672\) 0 0
\(673\) 5.84356 0.225253 0.112626 0.993637i \(-0.464074\pi\)
0.112626 + 0.993637i \(0.464074\pi\)
\(674\) − 1.87263i − 0.0721308i
\(675\) 0 0
\(676\) 0 0
\(677\) 27.8883 1.07183 0.535917 0.844271i \(-0.319966\pi\)
0.535917 + 0.844271i \(0.319966\pi\)
\(678\) 0 0
\(679\) −4.89785 −0.187962
\(680\) 8.81163 0.337910
\(681\) 0 0
\(682\) 23.1618i 0.886912i
\(683\) 28.3803i 1.08594i 0.839751 + 0.542971i \(0.182701\pi\)
−0.839751 + 0.542971i \(0.817299\pi\)
\(684\) 0 0
\(685\) −27.6775 −1.05750
\(686\) 46.2325 1.76517
\(687\) 0 0
\(688\) 3.78017 0.144118
\(689\) 0 0
\(690\) 0 0
\(691\) − 31.3142i − 1.19125i −0.803263 0.595624i \(-0.796905\pi\)
0.803263 0.595624i \(-0.203095\pi\)
\(692\) −0.982542 −0.0373506
\(693\) 0 0
\(694\) − 16.6853i − 0.633366i
\(695\) 21.2620i 0.806515i
\(696\) 0 0
\(697\) 27.8818i 1.05610i
\(698\) −4.01938 −0.152136
\(699\) 0 0
\(700\) − 8.50365i − 0.321408i
\(701\) 22.6568 0.855737 0.427869 0.903841i \(-0.359265\pi\)
0.427869 + 0.903841i \(0.359265\pi\)
\(702\) 0 0
\(703\) 16.9879 0.640711
\(704\) − 6.04892i − 0.227977i
\(705\) 0 0
\(706\) 21.6039 0.813073
\(707\) − 27.5851i − 1.03744i
\(708\) 0 0
\(709\) − 24.4155i − 0.916943i −0.888709 0.458472i \(-0.848397\pi\)
0.888709 0.458472i \(-0.151603\pi\)
\(710\) 24.3720i 0.914663i
\(711\) 0 0
\(712\) −17.3599 −0.650589
\(713\) 25.7077i 0.962760i
\(714\) 0 0
\(715\) 0 0
\(716\) 9.94331 0.371599
\(717\) 0 0
\(718\) −0.835790 −0.0311914
\(719\) −13.2707 −0.494912 −0.247456 0.968899i \(-0.579595\pi\)
−0.247456 + 0.968899i \(0.579595\pi\)
\(720\) 0 0
\(721\) 32.6732i 1.21681i
\(722\) − 1.19567i − 0.0444982i
\(723\) 0 0
\(724\) −5.87800 −0.218454
\(725\) 6.23191 0.231447
\(726\) 0 0
\(727\) −25.7904 −0.956515 −0.478257 0.878220i \(-0.658731\pi\)
−0.478257 + 0.878220i \(0.658731\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) − 0.753020i − 0.0278705i
\(731\) −18.4853 −0.683705
\(732\) 0 0
\(733\) − 13.1400i − 0.485339i −0.970109 0.242669i \(-0.921977\pi\)
0.970109 0.242669i \(-0.0780230\pi\)
\(734\) − 21.1250i − 0.779737i
\(735\) 0 0
\(736\) − 6.71379i − 0.247474i
\(737\) −69.4529 −2.55833
\(738\) 0 0
\(739\) 11.8130i 0.434547i 0.976111 + 0.217273i \(0.0697163\pi\)
−0.976111 + 0.217273i \(0.930284\pi\)
\(740\) 6.81163 0.250400
\(741\) 0 0
\(742\) 13.5332 0.496819
\(743\) 3.50125i 0.128449i 0.997935 + 0.0642243i \(0.0204573\pi\)
−0.997935 + 0.0642243i \(0.979543\pi\)
\(744\) 0 0
\(745\) −5.78986 −0.212124
\(746\) 21.3840i 0.782925i
\(747\) 0 0
\(748\) 29.5797i 1.08154i
\(749\) − 0.284289i − 0.0103877i
\(750\) 0 0
\(751\) 11.6722 0.425924 0.212962 0.977061i \(-0.431689\pi\)
0.212962 + 0.977061i \(0.431689\pi\)
\(752\) − 3.82371i − 0.139436i
\(753\) 0 0
\(754\) 0 0
\(755\) 16.5036 0.600629
\(756\) 0 0
\(757\) 0.444451 0.0161538 0.00807692 0.999967i \(-0.497429\pi\)
0.00807692 + 0.999967i \(0.497429\pi\)
\(758\) 13.5496 0.492143
\(759\) 0 0
\(760\) − 8.09783i − 0.293739i
\(761\) − 29.4905i − 1.06903i −0.845159 0.534515i \(-0.820494\pi\)
0.845159 0.534515i \(-0.179506\pi\)
\(762\) 0 0
\(763\) −75.3116 −2.72646
\(764\) −11.0422 −0.399493
\(765\) 0 0
\(766\) 9.10992 0.329155
\(767\) 0 0
\(768\) 0 0
\(769\) 13.4517i 0.485082i 0.970141 + 0.242541i \(0.0779810\pi\)
−0.970141 + 0.242541i \(0.922019\pi\)
\(770\) −52.8732 −1.90542
\(771\) 0 0
\(772\) − 20.9638i − 0.754502i
\(773\) − 24.1021i − 0.866894i −0.901179 0.433447i \(-0.857297\pi\)
0.901179 0.433447i \(-0.142703\pi\)
\(774\) 0 0
\(775\) − 6.71246i − 0.241119i
\(776\) 1.00969 0.0362457
\(777\) 0 0
\(778\) 14.8498i 0.532391i
\(779\) 25.6233 0.918048
\(780\) 0 0
\(781\) −81.8141 −2.92754
\(782\) 32.8310i 1.17403i
\(783\) 0 0
\(784\) −16.5308 −0.590386
\(785\) 32.3129i 1.15330i
\(786\) 0 0
\(787\) 16.2258i 0.578387i 0.957271 + 0.289194i \(0.0933872\pi\)
−0.957271 + 0.289194i \(0.906613\pi\)
\(788\) − 15.7409i − 0.560748i
\(789\) 0 0
\(790\) −19.0151 −0.676526
\(791\) 9.49050i 0.337443i
\(792\) 0 0
\(793\) 0 0
\(794\) −33.7453 −1.19757
\(795\) 0 0
\(796\) −1.51142 −0.0535708
\(797\) −37.2760 −1.32039 −0.660193 0.751096i \(-0.729525\pi\)
−0.660193 + 0.751096i \(0.729525\pi\)
\(798\) 0 0
\(799\) 18.6983i 0.661497i
\(800\) 1.75302i 0.0619786i
\(801\) 0 0
\(802\) 19.7017 0.695692
\(803\) 2.52781 0.0892045
\(804\) 0 0
\(805\) −58.6848 −2.06837
\(806\) 0 0
\(807\) 0 0
\(808\) 5.68664i 0.200055i
\(809\) 24.0844 0.846763 0.423382 0.905951i \(-0.360843\pi\)
0.423382 + 0.905951i \(0.360843\pi\)
\(810\) 0 0
\(811\) − 9.87800i − 0.346864i −0.984846 0.173432i \(-0.944514\pi\)
0.984846 0.173432i \(-0.0554856\pi\)
\(812\) − 17.2446i − 0.605166i
\(813\) 0 0
\(814\) 22.8659i 0.801450i
\(815\) −1.06638 −0.0373535
\(816\) 0 0
\(817\) 16.9879i 0.594332i
\(818\) −35.9366 −1.25649
\(819\) 0 0
\(820\) 10.2741 0.358788
\(821\) − 31.2731i − 1.09144i −0.837968 0.545719i \(-0.816257\pi\)
0.837968 0.545719i \(-0.183743\pi\)
\(822\) 0 0
\(823\) −33.8388 −1.17955 −0.589773 0.807569i \(-0.700783\pi\)
−0.589773 + 0.807569i \(0.700783\pi\)
\(824\) − 6.73556i − 0.234644i
\(825\) 0 0
\(826\) 40.8015i 1.41966i
\(827\) 17.4028i 0.605156i 0.953125 + 0.302578i \(0.0978472\pi\)
−0.953125 + 0.302578i \(0.902153\pi\)
\(828\) 0 0
\(829\) 50.9724 1.77034 0.885172 0.465264i \(-0.154041\pi\)
0.885172 + 0.465264i \(0.154041\pi\)
\(830\) − 6.16852i − 0.214113i
\(831\) 0 0
\(832\) 0 0
\(833\) 80.8370 2.80084
\(834\) 0 0
\(835\) 25.2271 0.873021
\(836\) 27.1836 0.940164
\(837\) 0 0
\(838\) 18.7928i 0.649188i
\(839\) 34.6983i 1.19792i 0.800780 + 0.598958i \(0.204419\pi\)
−0.800780 + 0.598958i \(0.795581\pi\)
\(840\) 0 0
\(841\) −16.3623 −0.564216
\(842\) 3.90217 0.134477
\(843\) 0 0
\(844\) −5.65817 −0.194762
\(845\) 0 0
\(846\) 0 0
\(847\) − 124.130i − 4.26517i
\(848\) −2.78986 −0.0958041
\(849\) 0 0
\(850\) − 8.57242i − 0.294031i
\(851\) 25.3793i 0.869990i
\(852\) 0 0
\(853\) − 8.37675i − 0.286814i −0.989664 0.143407i \(-0.954194\pi\)
0.989664 0.143407i \(-0.0458059\pi\)
\(854\) −1.06638 −0.0364906
\(855\) 0 0
\(856\) 0.0586060i 0.00200311i
\(857\) 17.7888 0.607654 0.303827 0.952727i \(-0.401736\pi\)
0.303827 + 0.952727i \(0.401736\pi\)
\(858\) 0 0
\(859\) 50.1473 1.71101 0.855503 0.517798i \(-0.173248\pi\)
0.855503 + 0.517798i \(0.173248\pi\)
\(860\) 6.81163i 0.232275i
\(861\) 0 0
\(862\) −18.8310 −0.641387
\(863\) 50.1172i 1.70601i 0.521903 + 0.853005i \(0.325222\pi\)
−0.521903 + 0.853005i \(0.674778\pi\)
\(864\) 0 0
\(865\) − 1.77048i − 0.0601981i
\(866\) − 24.8364i − 0.843975i
\(867\) 0 0
\(868\) −18.5743 −0.630454
\(869\) − 63.8316i − 2.16534i
\(870\) 0 0
\(871\) 0 0
\(872\) 15.5254 0.525757
\(873\) 0 0
\(874\) 30.1715 1.02057
\(875\) 59.0277 1.99550
\(876\) 0 0
\(877\) 38.3827i 1.29609i 0.761601 + 0.648046i \(0.224414\pi\)
−0.761601 + 0.648046i \(0.775586\pi\)
\(878\) − 22.2784i − 0.751861i
\(879\) 0 0
\(880\) 10.8998 0.367431
\(881\) 31.8383 1.07266 0.536330 0.844009i \(-0.319810\pi\)
0.536330 + 0.844009i \(0.319810\pi\)
\(882\) 0 0
\(883\) −4.74871 −0.159807 −0.0799034 0.996803i \(-0.525461\pi\)
−0.0799034 + 0.996803i \(0.525461\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 26.6359i 0.894851i
\(887\) −22.9288 −0.769875 −0.384938 0.922943i \(-0.625777\pi\)
−0.384938 + 0.922943i \(0.625777\pi\)
\(888\) 0 0
\(889\) 39.3870i 1.32100i
\(890\) − 31.2814i − 1.04856i
\(891\) 0 0
\(892\) − 1.97584i − 0.0661559i
\(893\) 17.1836 0.575027
\(894\) 0 0
\(895\) 17.9172i 0.598907i
\(896\) 4.85086 0.162056
\(897\) 0 0
\(898\) −21.8538 −0.729272
\(899\) − 13.6122i − 0.453993i
\(900\) 0 0
\(901\) 13.6426 0.454502
\(902\) 34.4892i 1.14836i
\(903\) 0 0
\(904\) − 1.95646i − 0.0650709i
\(905\) − 10.5918i − 0.352083i
\(906\) 0 0
\(907\) −43.0267 −1.42868 −0.714339 0.699800i \(-0.753272\pi\)
−0.714339 + 0.699800i \(0.753272\pi\)
\(908\) − 25.0640i − 0.831777i
\(909\) 0 0
\(910\) 0 0
\(911\) −6.65087 −0.220353 −0.110177 0.993912i \(-0.535142\pi\)
−0.110177 + 0.993912i \(0.535142\pi\)
\(912\) 0 0
\(913\) 20.7071 0.685305
\(914\) −20.7278 −0.685614
\(915\) 0 0
\(916\) 24.5133i 0.809943i
\(917\) − 61.4499i − 2.02926i
\(918\) 0 0
\(919\) −9.11231 −0.300587 −0.150294 0.988641i \(-0.548022\pi\)
−0.150294 + 0.988641i \(0.548022\pi\)
\(920\) 12.0978 0.398854
\(921\) 0 0
\(922\) −10.7832 −0.355124
\(923\) 0 0
\(924\) 0 0
\(925\) − 6.62671i − 0.217885i
\(926\) 23.1594 0.761066
\(927\) 0 0
\(928\) 3.55496i 0.116697i
\(929\) 11.8672i 0.389352i 0.980868 + 0.194676i \(0.0623655\pi\)
−0.980868 + 0.194676i \(0.937634\pi\)
\(930\) 0 0
\(931\) − 74.2887i − 2.43471i
\(932\) −8.37196 −0.274233
\(933\) 0 0
\(934\) − 13.3515i − 0.436875i
\(935\) −53.3008 −1.74312
\(936\) 0 0
\(937\) 19.1153 0.624469 0.312235 0.950005i \(-0.398922\pi\)
0.312235 + 0.950005i \(0.398922\pi\)
\(938\) − 55.6969i − 1.81857i
\(939\) 0 0
\(940\) 6.89008 0.224730
\(941\) − 0.445042i − 0.0145080i −0.999974 0.00725398i \(-0.997691\pi\)
0.999974 0.00725398i \(-0.00230903\pi\)
\(942\) 0 0
\(943\) 38.2801i 1.24657i
\(944\) − 8.41119i − 0.273761i
\(945\) 0 0
\(946\) −22.8659 −0.743435
\(947\) − 8.99894i − 0.292426i −0.989253 0.146213i \(-0.953291\pi\)
0.989253 0.146213i \(-0.0467085\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −7.87800 −0.255596
\(951\) 0 0
\(952\) −23.7211 −0.768805
\(953\) −37.2573 −1.20688 −0.603441 0.797408i \(-0.706204\pi\)
−0.603441 + 0.797408i \(0.706204\pi\)
\(954\) 0 0
\(955\) − 19.8974i − 0.643864i
\(956\) 14.0194i 0.453419i
\(957\) 0 0
\(958\) 4.38537 0.141685
\(959\) 74.5086 2.40601
\(960\) 0 0
\(961\) 16.3381 0.527036
\(962\) 0 0
\(963\) 0 0
\(964\) 21.1183i 0.680174i
\(965\) 37.7754 1.21603
\(966\) 0 0
\(967\) − 37.2567i − 1.19809i −0.800714 0.599047i \(-0.795546\pi\)
0.800714 0.599047i \(-0.204454\pi\)
\(968\) 25.5894i 0.822474i
\(969\) 0 0
\(970\) 1.81940i 0.0584173i
\(971\) −54.0393 −1.73421 −0.867103 0.498130i \(-0.834020\pi\)
−0.867103 + 0.498130i \(0.834020\pi\)
\(972\) 0 0
\(973\) − 57.2379i − 1.83496i
\(974\) 7.33214 0.234937
\(975\) 0 0
\(976\) 0.219833 0.00703667
\(977\) 11.4470i 0.366221i 0.983092 + 0.183110i \(0.0586166\pi\)
−0.983092 + 0.183110i \(0.941383\pi\)
\(978\) 0 0
\(979\) 105.008 3.35609
\(980\) − 29.7875i − 0.951526i
\(981\) 0 0
\(982\) 16.8062i 0.536309i
\(983\) − 0.111244i − 0.00354814i −0.999998 0.00177407i \(-0.999435\pi\)
0.999998 0.00177407i \(-0.000564704\pi\)
\(984\) 0 0
\(985\) 28.3642 0.903758
\(986\) − 17.3840i − 0.553621i
\(987\) 0 0
\(988\) 0 0
\(989\) −25.3793 −0.807013
\(990\) 0 0
\(991\) 11.3709 0.361208 0.180604 0.983556i \(-0.442195\pi\)
0.180604 + 0.983556i \(0.442195\pi\)
\(992\) 3.82908 0.121574
\(993\) 0 0
\(994\) − 65.6098i − 2.08102i
\(995\) − 2.72348i − 0.0863401i
\(996\) 0 0
\(997\) 6.45042 0.204287 0.102143 0.994770i \(-0.467430\pi\)
0.102143 + 0.994770i \(0.467430\pi\)
\(998\) −6.59658 −0.208811
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.b.p.1351.4 6
3.2 odd 2 3042.2.b.q.1351.3 6
13.5 odd 4 3042.2.a.bf.1.1 yes 3
13.8 odd 4 3042.2.a.bc.1.3 yes 3
13.12 even 2 inner 3042.2.b.p.1351.3 6
39.5 even 4 3042.2.a.bb.1.3 3
39.8 even 4 3042.2.a.bg.1.1 yes 3
39.38 odd 2 3042.2.b.q.1351.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3042.2.a.bb.1.3 3 39.5 even 4
3042.2.a.bc.1.3 yes 3 13.8 odd 4
3042.2.a.bf.1.1 yes 3 13.5 odd 4
3042.2.a.bg.1.1 yes 3 39.8 even 4
3042.2.b.p.1351.3 6 13.12 even 2 inner
3042.2.b.p.1351.4 6 1.1 even 1 trivial
3042.2.b.q.1351.3 6 3.2 odd 2
3042.2.b.q.1351.4 6 39.38 odd 2