Properties

Label 3042.2.a.bc.1.3
Level $3042$
Weight $2$
Character 3042.1
Self dual yes
Analytic conductor $24.290$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2904922949\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 3042.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.80194 q^{5} +4.85086 q^{7} -1.00000 q^{8} -1.80194 q^{10} +6.04892 q^{11} -4.85086 q^{14} +1.00000 q^{16} +4.89008 q^{17} -4.49396 q^{19} +1.80194 q^{20} -6.04892 q^{22} +6.71379 q^{23} -1.75302 q^{25} +4.85086 q^{28} +3.55496 q^{29} +3.82908 q^{31} -1.00000 q^{32} -4.89008 q^{34} +8.74094 q^{35} -3.78017 q^{37} +4.49396 q^{38} -1.80194 q^{40} +5.70171 q^{41} -3.78017 q^{43} +6.04892 q^{44} -6.71379 q^{46} -3.82371 q^{47} +16.5308 q^{49} +1.75302 q^{50} -2.78986 q^{53} +10.8998 q^{55} -4.85086 q^{56} -3.55496 q^{58} -8.41119 q^{59} +0.219833 q^{61} -3.82908 q^{62} +1.00000 q^{64} -11.4819 q^{67} +4.89008 q^{68} -8.74094 q^{70} -13.5254 q^{71} -0.417895 q^{73} +3.78017 q^{74} -4.49396 q^{76} +29.3424 q^{77} -10.5526 q^{79} +1.80194 q^{80} -5.70171 q^{82} +3.42327 q^{83} +8.81163 q^{85} +3.78017 q^{86} -6.04892 q^{88} -17.3599 q^{89} +6.71379 q^{92} +3.82371 q^{94} -8.09783 q^{95} -1.00969 q^{97} -16.5308 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} + q^{5} + q^{7} - 3 q^{8} - q^{10} + 9 q^{11} - q^{14} + 3 q^{16} + 14 q^{17} - 4 q^{19} + q^{20} - 9 q^{22} + 12 q^{23} - 10 q^{25} + q^{28} + 11 q^{29} + q^{31} - 3 q^{32}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.80194 0.805851 0.402926 0.915233i \(-0.367993\pi\)
0.402926 + 0.915233i \(0.367993\pi\)
\(6\) 0 0
\(7\) 4.85086 1.83345 0.916725 0.399518i \(-0.130822\pi\)
0.916725 + 0.399518i \(0.130822\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.80194 −0.569823
\(11\) 6.04892 1.82382 0.911909 0.410393i \(-0.134609\pi\)
0.911909 + 0.410393i \(0.134609\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −4.85086 −1.29645
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.89008 1.18602 0.593010 0.805195i \(-0.297940\pi\)
0.593010 + 0.805195i \(0.297940\pi\)
\(18\) 0 0
\(19\) −4.49396 −1.03098 −0.515492 0.856894i \(-0.672391\pi\)
−0.515492 + 0.856894i \(0.672391\pi\)
\(20\) 1.80194 0.402926
\(21\) 0 0
\(22\) −6.04892 −1.28963
\(23\) 6.71379 1.39992 0.699961 0.714181i \(-0.253201\pi\)
0.699961 + 0.714181i \(0.253201\pi\)
\(24\) 0 0
\(25\) −1.75302 −0.350604
\(26\) 0 0
\(27\) 0 0
\(28\) 4.85086 0.916725
\(29\) 3.55496 0.660139 0.330070 0.943957i \(-0.392928\pi\)
0.330070 + 0.943957i \(0.392928\pi\)
\(30\) 0 0
\(31\) 3.82908 0.687724 0.343862 0.939020i \(-0.388265\pi\)
0.343862 + 0.939020i \(0.388265\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −4.89008 −0.838642
\(35\) 8.74094 1.47749
\(36\) 0 0
\(37\) −3.78017 −0.621456 −0.310728 0.950499i \(-0.600573\pi\)
−0.310728 + 0.950499i \(0.600573\pi\)
\(38\) 4.49396 0.729016
\(39\) 0 0
\(40\) −1.80194 −0.284911
\(41\) 5.70171 0.890458 0.445229 0.895417i \(-0.353122\pi\)
0.445229 + 0.895417i \(0.353122\pi\)
\(42\) 0 0
\(43\) −3.78017 −0.576470 −0.288235 0.957560i \(-0.593068\pi\)
−0.288235 + 0.957560i \(0.593068\pi\)
\(44\) 6.04892 0.911909
\(45\) 0 0
\(46\) −6.71379 −0.989895
\(47\) −3.82371 −0.557745 −0.278873 0.960328i \(-0.589961\pi\)
−0.278873 + 0.960328i \(0.589961\pi\)
\(48\) 0 0
\(49\) 16.5308 2.36154
\(50\) 1.75302 0.247915
\(51\) 0 0
\(52\) 0 0
\(53\) −2.78986 −0.383216 −0.191608 0.981472i \(-0.561370\pi\)
−0.191608 + 0.981472i \(0.561370\pi\)
\(54\) 0 0
\(55\) 10.8998 1.46973
\(56\) −4.85086 −0.648223
\(57\) 0 0
\(58\) −3.55496 −0.466789
\(59\) −8.41119 −1.09504 −0.547522 0.836791i \(-0.684429\pi\)
−0.547522 + 0.836791i \(0.684429\pi\)
\(60\) 0 0
\(61\) 0.219833 0.0281467 0.0140733 0.999901i \(-0.495520\pi\)
0.0140733 + 0.999901i \(0.495520\pi\)
\(62\) −3.82908 −0.486294
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −11.4819 −1.40273 −0.701367 0.712800i \(-0.747427\pi\)
−0.701367 + 0.712800i \(0.747427\pi\)
\(68\) 4.89008 0.593010
\(69\) 0 0
\(70\) −8.74094 −1.04474
\(71\) −13.5254 −1.60517 −0.802586 0.596537i \(-0.796543\pi\)
−0.802586 + 0.596537i \(0.796543\pi\)
\(72\) 0 0
\(73\) −0.417895 −0.0489109 −0.0244554 0.999701i \(-0.507785\pi\)
−0.0244554 + 0.999701i \(0.507785\pi\)
\(74\) 3.78017 0.439436
\(75\) 0 0
\(76\) −4.49396 −0.515492
\(77\) 29.3424 3.34388
\(78\) 0 0
\(79\) −10.5526 −1.18726 −0.593628 0.804739i \(-0.702305\pi\)
−0.593628 + 0.804739i \(0.702305\pi\)
\(80\) 1.80194 0.201463
\(81\) 0 0
\(82\) −5.70171 −0.629649
\(83\) 3.42327 0.375753 0.187876 0.982193i \(-0.439840\pi\)
0.187876 + 0.982193i \(0.439840\pi\)
\(84\) 0 0
\(85\) 8.81163 0.955755
\(86\) 3.78017 0.407626
\(87\) 0 0
\(88\) −6.04892 −0.644817
\(89\) −17.3599 −1.84014 −0.920072 0.391750i \(-0.871870\pi\)
−0.920072 + 0.391750i \(0.871870\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.71379 0.699961
\(93\) 0 0
\(94\) 3.82371 0.394385
\(95\) −8.09783 −0.830820
\(96\) 0 0
\(97\) −1.00969 −0.102518 −0.0512592 0.998685i \(-0.516323\pi\)
−0.0512592 + 0.998685i \(0.516323\pi\)
\(98\) −16.5308 −1.66986
\(99\) 0 0
\(100\) −1.75302 −0.175302
\(101\) 5.68664 0.565842 0.282921 0.959143i \(-0.408697\pi\)
0.282921 + 0.959143i \(0.408697\pi\)
\(102\) 0 0
\(103\) −6.73556 −0.663675 −0.331837 0.943337i \(-0.607669\pi\)
−0.331837 + 0.943337i \(0.607669\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.78986 0.270975
\(107\) −0.0586060 −0.00566566 −0.00283283 0.999996i \(-0.500902\pi\)
−0.00283283 + 0.999996i \(0.500902\pi\)
\(108\) 0 0
\(109\) −15.5254 −1.48707 −0.743533 0.668700i \(-0.766851\pi\)
−0.743533 + 0.668700i \(0.766851\pi\)
\(110\) −10.8998 −1.03925
\(111\) 0 0
\(112\) 4.85086 0.458363
\(113\) 1.95646 0.184048 0.0920241 0.995757i \(-0.470666\pi\)
0.0920241 + 0.995757i \(0.470666\pi\)
\(114\) 0 0
\(115\) 12.0978 1.12813
\(116\) 3.55496 0.330070
\(117\) 0 0
\(118\) 8.41119 0.774313
\(119\) 23.7211 2.17451
\(120\) 0 0
\(121\) 25.5894 2.32631
\(122\) −0.219833 −0.0199027
\(123\) 0 0
\(124\) 3.82908 0.343862
\(125\) −12.1685 −1.08839
\(126\) 0 0
\(127\) −8.11960 −0.720498 −0.360249 0.932856i \(-0.617308\pi\)
−0.360249 + 0.932856i \(0.617308\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −12.6679 −1.10680 −0.553398 0.832917i \(-0.686669\pi\)
−0.553398 + 0.832917i \(0.686669\pi\)
\(132\) 0 0
\(133\) −21.7995 −1.89026
\(134\) 11.4819 0.991883
\(135\) 0 0
\(136\) −4.89008 −0.419321
\(137\) −15.3599 −1.31228 −0.656142 0.754638i \(-0.727813\pi\)
−0.656142 + 0.754638i \(0.727813\pi\)
\(138\) 0 0
\(139\) −11.7995 −1.00082 −0.500412 0.865787i \(-0.666818\pi\)
−0.500412 + 0.865787i \(0.666818\pi\)
\(140\) 8.74094 0.738744
\(141\) 0 0
\(142\) 13.5254 1.13503
\(143\) 0 0
\(144\) 0 0
\(145\) 6.40581 0.531974
\(146\) 0.417895 0.0345852
\(147\) 0 0
\(148\) −3.78017 −0.310728
\(149\) 3.21313 0.263230 0.131615 0.991301i \(-0.457984\pi\)
0.131615 + 0.991301i \(0.457984\pi\)
\(150\) 0 0
\(151\) 9.15883 0.745335 0.372668 0.927965i \(-0.378443\pi\)
0.372668 + 0.927965i \(0.378443\pi\)
\(152\) 4.49396 0.364508
\(153\) 0 0
\(154\) −29.3424 −2.36448
\(155\) 6.89977 0.554203
\(156\) 0 0
\(157\) −17.9323 −1.43115 −0.715577 0.698534i \(-0.753836\pi\)
−0.715577 + 0.698534i \(0.753836\pi\)
\(158\) 10.5526 0.839517
\(159\) 0 0
\(160\) −1.80194 −0.142456
\(161\) 32.5676 2.56669
\(162\) 0 0
\(163\) −0.591794 −0.0463529 −0.0231764 0.999731i \(-0.507378\pi\)
−0.0231764 + 0.999731i \(0.507378\pi\)
\(164\) 5.70171 0.445229
\(165\) 0 0
\(166\) −3.42327 −0.265697
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −8.81163 −0.675821
\(171\) 0 0
\(172\) −3.78017 −0.288235
\(173\) −0.982542 −0.0747013 −0.0373506 0.999302i \(-0.511892\pi\)
−0.0373506 + 0.999302i \(0.511892\pi\)
\(174\) 0 0
\(175\) −8.50365 −0.642815
\(176\) 6.04892 0.455954
\(177\) 0 0
\(178\) 17.3599 1.30118
\(179\) 9.94331 0.743198 0.371599 0.928393i \(-0.378810\pi\)
0.371599 + 0.928393i \(0.378810\pi\)
\(180\) 0 0
\(181\) −5.87800 −0.436908 −0.218454 0.975847i \(-0.570101\pi\)
−0.218454 + 0.975847i \(0.570101\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.71379 −0.494947
\(185\) −6.81163 −0.500801
\(186\) 0 0
\(187\) 29.5797 2.16308
\(188\) −3.82371 −0.278873
\(189\) 0 0
\(190\) 8.09783 0.587479
\(191\) 11.0422 0.798986 0.399493 0.916736i \(-0.369186\pi\)
0.399493 + 0.916736i \(0.369186\pi\)
\(192\) 0 0
\(193\) 20.9638 1.50900 0.754502 0.656298i \(-0.227878\pi\)
0.754502 + 0.656298i \(0.227878\pi\)
\(194\) 1.00969 0.0724914
\(195\) 0 0
\(196\) 16.5308 1.18077
\(197\) −15.7409 −1.12150 −0.560748 0.827987i \(-0.689486\pi\)
−0.560748 + 0.827987i \(0.689486\pi\)
\(198\) 0 0
\(199\) −1.51142 −0.107142 −0.0535708 0.998564i \(-0.517060\pi\)
−0.0535708 + 0.998564i \(0.517060\pi\)
\(200\) 1.75302 0.123957
\(201\) 0 0
\(202\) −5.68664 −0.400111
\(203\) 17.2446 1.21033
\(204\) 0 0
\(205\) 10.2741 0.717576
\(206\) 6.73556 0.469289
\(207\) 0 0
\(208\) 0 0
\(209\) −27.1836 −1.88033
\(210\) 0 0
\(211\) 5.65817 0.389524 0.194762 0.980850i \(-0.437606\pi\)
0.194762 + 0.980850i \(0.437606\pi\)
\(212\) −2.78986 −0.191608
\(213\) 0 0
\(214\) 0.0586060 0.00400622
\(215\) −6.81163 −0.464549
\(216\) 0 0
\(217\) 18.5743 1.26091
\(218\) 15.5254 1.05151
\(219\) 0 0
\(220\) 10.8998 0.734863
\(221\) 0 0
\(222\) 0 0
\(223\) −1.97584 −0.132312 −0.0661559 0.997809i \(-0.521073\pi\)
−0.0661559 + 0.997809i \(0.521073\pi\)
\(224\) −4.85086 −0.324111
\(225\) 0 0
\(226\) −1.95646 −0.130142
\(227\) −25.0640 −1.66355 −0.831777 0.555109i \(-0.812676\pi\)
−0.831777 + 0.555109i \(0.812676\pi\)
\(228\) 0 0
\(229\) −24.5133 −1.61989 −0.809943 0.586508i \(-0.800502\pi\)
−0.809943 + 0.586508i \(0.800502\pi\)
\(230\) −12.0978 −0.797708
\(231\) 0 0
\(232\) −3.55496 −0.233394
\(233\) −8.37196 −0.548465 −0.274233 0.961663i \(-0.588424\pi\)
−0.274233 + 0.961663i \(0.588424\pi\)
\(234\) 0 0
\(235\) −6.89008 −0.449460
\(236\) −8.41119 −0.547522
\(237\) 0 0
\(238\) −23.7211 −1.53761
\(239\) 14.0194 0.906838 0.453419 0.891297i \(-0.350204\pi\)
0.453419 + 0.891297i \(0.350204\pi\)
\(240\) 0 0
\(241\) −21.1183 −1.36035 −0.680174 0.733051i \(-0.738096\pi\)
−0.680174 + 0.733051i \(0.738096\pi\)
\(242\) −25.5894 −1.64495
\(243\) 0 0
\(244\) 0.219833 0.0140733
\(245\) 29.7875 1.90305
\(246\) 0 0
\(247\) 0 0
\(248\) −3.82908 −0.243147
\(249\) 0 0
\(250\) 12.1685 0.769605
\(251\) 26.1129 1.64823 0.824116 0.566421i \(-0.191672\pi\)
0.824116 + 0.566421i \(0.191672\pi\)
\(252\) 0 0
\(253\) 40.6112 2.55320
\(254\) 8.11960 0.509469
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.5918 1.03497 0.517484 0.855693i \(-0.326869\pi\)
0.517484 + 0.855693i \(0.326869\pi\)
\(258\) 0 0
\(259\) −18.3370 −1.13941
\(260\) 0 0
\(261\) 0 0
\(262\) 12.6679 0.782623
\(263\) 9.64742 0.594885 0.297443 0.954740i \(-0.403866\pi\)
0.297443 + 0.954740i \(0.403866\pi\)
\(264\) 0 0
\(265\) −5.02715 −0.308815
\(266\) 21.7995 1.33662
\(267\) 0 0
\(268\) −11.4819 −0.701367
\(269\) 10.1981 0.621787 0.310893 0.950445i \(-0.399372\pi\)
0.310893 + 0.950445i \(0.399372\pi\)
\(270\) 0 0
\(271\) 27.6799 1.68144 0.840718 0.541473i \(-0.182133\pi\)
0.840718 + 0.541473i \(0.182133\pi\)
\(272\) 4.89008 0.296505
\(273\) 0 0
\(274\) 15.3599 0.927924
\(275\) −10.6039 −0.639438
\(276\) 0 0
\(277\) 6.32842 0.380238 0.190119 0.981761i \(-0.439113\pi\)
0.190119 + 0.981761i \(0.439113\pi\)
\(278\) 11.7995 0.707690
\(279\) 0 0
\(280\) −8.74094 −0.522371
\(281\) 9.26205 0.552527 0.276264 0.961082i \(-0.410904\pi\)
0.276264 + 0.961082i \(0.410904\pi\)
\(282\) 0 0
\(283\) 0.561663 0.0333874 0.0166937 0.999861i \(-0.494686\pi\)
0.0166937 + 0.999861i \(0.494686\pi\)
\(284\) −13.5254 −0.802586
\(285\) 0 0
\(286\) 0 0
\(287\) 27.6582 1.63261
\(288\) 0 0
\(289\) 6.91292 0.406642
\(290\) −6.40581 −0.376162
\(291\) 0 0
\(292\) −0.417895 −0.0244554
\(293\) 11.7506 0.686479 0.343239 0.939248i \(-0.388476\pi\)
0.343239 + 0.939248i \(0.388476\pi\)
\(294\) 0 0
\(295\) −15.1564 −0.882442
\(296\) 3.78017 0.219718
\(297\) 0 0
\(298\) −3.21313 −0.186131
\(299\) 0 0
\(300\) 0 0
\(301\) −18.3370 −1.05693
\(302\) −9.15883 −0.527032
\(303\) 0 0
\(304\) −4.49396 −0.257746
\(305\) 0.396125 0.0226820
\(306\) 0 0
\(307\) 1.09054 0.0622403 0.0311202 0.999516i \(-0.490093\pi\)
0.0311202 + 0.999516i \(0.490093\pi\)
\(308\) 29.3424 1.67194
\(309\) 0 0
\(310\) −6.89977 −0.391881
\(311\) 8.09783 0.459186 0.229593 0.973287i \(-0.426260\pi\)
0.229593 + 0.973287i \(0.426260\pi\)
\(312\) 0 0
\(313\) 19.4252 1.09798 0.548988 0.835830i \(-0.315013\pi\)
0.548988 + 0.835830i \(0.315013\pi\)
\(314\) 17.9323 1.01198
\(315\) 0 0
\(316\) −10.5526 −0.593628
\(317\) −24.5719 −1.38010 −0.690049 0.723763i \(-0.742411\pi\)
−0.690049 + 0.723763i \(0.742411\pi\)
\(318\) 0 0
\(319\) 21.5036 1.20397
\(320\) 1.80194 0.100731
\(321\) 0 0
\(322\) −32.5676 −1.81492
\(323\) −21.9758 −1.22277
\(324\) 0 0
\(325\) 0 0
\(326\) 0.591794 0.0327764
\(327\) 0 0
\(328\) −5.70171 −0.314824
\(329\) −18.5483 −1.02260
\(330\) 0 0
\(331\) 25.9758 1.42776 0.713881 0.700267i \(-0.246936\pi\)
0.713881 + 0.700267i \(0.246936\pi\)
\(332\) 3.42327 0.187876
\(333\) 0 0
\(334\) −14.0000 −0.766046
\(335\) −20.6896 −1.13040
\(336\) 0 0
\(337\) 1.87263 0.102008 0.0510042 0.998698i \(-0.483758\pi\)
0.0510042 + 0.998698i \(0.483758\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 8.81163 0.477878
\(341\) 23.1618 1.25428
\(342\) 0 0
\(343\) 46.2325 2.49632
\(344\) 3.78017 0.203813
\(345\) 0 0
\(346\) 0.982542 0.0528218
\(347\) −16.6853 −0.895715 −0.447857 0.894105i \(-0.647813\pi\)
−0.447857 + 0.894105i \(0.647813\pi\)
\(348\) 0 0
\(349\) 4.01938 0.215152 0.107576 0.994197i \(-0.465691\pi\)
0.107576 + 0.994197i \(0.465691\pi\)
\(350\) 8.50365 0.454539
\(351\) 0 0
\(352\) −6.04892 −0.322408
\(353\) 21.6039 1.14986 0.574929 0.818203i \(-0.305030\pi\)
0.574929 + 0.818203i \(0.305030\pi\)
\(354\) 0 0
\(355\) −24.3720 −1.29353
\(356\) −17.3599 −0.920072
\(357\) 0 0
\(358\) −9.94331 −0.525520
\(359\) 0.835790 0.0441113 0.0220556 0.999757i \(-0.492979\pi\)
0.0220556 + 0.999757i \(0.492979\pi\)
\(360\) 0 0
\(361\) 1.19567 0.0629300
\(362\) 5.87800 0.308941
\(363\) 0 0
\(364\) 0 0
\(365\) −0.753020 −0.0394149
\(366\) 0 0
\(367\) −21.1250 −1.10272 −0.551358 0.834269i \(-0.685890\pi\)
−0.551358 + 0.834269i \(0.685890\pi\)
\(368\) 6.71379 0.349981
\(369\) 0 0
\(370\) 6.81163 0.354120
\(371\) −13.5332 −0.702608
\(372\) 0 0
\(373\) 21.3840 1.10722 0.553612 0.832775i \(-0.313249\pi\)
0.553612 + 0.832775i \(0.313249\pi\)
\(374\) −29.5797 −1.52953
\(375\) 0 0
\(376\) 3.82371 0.197193
\(377\) 0 0
\(378\) 0 0
\(379\) 13.5496 0.695995 0.347998 0.937495i \(-0.386862\pi\)
0.347998 + 0.937495i \(0.386862\pi\)
\(380\) −8.09783 −0.415410
\(381\) 0 0
\(382\) −11.0422 −0.564969
\(383\) 9.10992 0.465495 0.232747 0.972537i \(-0.425228\pi\)
0.232747 + 0.972537i \(0.425228\pi\)
\(384\) 0 0
\(385\) 52.8732 2.69467
\(386\) −20.9638 −1.06703
\(387\) 0 0
\(388\) −1.00969 −0.0512592
\(389\) −14.8498 −0.752914 −0.376457 0.926434i \(-0.622858\pi\)
−0.376457 + 0.926434i \(0.622858\pi\)
\(390\) 0 0
\(391\) 32.8310 1.66034
\(392\) −16.5308 −0.834931
\(393\) 0 0
\(394\) 15.7409 0.793017
\(395\) −19.0151 −0.956752
\(396\) 0 0
\(397\) 33.7453 1.69363 0.846813 0.531891i \(-0.178518\pi\)
0.846813 + 0.531891i \(0.178518\pi\)
\(398\) 1.51142 0.0757605
\(399\) 0 0
\(400\) −1.75302 −0.0876510
\(401\) −19.7017 −0.983856 −0.491928 0.870636i \(-0.663708\pi\)
−0.491928 + 0.870636i \(0.663708\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 5.68664 0.282921
\(405\) 0 0
\(406\) −17.2446 −0.855834
\(407\) −22.8659 −1.13342
\(408\) 0 0
\(409\) −35.9366 −1.77695 −0.888475 0.458924i \(-0.848235\pi\)
−0.888475 + 0.458924i \(0.848235\pi\)
\(410\) −10.2741 −0.507403
\(411\) 0 0
\(412\) −6.73556 −0.331837
\(413\) −40.8015 −2.00771
\(414\) 0 0
\(415\) 6.16852 0.302801
\(416\) 0 0
\(417\) 0 0
\(418\) 27.1836 1.32959
\(419\) 18.7928 0.918090 0.459045 0.888413i \(-0.348192\pi\)
0.459045 + 0.888413i \(0.348192\pi\)
\(420\) 0 0
\(421\) 3.90217 0.190180 0.0950900 0.995469i \(-0.469686\pi\)
0.0950900 + 0.995469i \(0.469686\pi\)
\(422\) −5.65817 −0.275435
\(423\) 0 0
\(424\) 2.78986 0.135487
\(425\) −8.57242 −0.415823
\(426\) 0 0
\(427\) 1.06638 0.0516055
\(428\) −0.0586060 −0.00283283
\(429\) 0 0
\(430\) 6.81163 0.328486
\(431\) −18.8310 −0.907058 −0.453529 0.891242i \(-0.649835\pi\)
−0.453529 + 0.891242i \(0.649835\pi\)
\(432\) 0 0
\(433\) 24.8364 1.19356 0.596780 0.802405i \(-0.296446\pi\)
0.596780 + 0.802405i \(0.296446\pi\)
\(434\) −18.5743 −0.891597
\(435\) 0 0
\(436\) −15.5254 −0.743533
\(437\) −30.1715 −1.44330
\(438\) 0 0
\(439\) 22.2784 1.06329 0.531646 0.846967i \(-0.321574\pi\)
0.531646 + 0.846967i \(0.321574\pi\)
\(440\) −10.8998 −0.519626
\(441\) 0 0
\(442\) 0 0
\(443\) 26.6359 1.26551 0.632756 0.774352i \(-0.281924\pi\)
0.632756 + 0.774352i \(0.281924\pi\)
\(444\) 0 0
\(445\) −31.2814 −1.48288
\(446\) 1.97584 0.0935586
\(447\) 0 0
\(448\) 4.85086 0.229181
\(449\) 21.8538 1.03135 0.515673 0.856785i \(-0.327542\pi\)
0.515673 + 0.856785i \(0.327542\pi\)
\(450\) 0 0
\(451\) 34.4892 1.62403
\(452\) 1.95646 0.0920241
\(453\) 0 0
\(454\) 25.0640 1.17631
\(455\) 0 0
\(456\) 0 0
\(457\) −20.7278 −0.969605 −0.484803 0.874624i \(-0.661109\pi\)
−0.484803 + 0.874624i \(0.661109\pi\)
\(458\) 24.5133 1.14543
\(459\) 0 0
\(460\) 12.0978 0.564064
\(461\) −10.7832 −0.502221 −0.251111 0.967958i \(-0.580796\pi\)
−0.251111 + 0.967958i \(0.580796\pi\)
\(462\) 0 0
\(463\) −23.1594 −1.07631 −0.538155 0.842846i \(-0.680878\pi\)
−0.538155 + 0.842846i \(0.680878\pi\)
\(464\) 3.55496 0.165035
\(465\) 0 0
\(466\) 8.37196 0.387824
\(467\) 13.3515 0.617835 0.308917 0.951089i \(-0.400033\pi\)
0.308917 + 0.951089i \(0.400033\pi\)
\(468\) 0 0
\(469\) −55.6969 −2.57185
\(470\) 6.89008 0.317816
\(471\) 0 0
\(472\) 8.41119 0.387156
\(473\) −22.8659 −1.05138
\(474\) 0 0
\(475\) 7.87800 0.361468
\(476\) 23.7211 1.08725
\(477\) 0 0
\(478\) −14.0194 −0.641231
\(479\) −4.38537 −0.200373 −0.100186 0.994969i \(-0.531944\pi\)
−0.100186 + 0.994969i \(0.531944\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 21.1183 0.961911
\(483\) 0 0
\(484\) 25.5894 1.16315
\(485\) −1.81940 −0.0826145
\(486\) 0 0
\(487\) 7.33214 0.332251 0.166126 0.986105i \(-0.446874\pi\)
0.166126 + 0.986105i \(0.446874\pi\)
\(488\) −0.219833 −0.00995135
\(489\) 0 0
\(490\) −29.7875 −1.34566
\(491\) −16.8062 −0.758455 −0.379228 0.925303i \(-0.623810\pi\)
−0.379228 + 0.925303i \(0.623810\pi\)
\(492\) 0 0
\(493\) 17.3840 0.782938
\(494\) 0 0
\(495\) 0 0
\(496\) 3.82908 0.171931
\(497\) −65.6098 −2.94300
\(498\) 0 0
\(499\) −6.59658 −0.295303 −0.147652 0.989039i \(-0.547171\pi\)
−0.147652 + 0.989039i \(0.547171\pi\)
\(500\) −12.1685 −0.544193
\(501\) 0 0
\(502\) −26.1129 −1.16548
\(503\) −27.8297 −1.24086 −0.620432 0.784260i \(-0.713043\pi\)
−0.620432 + 0.784260i \(0.713043\pi\)
\(504\) 0 0
\(505\) 10.2470 0.455985
\(506\) −40.6112 −1.80539
\(507\) 0 0
\(508\) −8.11960 −0.360249
\(509\) 4.13275 0.183181 0.0915905 0.995797i \(-0.470805\pi\)
0.0915905 + 0.995797i \(0.470805\pi\)
\(510\) 0 0
\(511\) −2.02715 −0.0896757
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −16.5918 −0.731833
\(515\) −12.1371 −0.534823
\(516\) 0 0
\(517\) −23.1293 −1.01723
\(518\) 18.3370 0.805683
\(519\) 0 0
\(520\) 0 0
\(521\) 11.7995 0.516947 0.258474 0.966018i \(-0.416780\pi\)
0.258474 + 0.966018i \(0.416780\pi\)
\(522\) 0 0
\(523\) 38.2887 1.67425 0.837124 0.547013i \(-0.184235\pi\)
0.837124 + 0.547013i \(0.184235\pi\)
\(524\) −12.6679 −0.553398
\(525\) 0 0
\(526\) −9.64742 −0.420647
\(527\) 18.7245 0.815654
\(528\) 0 0
\(529\) 22.0750 0.959783
\(530\) 5.02715 0.218365
\(531\) 0 0
\(532\) −21.7995 −0.945130
\(533\) 0 0
\(534\) 0 0
\(535\) −0.105604 −0.00456568
\(536\) 11.4819 0.495942
\(537\) 0 0
\(538\) −10.1981 −0.439670
\(539\) 99.9934 4.30702
\(540\) 0 0
\(541\) 17.4142 0.748694 0.374347 0.927289i \(-0.377867\pi\)
0.374347 + 0.927289i \(0.377867\pi\)
\(542\) −27.6799 −1.18896
\(543\) 0 0
\(544\) −4.89008 −0.209661
\(545\) −27.9758 −1.19835
\(546\) 0 0
\(547\) 16.9444 0.724489 0.362245 0.932083i \(-0.382010\pi\)
0.362245 + 0.932083i \(0.382010\pi\)
\(548\) −15.3599 −0.656142
\(549\) 0 0
\(550\) 10.6039 0.452151
\(551\) −15.9758 −0.680594
\(552\) 0 0
\(553\) −51.1890 −2.17678
\(554\) −6.32842 −0.268869
\(555\) 0 0
\(556\) −11.7995 −0.500412
\(557\) 11.9758 0.507432 0.253716 0.967279i \(-0.418347\pi\)
0.253716 + 0.967279i \(0.418347\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 8.74094 0.369372
\(561\) 0 0
\(562\) −9.26205 −0.390696
\(563\) 42.2911 1.78236 0.891179 0.453652i \(-0.149879\pi\)
0.891179 + 0.453652i \(0.149879\pi\)
\(564\) 0 0
\(565\) 3.52542 0.148315
\(566\) −0.561663 −0.0236085
\(567\) 0 0
\(568\) 13.5254 0.567514
\(569\) 8.26934 0.346669 0.173334 0.984863i \(-0.444546\pi\)
0.173334 + 0.984863i \(0.444546\pi\)
\(570\) 0 0
\(571\) −16.8552 −0.705367 −0.352683 0.935743i \(-0.614731\pi\)
−0.352683 + 0.935743i \(0.614731\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −27.6582 −1.15443
\(575\) −11.7694 −0.490818
\(576\) 0 0
\(577\) −37.9995 −1.58194 −0.790970 0.611854i \(-0.790424\pi\)
−0.790970 + 0.611854i \(0.790424\pi\)
\(578\) −6.91292 −0.287540
\(579\) 0 0
\(580\) 6.40581 0.265987
\(581\) 16.6058 0.688924
\(582\) 0 0
\(583\) −16.8756 −0.698916
\(584\) 0.417895 0.0172926
\(585\) 0 0
\(586\) −11.7506 −0.485414
\(587\) −31.4282 −1.29718 −0.648590 0.761138i \(-0.724641\pi\)
−0.648590 + 0.761138i \(0.724641\pi\)
\(588\) 0 0
\(589\) −17.2078 −0.709033
\(590\) 15.1564 0.623981
\(591\) 0 0
\(592\) −3.78017 −0.155364
\(593\) 41.8866 1.72008 0.860039 0.510229i \(-0.170439\pi\)
0.860039 + 0.510229i \(0.170439\pi\)
\(594\) 0 0
\(595\) 42.7439 1.75233
\(596\) 3.21313 0.131615
\(597\) 0 0
\(598\) 0 0
\(599\) −36.0194 −1.47171 −0.735856 0.677138i \(-0.763220\pi\)
−0.735856 + 0.677138i \(0.763220\pi\)
\(600\) 0 0
\(601\) 5.13946 0.209643 0.104821 0.994491i \(-0.466573\pi\)
0.104821 + 0.994491i \(0.466573\pi\)
\(602\) 18.3370 0.747362
\(603\) 0 0
\(604\) 9.15883 0.372668
\(605\) 46.1105 1.87466
\(606\) 0 0
\(607\) −17.6517 −0.716462 −0.358231 0.933633i \(-0.616620\pi\)
−0.358231 + 0.933633i \(0.616620\pi\)
\(608\) 4.49396 0.182254
\(609\) 0 0
\(610\) −0.396125 −0.0160386
\(611\) 0 0
\(612\) 0 0
\(613\) −45.8974 −1.85378 −0.926889 0.375336i \(-0.877527\pi\)
−0.926889 + 0.375336i \(0.877527\pi\)
\(614\) −1.09054 −0.0440106
\(615\) 0 0
\(616\) −29.3424 −1.18224
\(617\) 5.12929 0.206498 0.103249 0.994656i \(-0.467076\pi\)
0.103249 + 0.994656i \(0.467076\pi\)
\(618\) 0 0
\(619\) −43.5448 −1.75021 −0.875107 0.483930i \(-0.839209\pi\)
−0.875107 + 0.483930i \(0.839209\pi\)
\(620\) 6.89977 0.277102
\(621\) 0 0
\(622\) −8.09783 −0.324694
\(623\) −84.2103 −3.37381
\(624\) 0 0
\(625\) −13.1618 −0.526473
\(626\) −19.4252 −0.776387
\(627\) 0 0
\(628\) −17.9323 −0.715577
\(629\) −18.4853 −0.737059
\(630\) 0 0
\(631\) 30.4655 1.21281 0.606406 0.795155i \(-0.292611\pi\)
0.606406 + 0.795155i \(0.292611\pi\)
\(632\) 10.5526 0.419759
\(633\) 0 0
\(634\) 24.5719 0.975877
\(635\) −14.6310 −0.580614
\(636\) 0 0
\(637\) 0 0
\(638\) −21.5036 −0.851338
\(639\) 0 0
\(640\) −1.80194 −0.0712278
\(641\) −32.3370 −1.27724 −0.638618 0.769524i \(-0.720494\pi\)
−0.638618 + 0.769524i \(0.720494\pi\)
\(642\) 0 0
\(643\) 1.79092 0.0706270 0.0353135 0.999376i \(-0.488757\pi\)
0.0353135 + 0.999376i \(0.488757\pi\)
\(644\) 32.5676 1.28334
\(645\) 0 0
\(646\) 21.9758 0.864628
\(647\) 41.4685 1.63029 0.815147 0.579254i \(-0.196656\pi\)
0.815147 + 0.579254i \(0.196656\pi\)
\(648\) 0 0
\(649\) −50.8786 −1.99716
\(650\) 0 0
\(651\) 0 0
\(652\) −0.591794 −0.0231764
\(653\) −2.39181 −0.0935989 −0.0467994 0.998904i \(-0.514902\pi\)
−0.0467994 + 0.998904i \(0.514902\pi\)
\(654\) 0 0
\(655\) −22.8267 −0.891913
\(656\) 5.70171 0.222614
\(657\) 0 0
\(658\) 18.5483 0.723086
\(659\) 1.76032 0.0685722 0.0342861 0.999412i \(-0.489084\pi\)
0.0342861 + 0.999412i \(0.489084\pi\)
\(660\) 0 0
\(661\) −44.7138 −1.73916 −0.869582 0.493788i \(-0.835612\pi\)
−0.869582 + 0.493788i \(0.835612\pi\)
\(662\) −25.9758 −1.00958
\(663\) 0 0
\(664\) −3.42327 −0.132849
\(665\) −39.2814 −1.52327
\(666\) 0 0
\(667\) 23.8672 0.924144
\(668\) 14.0000 0.541676
\(669\) 0 0
\(670\) 20.6896 0.799310
\(671\) 1.32975 0.0513344
\(672\) 0 0
\(673\) −5.84356 −0.225253 −0.112626 0.993637i \(-0.535926\pi\)
−0.112626 + 0.993637i \(0.535926\pi\)
\(674\) −1.87263 −0.0721308
\(675\) 0 0
\(676\) 0 0
\(677\) 27.8883 1.07183 0.535917 0.844271i \(-0.319966\pi\)
0.535917 + 0.844271i \(0.319966\pi\)
\(678\) 0 0
\(679\) −4.89785 −0.187962
\(680\) −8.81163 −0.337910
\(681\) 0 0
\(682\) −23.1618 −0.886912
\(683\) 28.3803 1.08594 0.542971 0.839751i \(-0.317299\pi\)
0.542971 + 0.839751i \(0.317299\pi\)
\(684\) 0 0
\(685\) −27.6775 −1.05750
\(686\) −46.2325 −1.76517
\(687\) 0 0
\(688\) −3.78017 −0.144118
\(689\) 0 0
\(690\) 0 0
\(691\) 31.3142 1.19125 0.595624 0.803263i \(-0.296905\pi\)
0.595624 + 0.803263i \(0.296905\pi\)
\(692\) −0.982542 −0.0373506
\(693\) 0 0
\(694\) 16.6853 0.633366
\(695\) −21.2620 −0.806515
\(696\) 0 0
\(697\) 27.8818 1.05610
\(698\) −4.01938 −0.152136
\(699\) 0 0
\(700\) −8.50365 −0.321408
\(701\) −22.6568 −0.855737 −0.427869 0.903841i \(-0.640735\pi\)
−0.427869 + 0.903841i \(0.640735\pi\)
\(702\) 0 0
\(703\) 16.9879 0.640711
\(704\) 6.04892 0.227977
\(705\) 0 0
\(706\) −21.6039 −0.813073
\(707\) 27.5851 1.03744
\(708\) 0 0
\(709\) −24.4155 −0.916943 −0.458472 0.888709i \(-0.651603\pi\)
−0.458472 + 0.888709i \(0.651603\pi\)
\(710\) 24.3720 0.914663
\(711\) 0 0
\(712\) 17.3599 0.650589
\(713\) 25.7077 0.962760
\(714\) 0 0
\(715\) 0 0
\(716\) 9.94331 0.371599
\(717\) 0 0
\(718\) −0.835790 −0.0311914
\(719\) 13.2707 0.494912 0.247456 0.968899i \(-0.420405\pi\)
0.247456 + 0.968899i \(0.420405\pi\)
\(720\) 0 0
\(721\) −32.6732 −1.21681
\(722\) −1.19567 −0.0444982
\(723\) 0 0
\(724\) −5.87800 −0.218454
\(725\) −6.23191 −0.231447
\(726\) 0 0
\(727\) 25.7904 0.956515 0.478257 0.878220i \(-0.341269\pi\)
0.478257 + 0.878220i \(0.341269\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0.753020 0.0278705
\(731\) −18.4853 −0.683705
\(732\) 0 0
\(733\) 13.1400 0.485339 0.242669 0.970109i \(-0.421977\pi\)
0.242669 + 0.970109i \(0.421977\pi\)
\(734\) 21.1250 0.779737
\(735\) 0 0
\(736\) −6.71379 −0.247474
\(737\) −69.4529 −2.55833
\(738\) 0 0
\(739\) 11.8130 0.434547 0.217273 0.976111i \(-0.430284\pi\)
0.217273 + 0.976111i \(0.430284\pi\)
\(740\) −6.81163 −0.250400
\(741\) 0 0
\(742\) 13.5332 0.496819
\(743\) −3.50125 −0.128449 −0.0642243 0.997935i \(-0.520457\pi\)
−0.0642243 + 0.997935i \(0.520457\pi\)
\(744\) 0 0
\(745\) 5.78986 0.212124
\(746\) −21.3840 −0.782925
\(747\) 0 0
\(748\) 29.5797 1.08154
\(749\) −0.284289 −0.0103877
\(750\) 0 0
\(751\) −11.6722 −0.425924 −0.212962 0.977061i \(-0.568311\pi\)
−0.212962 + 0.977061i \(0.568311\pi\)
\(752\) −3.82371 −0.139436
\(753\) 0 0
\(754\) 0 0
\(755\) 16.5036 0.600629
\(756\) 0 0
\(757\) 0.444451 0.0161538 0.00807692 0.999967i \(-0.497429\pi\)
0.00807692 + 0.999967i \(0.497429\pi\)
\(758\) −13.5496 −0.492143
\(759\) 0 0
\(760\) 8.09783 0.293739
\(761\) −29.4905 −1.06903 −0.534515 0.845159i \(-0.679506\pi\)
−0.534515 + 0.845159i \(0.679506\pi\)
\(762\) 0 0
\(763\) −75.3116 −2.72646
\(764\) 11.0422 0.399493
\(765\) 0 0
\(766\) −9.10992 −0.329155
\(767\) 0 0
\(768\) 0 0
\(769\) −13.4517 −0.485082 −0.242541 0.970141i \(-0.577981\pi\)
−0.242541 + 0.970141i \(0.577981\pi\)
\(770\) −52.8732 −1.90542
\(771\) 0 0
\(772\) 20.9638 0.754502
\(773\) 24.1021 0.866894 0.433447 0.901179i \(-0.357297\pi\)
0.433447 + 0.901179i \(0.357297\pi\)
\(774\) 0 0
\(775\) −6.71246 −0.241119
\(776\) 1.00969 0.0362457
\(777\) 0 0
\(778\) 14.8498 0.532391
\(779\) −25.6233 −0.918048
\(780\) 0 0
\(781\) −81.8141 −2.92754
\(782\) −32.8310 −1.17403
\(783\) 0 0
\(784\) 16.5308 0.590386
\(785\) −32.3129 −1.15330
\(786\) 0 0
\(787\) 16.2258 0.578387 0.289194 0.957271i \(-0.406613\pi\)
0.289194 + 0.957271i \(0.406613\pi\)
\(788\) −15.7409 −0.560748
\(789\) 0 0
\(790\) 19.0151 0.676526
\(791\) 9.49050 0.337443
\(792\) 0 0
\(793\) 0 0
\(794\) −33.7453 −1.19757
\(795\) 0 0
\(796\) −1.51142 −0.0535708
\(797\) 37.2760 1.32039 0.660193 0.751096i \(-0.270475\pi\)
0.660193 + 0.751096i \(0.270475\pi\)
\(798\) 0 0
\(799\) −18.6983 −0.661497
\(800\) 1.75302 0.0619786
\(801\) 0 0
\(802\) 19.7017 0.695692
\(803\) −2.52781 −0.0892045
\(804\) 0 0
\(805\) 58.6848 2.06837
\(806\) 0 0
\(807\) 0 0
\(808\) −5.68664 −0.200055
\(809\) 24.0844 0.846763 0.423382 0.905951i \(-0.360843\pi\)
0.423382 + 0.905951i \(0.360843\pi\)
\(810\) 0 0
\(811\) 9.87800 0.346864 0.173432 0.984846i \(-0.444514\pi\)
0.173432 + 0.984846i \(0.444514\pi\)
\(812\) 17.2446 0.605166
\(813\) 0 0
\(814\) 22.8659 0.801450
\(815\) −1.06638 −0.0373535
\(816\) 0 0
\(817\) 16.9879 0.594332
\(818\) 35.9366 1.25649
\(819\) 0 0
\(820\) 10.2741 0.358788
\(821\) 31.2731 1.09144 0.545719 0.837968i \(-0.316257\pi\)
0.545719 + 0.837968i \(0.316257\pi\)
\(822\) 0 0
\(823\) 33.8388 1.17955 0.589773 0.807569i \(-0.299217\pi\)
0.589773 + 0.807569i \(0.299217\pi\)
\(824\) 6.73556 0.234644
\(825\) 0 0
\(826\) 40.8015 1.41966
\(827\) 17.4028 0.605156 0.302578 0.953125i \(-0.402153\pi\)
0.302578 + 0.953125i \(0.402153\pi\)
\(828\) 0 0
\(829\) −50.9724 −1.77034 −0.885172 0.465264i \(-0.845959\pi\)
−0.885172 + 0.465264i \(0.845959\pi\)
\(830\) −6.16852 −0.214113
\(831\) 0 0
\(832\) 0 0
\(833\) 80.8370 2.80084
\(834\) 0 0
\(835\) 25.2271 0.873021
\(836\) −27.1836 −0.940164
\(837\) 0 0
\(838\) −18.7928 −0.649188
\(839\) 34.6983 1.19792 0.598958 0.800780i \(-0.295581\pi\)
0.598958 + 0.800780i \(0.295581\pi\)
\(840\) 0 0
\(841\) −16.3623 −0.564216
\(842\) −3.90217 −0.134477
\(843\) 0 0
\(844\) 5.65817 0.194762
\(845\) 0 0
\(846\) 0 0
\(847\) 124.130 4.26517
\(848\) −2.78986 −0.0958041
\(849\) 0 0
\(850\) 8.57242 0.294031
\(851\) −25.3793 −0.869990
\(852\) 0 0
\(853\) −8.37675 −0.286814 −0.143407 0.989664i \(-0.545806\pi\)
−0.143407 + 0.989664i \(0.545806\pi\)
\(854\) −1.06638 −0.0364906
\(855\) 0 0
\(856\) 0.0586060 0.00200311
\(857\) −17.7888 −0.607654 −0.303827 0.952727i \(-0.598264\pi\)
−0.303827 + 0.952727i \(0.598264\pi\)
\(858\) 0 0
\(859\) 50.1473 1.71101 0.855503 0.517798i \(-0.173248\pi\)
0.855503 + 0.517798i \(0.173248\pi\)
\(860\) −6.81163 −0.232275
\(861\) 0 0
\(862\) 18.8310 0.641387
\(863\) −50.1172 −1.70601 −0.853005 0.521903i \(-0.825222\pi\)
−0.853005 + 0.521903i \(0.825222\pi\)
\(864\) 0 0
\(865\) −1.77048 −0.0601981
\(866\) −24.8364 −0.843975
\(867\) 0 0
\(868\) 18.5743 0.630454
\(869\) −63.8316 −2.16534
\(870\) 0 0
\(871\) 0 0
\(872\) 15.5254 0.525757
\(873\) 0 0
\(874\) 30.1715 1.02057
\(875\) −59.0277 −1.99550
\(876\) 0 0
\(877\) −38.3827 −1.29609 −0.648046 0.761601i \(-0.724414\pi\)
−0.648046 + 0.761601i \(0.724414\pi\)
\(878\) −22.2784 −0.751861
\(879\) 0 0
\(880\) 10.8998 0.367431
\(881\) −31.8383 −1.07266 −0.536330 0.844009i \(-0.680190\pi\)
−0.536330 + 0.844009i \(0.680190\pi\)
\(882\) 0 0
\(883\) 4.74871 0.159807 0.0799034 0.996803i \(-0.474539\pi\)
0.0799034 + 0.996803i \(0.474539\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −26.6359 −0.894851
\(887\) −22.9288 −0.769875 −0.384938 0.922943i \(-0.625777\pi\)
−0.384938 + 0.922943i \(0.625777\pi\)
\(888\) 0 0
\(889\) −39.3870 −1.32100
\(890\) 31.2814 1.04856
\(891\) 0 0
\(892\) −1.97584 −0.0661559
\(893\) 17.1836 0.575027
\(894\) 0 0
\(895\) 17.9172 0.598907
\(896\) −4.85086 −0.162056
\(897\) 0 0
\(898\) −21.8538 −0.729272
\(899\) 13.6122 0.453993
\(900\) 0 0
\(901\) −13.6426 −0.454502
\(902\) −34.4892 −1.14836
\(903\) 0 0
\(904\) −1.95646 −0.0650709
\(905\) −10.5918 −0.352083
\(906\) 0 0
\(907\) 43.0267 1.42868 0.714339 0.699800i \(-0.246728\pi\)
0.714339 + 0.699800i \(0.246728\pi\)
\(908\) −25.0640 −0.831777
\(909\) 0 0
\(910\) 0 0
\(911\) −6.65087 −0.220353 −0.110177 0.993912i \(-0.535142\pi\)
−0.110177 + 0.993912i \(0.535142\pi\)
\(912\) 0 0
\(913\) 20.7071 0.685305
\(914\) 20.7278 0.685614
\(915\) 0 0
\(916\) −24.5133 −0.809943
\(917\) −61.4499 −2.02926
\(918\) 0 0
\(919\) −9.11231 −0.300587 −0.150294 0.988641i \(-0.548022\pi\)
−0.150294 + 0.988641i \(0.548022\pi\)
\(920\) −12.0978 −0.398854
\(921\) 0 0
\(922\) 10.7832 0.355124
\(923\) 0 0
\(924\) 0 0
\(925\) 6.62671 0.217885
\(926\) 23.1594 0.761066
\(927\) 0 0
\(928\) −3.55496 −0.116697
\(929\) −11.8672 −0.389352 −0.194676 0.980868i \(-0.562366\pi\)
−0.194676 + 0.980868i \(0.562366\pi\)
\(930\) 0 0
\(931\) −74.2887 −2.43471
\(932\) −8.37196 −0.274233
\(933\) 0 0
\(934\) −13.3515 −0.436875
\(935\) 53.3008 1.74312
\(936\) 0 0
\(937\) 19.1153 0.624469 0.312235 0.950005i \(-0.398922\pi\)
0.312235 + 0.950005i \(0.398922\pi\)
\(938\) 55.6969 1.81857
\(939\) 0 0
\(940\) −6.89008 −0.224730
\(941\) 0.445042 0.0145080 0.00725398 0.999974i \(-0.497691\pi\)
0.00725398 + 0.999974i \(0.497691\pi\)
\(942\) 0 0
\(943\) 38.2801 1.24657
\(944\) −8.41119 −0.273761
\(945\) 0 0
\(946\) 22.8659 0.743435
\(947\) −8.99894 −0.292426 −0.146213 0.989253i \(-0.546709\pi\)
−0.146213 + 0.989253i \(0.546709\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −7.87800 −0.255596
\(951\) 0 0
\(952\) −23.7211 −0.768805
\(953\) 37.2573 1.20688 0.603441 0.797408i \(-0.293796\pi\)
0.603441 + 0.797408i \(0.293796\pi\)
\(954\) 0 0
\(955\) 19.8974 0.643864
\(956\) 14.0194 0.453419
\(957\) 0 0
\(958\) 4.38537 0.141685
\(959\) −74.5086 −2.40601
\(960\) 0 0
\(961\) −16.3381 −0.527036
\(962\) 0 0
\(963\) 0 0
\(964\) −21.1183 −0.680174
\(965\) 37.7754 1.21603
\(966\) 0 0
\(967\) 37.2567 1.19809 0.599047 0.800714i \(-0.295546\pi\)
0.599047 + 0.800714i \(0.295546\pi\)
\(968\) −25.5894 −0.822474
\(969\) 0 0
\(970\) 1.81940 0.0584173
\(971\) −54.0393 −1.73421 −0.867103 0.498130i \(-0.834020\pi\)
−0.867103 + 0.498130i \(0.834020\pi\)
\(972\) 0 0
\(973\) −57.2379 −1.83496
\(974\) −7.33214 −0.234937
\(975\) 0 0
\(976\) 0.219833 0.00703667
\(977\) −11.4470 −0.366221 −0.183110 0.983092i \(-0.558617\pi\)
−0.183110 + 0.983092i \(0.558617\pi\)
\(978\) 0 0
\(979\) −105.008 −3.35609
\(980\) 29.7875 0.951526
\(981\) 0 0
\(982\) 16.8062 0.536309
\(983\) −0.111244 −0.00354814 −0.00177407 0.999998i \(-0.500565\pi\)
−0.00177407 + 0.999998i \(0.500565\pi\)
\(984\) 0 0
\(985\) −28.3642 −0.903758
\(986\) −17.3840 −0.553621
\(987\) 0 0
\(988\) 0 0
\(989\) −25.3793 −0.807013
\(990\) 0 0
\(991\) 11.3709 0.361208 0.180604 0.983556i \(-0.442195\pi\)
0.180604 + 0.983556i \(0.442195\pi\)
\(992\) −3.82908 −0.121574
\(993\) 0 0
\(994\) 65.6098 2.08102
\(995\) −2.72348 −0.0863401
\(996\) 0 0
\(997\) 6.45042 0.204287 0.102143 0.994770i \(-0.467430\pi\)
0.102143 + 0.994770i \(0.467430\pi\)
\(998\) 6.59658 0.208811
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.a.bc.1.3 yes 3
3.2 odd 2 3042.2.a.bg.1.1 yes 3
13.5 odd 4 3042.2.b.p.1351.4 6
13.8 odd 4 3042.2.b.p.1351.3 6
13.12 even 2 3042.2.a.bf.1.1 yes 3
39.5 even 4 3042.2.b.q.1351.3 6
39.8 even 4 3042.2.b.q.1351.4 6
39.38 odd 2 3042.2.a.bb.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3042.2.a.bb.1.3 3 39.38 odd 2
3042.2.a.bc.1.3 yes 3 1.1 even 1 trivial
3042.2.a.bf.1.1 yes 3 13.12 even 2
3042.2.a.bg.1.1 yes 3 3.2 odd 2
3042.2.b.p.1351.3 6 13.8 odd 4
3042.2.b.p.1351.4 6 13.5 odd 4
3042.2.b.q.1351.3 6 39.5 even 4
3042.2.b.q.1351.4 6 39.8 even 4