Properties

Label 306.4.b.a
Level $306$
Weight $4$
Character orbit 306.b
Analytic conductor $18.055$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [306,4,Mod(271,306)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(306, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("306.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 306.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.0545844618\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + \beta q^{5} + 3 \beta q^{7} - 8 q^{8} - 2 \beta q^{10} - 20 \beta q^{11} - 22 q^{13} - 6 \beta q^{14} + 16 q^{16} + (17 \beta + 51) q^{17} - 28 q^{19} + 4 \beta q^{20} + 40 \beta q^{22} + \cdots - 542 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 16 q^{8} - 44 q^{13} + 32 q^{16} + 102 q^{17} - 56 q^{19} + 234 q^{25} + 88 q^{26} - 64 q^{32} - 204 q^{34} - 48 q^{35} + 112 q^{38} - 296 q^{43} + 1200 q^{47} + 542 q^{49} - 468 q^{50}+ \cdots - 1084 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/306\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
1.41421i
1.41421i
−2.00000 0 4.00000 2.82843i 0 8.48528i −8.00000 0 5.65685i
271.2 −2.00000 0 4.00000 2.82843i 0 8.48528i −8.00000 0 5.65685i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 306.4.b.a 2
3.b odd 2 1 34.4.b.b 2
12.b even 2 1 272.4.b.a 2
15.d odd 2 1 850.4.b.a 2
15.e even 4 2 850.4.d.c 4
17.b even 2 1 inner 306.4.b.a 2
51.c odd 2 1 34.4.b.b 2
51.f odd 4 2 578.4.a.f 2
204.h even 2 1 272.4.b.a 2
255.h odd 2 1 850.4.b.a 2
255.o even 4 2 850.4.d.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
34.4.b.b 2 3.b odd 2 1
34.4.b.b 2 51.c odd 2 1
272.4.b.a 2 12.b even 2 1
272.4.b.a 2 204.h even 2 1
306.4.b.a 2 1.a even 1 1 trivial
306.4.b.a 2 17.b even 2 1 inner
578.4.a.f 2 51.f odd 4 2
850.4.b.a 2 15.d odd 2 1
850.4.b.a 2 255.h odd 2 1
850.4.d.c 4 15.e even 4 2
850.4.d.c 4 255.o even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(306, [\chi])\):

\( T_{5}^{2} + 8 \) Copy content Toggle raw display
\( T_{47} - 600 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 8 \) Copy content Toggle raw display
$7$ \( T^{2} + 72 \) Copy content Toggle raw display
$11$ \( T^{2} + 3200 \) Copy content Toggle raw display
$13$ \( (T + 22)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 102T + 4913 \) Copy content Toggle raw display
$19$ \( (T + 28)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 13448 \) Copy content Toggle raw display
$29$ \( T^{2} + 29768 \) Copy content Toggle raw display
$31$ \( T^{2} + 3528 \) Copy content Toggle raw display
$37$ \( T^{2} + 60552 \) Copy content Toggle raw display
$41$ \( T^{2} + 119072 \) Copy content Toggle raw display
$43$ \( (T + 148)^{2} \) Copy content Toggle raw display
$47$ \( (T - 600)^{2} \) Copy content Toggle raw display
$53$ \( (T - 402)^{2} \) Copy content Toggle raw display
$59$ \( (T - 132)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 52488 \) Copy content Toggle raw display
$67$ \( (T - 884)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 1210568 \) Copy content Toggle raw display
$73$ \( T^{2} + 839808 \) Copy content Toggle raw display
$79$ \( T^{2} + 78408 \) Copy content Toggle raw display
$83$ \( (T + 852)^{2} \) Copy content Toggle raw display
$89$ \( (T + 462)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 871200 \) Copy content Toggle raw display
show more
show less