Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [306,4,Mod(55,306)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(306, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("306.55");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 306.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
55.1 |
|
− | 2.00000i | 0 | −4.00000 | −13.7126 | + | 13.7126i | 0 | −6.84354 | − | 6.84354i | 8.00000i | 0 | 27.4252 | + | 27.4252i | |||||||||||||||||||||||||||||||||||
55.2 | − | 2.00000i | 0 | −4.00000 | −0.580334 | + | 0.580334i | 0 | 13.3735 | + | 13.3735i | 8.00000i | 0 | 1.16067 | + | 1.16067i | ||||||||||||||||||||||||||||||||||||
55.3 | − | 2.00000i | 0 | −4.00000 | −0.376810 | + | 0.376810i | 0 | −15.9157 | − | 15.9157i | 8.00000i | 0 | 0.753619 | + | 0.753619i | ||||||||||||||||||||||||||||||||||||
55.4 | − | 2.00000i | 0 | −4.00000 | 6.66975 | − | 6.66975i | 0 | 5.38568 | + | 5.38568i | 8.00000i | 0 | −13.3395 | − | 13.3395i | ||||||||||||||||||||||||||||||||||||
217.1 | 2.00000i | 0 | −4.00000 | −13.7126 | − | 13.7126i | 0 | −6.84354 | + | 6.84354i | − | 8.00000i | 0 | 27.4252 | − | 27.4252i | ||||||||||||||||||||||||||||||||||||
217.2 | 2.00000i | 0 | −4.00000 | −0.580334 | − | 0.580334i | 0 | 13.3735 | − | 13.3735i | − | 8.00000i | 0 | 1.16067 | − | 1.16067i | ||||||||||||||||||||||||||||||||||||
217.3 | 2.00000i | 0 | −4.00000 | −0.376810 | − | 0.376810i | 0 | −15.9157 | + | 15.9157i | − | 8.00000i | 0 | 0.753619 | − | 0.753619i | ||||||||||||||||||||||||||||||||||||
217.4 | 2.00000i | 0 | −4.00000 | 6.66975 | + | 6.66975i | 0 | 5.38568 | − | 5.38568i | − | 8.00000i | 0 | −13.3395 | + | 13.3395i | ||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.c | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 306.4.g.e | ✓ | 8 |
3.b | odd | 2 | 1 | 306.4.g.f | yes | 8 | |
17.c | even | 4 | 1 | inner | 306.4.g.e | ✓ | 8 |
51.f | odd | 4 | 1 | 306.4.g.f | yes | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
306.4.g.e | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
306.4.g.e | ✓ | 8 | 17.c | even | 4 | 1 | inner |
306.4.g.f | yes | 8 | 3.b | odd | 2 | 1 | |
306.4.g.f | yes | 8 | 51.f | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .