Properties

Label 306.4.g.e
Level $306$
Weight $4$
Character orbit 306.g
Analytic conductor $18.055$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [306,4,Mod(55,306)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(306, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("306.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 306.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.0545844618\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} - 114x^{5} + 3058x^{4} - 12578x^{3} + 25538x^{2} + 8814x + 1521 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta_{2} q^{2} - 4 q^{4} + (\beta_{5} + 2 \beta_{2} - 2) q^{5} + (\beta_{7} + \beta_{6} + \beta_{3} + \cdots + \beta_1) q^{7} + 8 \beta_{2} q^{8} + ( - 2 \beta_{7} + 4 \beta_{2} + 4) q^{10} + (2 \beta_{7} + \beta_{6} - \beta_{3} + \cdots - 1) q^{11}+ \cdots + ( - 4 \beta_{7} - 20 \beta_{6} + \cdots - 194) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{4} - 16 q^{5} - 8 q^{7} + 32 q^{10} - 8 q^{11} - 28 q^{13} - 16 q^{14} + 128 q^{16} + 28 q^{17} + 64 q^{20} - 16 q^{22} - 12 q^{23} + 32 q^{28} - 72 q^{29} + 204 q^{31} - 48 q^{34} + 512 q^{35}+ \cdots - 1424 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2x^{7} + 2x^{6} - 114x^{5} + 3058x^{4} - 12578x^{3} + 25538x^{2} + 8814x + 1521 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 4685 \nu^{7} + 2245 \nu^{6} - 134895 \nu^{5} - 1704897 \nu^{4} + 6165305 \nu^{3} + \cdots - 728296605 ) / 171478116 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 573587 \nu^{7} - 1343851 \nu^{6} + 1157275 \nu^{5} - 65778099 \nu^{4} + 1776591443 \nu^{3} + \cdots + 2542582029 ) / 2972287344 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 3574617 \nu^{7} + 9311953 \nu^{6} - 3031185 \nu^{5} + 414187389 \nu^{4} - 11322797793 \nu^{3} + \cdots - 16174502019 ) / 4458431016 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 13031969 \nu^{7} - 29500033 \nu^{6} + 59401281 \nu^{5} - 1434249369 \nu^{4} + 40305176801 \nu^{3} + \cdots - 9776855673 ) / 8916862032 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 719387 \nu^{7} - 1691371 \nu^{6} + 2114511 \nu^{5} - 82844019 \nu^{4} + 2228522843 \nu^{3} + \cdots - 538852275 ) / 342956232 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 10503593 \nu^{7} - 16644633 \nu^{6} + 21282045 \nu^{5} - 1217713977 \nu^{4} + \cdots + 79022574423 ) / 4458431016 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 850429 \nu^{7} + 1686369 \nu^{6} - 1693353 \nu^{5} + 96528105 \nu^{4} - 2595266053 \nu^{3} + \cdots - 7447081239 ) / 342956232 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} + \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -7\beta_{7} - 3\beta_{6} + 7\beta_{5} - 3\beta_{4} - 2\beta_{3} - 115\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 65\beta_{7} + 41\beta_{6} - 53\beta_{3} + 122\beta_{2} - 53\beta _1 + 163 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -110\beta_{7} - 60\beta_{6} - 110\beta_{5} + 60\beta_{4} + 60\beta_{2} + 2\beta _1 - 1475 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 4303\beta_{5} - 2455\beta_{4} + 2695\beta_{3} - 16601\beta_{2} - 2695\beta _1 + 16601 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 27409\beta_{7} + 15501\beta_{6} - 27409\beta_{5} + 15501\beta_{4} - 7114\beta_{3} + 313933\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -283055\beta_{7} - 159119\beta_{6} + 142643\beta_{3} - 1101446\beta_{2} + 142643\beta _1 - 1260565 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/306\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(-\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
−0.159969 + 0.159969i
4.33285 4.33285i
2.48586 2.48586i
−5.65874 + 5.65874i
−0.159969 0.159969i
4.33285 + 4.33285i
2.48586 + 2.48586i
−5.65874 5.65874i
2.00000i 0 −4.00000 −13.7126 + 13.7126i 0 −6.84354 6.84354i 8.00000i 0 27.4252 + 27.4252i
55.2 2.00000i 0 −4.00000 −0.580334 + 0.580334i 0 13.3735 + 13.3735i 8.00000i 0 1.16067 + 1.16067i
55.3 2.00000i 0 −4.00000 −0.376810 + 0.376810i 0 −15.9157 15.9157i 8.00000i 0 0.753619 + 0.753619i
55.4 2.00000i 0 −4.00000 6.66975 6.66975i 0 5.38568 + 5.38568i 8.00000i 0 −13.3395 13.3395i
217.1 2.00000i 0 −4.00000 −13.7126 13.7126i 0 −6.84354 + 6.84354i 8.00000i 0 27.4252 27.4252i
217.2 2.00000i 0 −4.00000 −0.580334 0.580334i 0 13.3735 13.3735i 8.00000i 0 1.16067 1.16067i
217.3 2.00000i 0 −4.00000 −0.376810 0.376810i 0 −15.9157 + 15.9157i 8.00000i 0 0.753619 0.753619i
217.4 2.00000i 0 −4.00000 6.66975 + 6.66975i 0 5.38568 5.38568i 8.00000i 0 −13.3395 + 13.3395i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 55.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 306.4.g.e 8
3.b odd 2 1 306.4.g.f yes 8
17.c even 4 1 inner 306.4.g.e 8
51.f odd 4 1 306.4.g.f yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
306.4.g.e 8 1.a even 1 1 trivial
306.4.g.e 8 17.c even 4 1 inner
306.4.g.f yes 8 3.b odd 2 1
306.4.g.f yes 8 51.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} + 16T_{5}^{7} + 128T_{5}^{6} - 2360T_{5}^{5} + 28721T_{5}^{4} + 59416T_{5}^{3} + 59168T_{5}^{2} + 27520T_{5} + 6400 \) acting on \(S_{4}^{\mathrm{new}}(306, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 16 T^{7} + \cdots + 6400 \) Copy content Toggle raw display
$7$ \( T^{8} + 8 T^{7} + \cdots + 984704400 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 33694273600 \) Copy content Toggle raw display
$13$ \( (T^{4} + 14 T^{3} + \cdots + 162420)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 582622237229761 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 704371600000000 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 548769824100 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 43\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 82\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( (T^{4} + 628 T^{3} + \cdots + 388464032)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 31\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 47\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( (T^{4} + 84 T^{3} + \cdots + 8186232960)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{4} + 888 T^{3} + \cdots + 154468827360)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
show more
show less