Properties

Label 306.4.g.e
Level 306306
Weight 44
Character orbit 306.g
Analytic conductor 18.05518.055
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [306,4,Mod(55,306)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(306, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("306.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 306=23217 306 = 2 \cdot 3^{2} \cdot 17
Weight: k k == 4 4
Character orbit: [χ][\chi] == 306.g (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 18.054584461818.0545844618
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x7+2x6114x5+3058x412578x3+25538x2+8814x+1521 x^{8} - 2x^{7} + 2x^{6} - 114x^{5} + 3058x^{4} - 12578x^{3} + 25538x^{2} + 8814x + 1521 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 25 2^{5}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2β2q24q4+(β5+2β22)q5+(β7+β6+β3++β1)q7+8β2q8+(2β7+4β2+4)q10+(2β7+β6β3+1)q11++(4β720β6+194)q98+O(q100) q - 2 \beta_{2} q^{2} - 4 q^{4} + (\beta_{5} + 2 \beta_{2} - 2) q^{5} + (\beta_{7} + \beta_{6} + \beta_{3} + \cdots + \beta_1) q^{7} + 8 \beta_{2} q^{8} + ( - 2 \beta_{7} + 4 \beta_{2} + 4) q^{10} + (2 \beta_{7} + \beta_{6} - \beta_{3} + \cdots - 1) q^{11}+ \cdots + ( - 4 \beta_{7} - 20 \beta_{6} + \cdots - 194) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q32q416q58q7+32q108q1128q1316q14+128q16+28q17+64q2016q2212q23+32q2872q29+204q3148q34+512q35+1424q98+O(q100) 8 q - 32 q^{4} - 16 q^{5} - 8 q^{7} + 32 q^{10} - 8 q^{11} - 28 q^{13} - 16 q^{14} + 128 q^{16} + 28 q^{17} + 64 q^{20} - 16 q^{22} - 12 q^{23} + 32 q^{28} - 72 q^{29} + 204 q^{31} - 48 q^{34} + 512 q^{35}+ \cdots - 1424 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x7+2x6114x5+3058x412578x3+25538x2+8814x+1521 x^{8} - 2x^{7} + 2x^{6} - 114x^{5} + 3058x^{4} - 12578x^{3} + 25538x^{2} + 8814x + 1521 : Copy content Toggle raw display

β1\beta_{1}== (4685ν7+2245ν6134895ν51704897ν4+6165305ν3+728296605)/171478116 ( 4685 \nu^{7} + 2245 \nu^{6} - 134895 \nu^{5} - 1704897 \nu^{4} + 6165305 \nu^{3} + \cdots - 728296605 ) / 171478116 Copy content Toggle raw display
β2\beta_{2}== (573587ν71343851ν6+1157275ν565778099ν4+1776591443ν3++2542582029)/2972287344 ( 573587 \nu^{7} - 1343851 \nu^{6} + 1157275 \nu^{5} - 65778099 \nu^{4} + 1776591443 \nu^{3} + \cdots + 2542582029 ) / 2972287344 Copy content Toggle raw display
β3\beta_{3}== (3574617ν7+9311953ν63031185ν5+414187389ν411322797793ν3+16174502019)/4458431016 ( - 3574617 \nu^{7} + 9311953 \nu^{6} - 3031185 \nu^{5} + 414187389 \nu^{4} - 11322797793 \nu^{3} + \cdots - 16174502019 ) / 4458431016 Copy content Toggle raw display
β4\beta_{4}== (13031969ν729500033ν6+59401281ν51434249369ν4+40305176801ν3+9776855673)/8916862032 ( 13031969 \nu^{7} - 29500033 \nu^{6} + 59401281 \nu^{5} - 1434249369 \nu^{4} + 40305176801 \nu^{3} + \cdots - 9776855673 ) / 8916862032 Copy content Toggle raw display
β5\beta_{5}== (719387ν71691371ν6+2114511ν582844019ν4+2228522843ν3+538852275)/342956232 ( 719387 \nu^{7} - 1691371 \nu^{6} + 2114511 \nu^{5} - 82844019 \nu^{4} + 2228522843 \nu^{3} + \cdots - 538852275 ) / 342956232 Copy content Toggle raw display
β6\beta_{6}== (10503593ν716644633ν6+21282045ν51217713977ν4++79022574423)/4458431016 ( 10503593 \nu^{7} - 16644633 \nu^{6} + 21282045 \nu^{5} - 1217713977 \nu^{4} + \cdots + 79022574423 ) / 4458431016 Copy content Toggle raw display
β7\beta_{7}== (850429ν7+1686369ν61693353ν5+96528105ν42595266053ν3+7447081239)/342956232 ( - 850429 \nu^{7} + 1686369 \nu^{6} - 1693353 \nu^{5} + 96528105 \nu^{4} - 2595266053 \nu^{3} + \cdots - 7447081239 ) / 342956232 Copy content Toggle raw display
ν\nu== (β5+β4β3β2+β1+1)/4 ( -\beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} + \beta _1 + 1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (7β73β6+7β53β42β3115β2)/4 ( -7\beta_{7} - 3\beta_{6} + 7\beta_{5} - 3\beta_{4} - 2\beta_{3} - 115\beta_{2} ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (65β7+41β653β3+122β253β1+163)/4 ( 65\beta_{7} + 41\beta_{6} - 53\beta_{3} + 122\beta_{2} - 53\beta _1 + 163 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== 110β760β6110β5+60β4+60β2+2β11475 -110\beta_{7} - 60\beta_{6} - 110\beta_{5} + 60\beta_{4} + 60\beta_{2} + 2\beta _1 - 1475 Copy content Toggle raw display
ν5\nu^{5}== (4303β52455β4+2695β316601β22695β1+16601)/4 ( 4303\beta_{5} - 2455\beta_{4} + 2695\beta_{3} - 16601\beta_{2} - 2695\beta _1 + 16601 ) / 4 Copy content Toggle raw display
ν6\nu^{6}== (27409β7+15501β627409β5+15501β47114β3+313933β2)/4 ( 27409\beta_{7} + 15501\beta_{6} - 27409\beta_{5} + 15501\beta_{4} - 7114\beta_{3} + 313933\beta_{2} ) / 4 Copy content Toggle raw display
ν7\nu^{7}== (283055β7159119β6+142643β31101446β2+142643β11260565)/4 ( -283055\beta_{7} - 159119\beta_{6} + 142643\beta_{3} - 1101446\beta_{2} + 142643\beta _1 - 1260565 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/306Z)×\left(\mathbb{Z}/306\mathbb{Z}\right)^\times.

nn 3737 137137
χ(n)\chi(n) β2-\beta_{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
55.1
−0.159969 + 0.159969i
4.33285 4.33285i
2.48586 2.48586i
−5.65874 + 5.65874i
−0.159969 0.159969i
4.33285 + 4.33285i
2.48586 + 2.48586i
−5.65874 5.65874i
2.00000i 0 −4.00000 −13.7126 + 13.7126i 0 −6.84354 6.84354i 8.00000i 0 27.4252 + 27.4252i
55.2 2.00000i 0 −4.00000 −0.580334 + 0.580334i 0 13.3735 + 13.3735i 8.00000i 0 1.16067 + 1.16067i
55.3 2.00000i 0 −4.00000 −0.376810 + 0.376810i 0 −15.9157 15.9157i 8.00000i 0 0.753619 + 0.753619i
55.4 2.00000i 0 −4.00000 6.66975 6.66975i 0 5.38568 + 5.38568i 8.00000i 0 −13.3395 13.3395i
217.1 2.00000i 0 −4.00000 −13.7126 13.7126i 0 −6.84354 + 6.84354i 8.00000i 0 27.4252 27.4252i
217.2 2.00000i 0 −4.00000 −0.580334 0.580334i 0 13.3735 13.3735i 8.00000i 0 1.16067 1.16067i
217.3 2.00000i 0 −4.00000 −0.376810 0.376810i 0 −15.9157 + 15.9157i 8.00000i 0 0.753619 0.753619i
217.4 2.00000i 0 −4.00000 6.66975 + 6.66975i 0 5.38568 5.38568i 8.00000i 0 −13.3395 + 13.3395i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 55.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 306.4.g.e 8
3.b odd 2 1 306.4.g.f yes 8
17.c even 4 1 inner 306.4.g.e 8
51.f odd 4 1 306.4.g.f yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
306.4.g.e 8 1.a even 1 1 trivial
306.4.g.e 8 17.c even 4 1 inner
306.4.g.f yes 8 3.b odd 2 1
306.4.g.f yes 8 51.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T58+16T57+128T562360T55+28721T54+59416T53+59168T52+27520T5+6400 T_{5}^{8} + 16T_{5}^{7} + 128T_{5}^{6} - 2360T_{5}^{5} + 28721T_{5}^{4} + 59416T_{5}^{3} + 59168T_{5}^{2} + 27520T_{5} + 6400 acting on S4new(306,[χ])S_{4}^{\mathrm{new}}(306, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+4)4 (T^{2} + 4)^{4} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8+16T7++6400 T^{8} + 16 T^{7} + \cdots + 6400 Copy content Toggle raw display
77 T8+8T7++984704400 T^{8} + 8 T^{7} + \cdots + 984704400 Copy content Toggle raw display
1111 T8++33694273600 T^{8} + \cdots + 33694273600 Copy content Toggle raw display
1313 (T4+14T3++162420)2 (T^{4} + 14 T^{3} + \cdots + 162420)^{2} Copy content Toggle raw display
1717 T8++582622237229761 T^{8} + \cdots + 582622237229761 Copy content Toggle raw display
1919 T8++704371600000000 T^{8} + \cdots + 704371600000000 Copy content Toggle raw display
2323 T8++548769824100 T^{8} + \cdots + 548769824100 Copy content Toggle raw display
2929 T8++13 ⁣ ⁣00 T^{8} + \cdots + 13\!\cdots\!00 Copy content Toggle raw display
3131 T8++43 ⁣ ⁣16 T^{8} + \cdots + 43\!\cdots\!16 Copy content Toggle raw display
3737 T8++82 ⁣ ⁣00 T^{8} + \cdots + 82\!\cdots\!00 Copy content Toggle raw display
4141 T8++15 ⁣ ⁣00 T^{8} + \cdots + 15\!\cdots\!00 Copy content Toggle raw display
4343 T8++11 ⁣ ⁣00 T^{8} + \cdots + 11\!\cdots\!00 Copy content Toggle raw display
4747 (T4+628T3++388464032)2 (T^{4} + 628 T^{3} + \cdots + 388464032)^{2} Copy content Toggle raw display
5353 T8++31 ⁣ ⁣84 T^{8} + \cdots + 31\!\cdots\!84 Copy content Toggle raw display
5959 T8++20 ⁣ ⁣00 T^{8} + \cdots + 20\!\cdots\!00 Copy content Toggle raw display
6161 T8++47 ⁣ ⁣76 T^{8} + \cdots + 47\!\cdots\!76 Copy content Toggle raw display
6767 (T4+84T3++8186232960)2 (T^{4} + 84 T^{3} + \cdots + 8186232960)^{2} Copy content Toggle raw display
7171 T8++23 ⁣ ⁣00 T^{8} + \cdots + 23\!\cdots\!00 Copy content Toggle raw display
7373 T8++14 ⁣ ⁣00 T^{8} + \cdots + 14\!\cdots\!00 Copy content Toggle raw display
7979 T8++14 ⁣ ⁣00 T^{8} + \cdots + 14\!\cdots\!00 Copy content Toggle raw display
8383 T8++34 ⁣ ⁣00 T^{8} + \cdots + 34\!\cdots\!00 Copy content Toggle raw display
8989 (T4+888T3++154468827360)2 (T^{4} + 888 T^{3} + \cdots + 154468827360)^{2} Copy content Toggle raw display
9797 T8++36 ⁣ ⁣00 T^{8} + \cdots + 36\!\cdots\!00 Copy content Toggle raw display
show more
show less