Properties

Label 308.2.w.a.41.6
Level $308$
Weight $2$
Character 308.41
Analytic conductor $2.459$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(13,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.w (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45939238226\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 41.6
Character \(\chi\) \(=\) 308.41
Dual form 308.2.w.a.293.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.51783 - 0.493173i) q^{3} +(0.260986 - 0.359216i) q^{5} +(1.55179 + 2.14288i) q^{7} +(-0.366459 + 0.266248i) q^{9} +(2.44672 + 2.23910i) q^{11} +(2.91934 - 2.12103i) q^{13} +(0.218977 - 0.673941i) q^{15} +(-1.73549 - 1.26091i) q^{17} +(-2.60996 - 8.03264i) q^{19} +(3.41217 + 2.48723i) q^{21} +1.73292 q^{23} +(1.48416 + 4.56778i) q^{25} +(-3.23913 + 4.45828i) q^{27} +(-6.19038 - 2.01138i) q^{29} +(-2.85173 - 3.92507i) q^{31} +(4.81797 + 2.19192i) q^{33} +(1.17475 + 0.00183136i) q^{35} +(0.305486 - 0.940189i) q^{37} +(3.38504 - 4.65910i) q^{39} +(2.71242 + 8.34796i) q^{41} -4.32100i q^{43} +0.201125i q^{45} +(-6.63136 + 2.15466i) q^{47} +(-2.18387 + 6.65062i) q^{49} +(-3.25602 - 1.05795i) q^{51} +(-7.09454 + 5.15449i) q^{53} +(1.44288 - 0.294528i) q^{55} +(-7.92297 - 10.9050i) q^{57} +(10.2903 + 3.34352i) q^{59} +(-5.62339 - 4.08563i) q^{61} +(-1.13921 - 0.372115i) q^{63} -1.60223i q^{65} +11.4870 q^{67} +(2.63028 - 0.854629i) q^{69} +(-10.6035 - 7.70387i) q^{71} +(-2.23211 + 6.86973i) q^{73} +(4.50542 + 6.20117i) q^{75} +(-1.00131 + 8.71765i) q^{77} +(-5.15765 - 7.09890i) q^{79} +(-2.29782 + 7.07198i) q^{81} +(-12.6408 - 9.18404i) q^{83} +(-0.905876 + 0.294337i) q^{85} -10.3879 q^{87} -3.04406i q^{89} +(9.07533 + 2.96440i) q^{91} +(-6.26418 - 4.55119i) q^{93} +(-3.56662 - 1.15887i) q^{95} +(0.726346 + 0.999730i) q^{97} +(-1.49278 - 0.169103i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 5 q^{7} + 14 q^{9} - 4 q^{11} - 6 q^{15} + 4 q^{23} + 32 q^{25} - 20 q^{29} + 15 q^{35} - 28 q^{37} - 20 q^{39} - 15 q^{49} + 60 q^{51} - 56 q^{53} + 80 q^{57} - 80 q^{63} - 88 q^{67} + 32 q^{71}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.51783 0.493173i 0.876320 0.284734i 0.163892 0.986478i \(-0.447595\pi\)
0.712429 + 0.701745i \(0.247595\pi\)
\(4\) 0 0
\(5\) 0.260986 0.359216i 0.116716 0.160646i −0.746661 0.665204i \(-0.768344\pi\)
0.863378 + 0.504558i \(0.168344\pi\)
\(6\) 0 0
\(7\) 1.55179 + 2.14288i 0.586523 + 0.809932i
\(8\) 0 0
\(9\) −0.366459 + 0.266248i −0.122153 + 0.0887493i
\(10\) 0 0
\(11\) 2.44672 + 2.23910i 0.737714 + 0.675114i
\(12\) 0 0
\(13\) 2.91934 2.12103i 0.809680 0.588267i −0.104058 0.994571i \(-0.533183\pi\)
0.913738 + 0.406304i \(0.133183\pi\)
\(14\) 0 0
\(15\) 0.218977 0.673941i 0.0565396 0.174011i
\(16\) 0 0
\(17\) −1.73549 1.26091i −0.420917 0.305814i 0.357089 0.934070i \(-0.383769\pi\)
−0.778007 + 0.628256i \(0.783769\pi\)
\(18\) 0 0
\(19\) −2.60996 8.03264i −0.598767 1.84282i −0.535003 0.844850i \(-0.679690\pi\)
−0.0637637 0.997965i \(-0.520310\pi\)
\(20\) 0 0
\(21\) 3.41217 + 2.48723i 0.744597 + 0.542757i
\(22\) 0 0
\(23\) 1.73292 0.361338 0.180669 0.983544i \(-0.442174\pi\)
0.180669 + 0.983544i \(0.442174\pi\)
\(24\) 0 0
\(25\) 1.48416 + 4.56778i 0.296832 + 0.913556i
\(26\) 0 0
\(27\) −3.23913 + 4.45828i −0.623371 + 0.857996i
\(28\) 0 0
\(29\) −6.19038 2.01138i −1.14952 0.373503i −0.328560 0.944483i \(-0.606563\pi\)
−0.820964 + 0.570980i \(0.806563\pi\)
\(30\) 0 0
\(31\) −2.85173 3.92507i −0.512186 0.704963i 0.472100 0.881545i \(-0.343496\pi\)
−0.984286 + 0.176582i \(0.943496\pi\)
\(32\) 0 0
\(33\) 4.81797 + 2.19192i 0.838701 + 0.381564i
\(34\) 0 0
\(35\) 1.17475 + 0.00183136i 0.198570 + 0.000309556i
\(36\) 0 0
\(37\) 0.305486 0.940189i 0.0502216 0.154566i −0.922801 0.385278i \(-0.874106\pi\)
0.973022 + 0.230712i \(0.0741055\pi\)
\(38\) 0 0
\(39\) 3.38504 4.65910i 0.542040 0.746054i
\(40\) 0 0
\(41\) 2.71242 + 8.34796i 0.423608 + 1.30373i 0.904321 + 0.426854i \(0.140378\pi\)
−0.480712 + 0.876878i \(0.659622\pi\)
\(42\) 0 0
\(43\) 4.32100i 0.658946i −0.944165 0.329473i \(-0.893129\pi\)
0.944165 0.329473i \(-0.106871\pi\)
\(44\) 0 0
\(45\) 0.201125i 0.0299819i
\(46\) 0 0
\(47\) −6.63136 + 2.15466i −0.967284 + 0.314289i −0.749719 0.661756i \(-0.769811\pi\)
−0.217565 + 0.976046i \(0.569811\pi\)
\(48\) 0 0
\(49\) −2.18387 + 6.65062i −0.311981 + 0.950088i
\(50\) 0 0
\(51\) −3.25602 1.05795i −0.455934 0.148142i
\(52\) 0 0
\(53\) −7.09454 + 5.15449i −0.974510 + 0.708023i −0.956475 0.291814i \(-0.905741\pi\)
−0.0180352 + 0.999837i \(0.505741\pi\)
\(54\) 0 0
\(55\) 1.44288 0.294528i 0.194558 0.0397142i
\(56\) 0 0
\(57\) −7.92297 10.9050i −1.04942 1.44441i
\(58\) 0 0
\(59\) 10.2903 + 3.34352i 1.33968 + 0.435289i 0.889209 0.457500i \(-0.151255\pi\)
0.450474 + 0.892790i \(0.351255\pi\)
\(60\) 0 0
\(61\) −5.62339 4.08563i −0.720001 0.523112i 0.166383 0.986061i \(-0.446791\pi\)
−0.886385 + 0.462949i \(0.846791\pi\)
\(62\) 0 0
\(63\) −1.13921 0.372115i −0.143526 0.0468821i
\(64\) 0 0
\(65\) 1.60223i 0.198733i
\(66\) 0 0
\(67\) 11.4870 1.40336 0.701682 0.712491i \(-0.252433\pi\)
0.701682 + 0.712491i \(0.252433\pi\)
\(68\) 0 0
\(69\) 2.63028 0.854629i 0.316648 0.102885i
\(70\) 0 0
\(71\) −10.6035 7.70387i −1.25840 0.914282i −0.259723 0.965683i \(-0.583631\pi\)
−0.998678 + 0.0514017i \(0.983631\pi\)
\(72\) 0 0
\(73\) −2.23211 + 6.86973i −0.261249 + 0.804041i 0.731285 + 0.682072i \(0.238921\pi\)
−0.992534 + 0.121969i \(0.961079\pi\)
\(74\) 0 0
\(75\) 4.50542 + 6.20117i 0.520241 + 0.716050i
\(76\) 0 0
\(77\) −1.00131 + 8.71765i −0.114110 + 0.993468i
\(78\) 0 0
\(79\) −5.15765 7.09890i −0.580281 0.798688i 0.413445 0.910529i \(-0.364325\pi\)
−0.993726 + 0.111841i \(0.964325\pi\)
\(80\) 0 0
\(81\) −2.29782 + 7.07198i −0.255314 + 0.785775i
\(82\) 0 0
\(83\) −12.6408 9.18404i −1.38750 1.00808i −0.996134 0.0878459i \(-0.972002\pi\)
−0.391369 0.920234i \(-0.627998\pi\)
\(84\) 0 0
\(85\) −0.905876 + 0.294337i −0.0982560 + 0.0319253i
\(86\) 0 0
\(87\) −10.3879 −1.11370
\(88\) 0 0
\(89\) 3.04406i 0.322670i −0.986900 0.161335i \(-0.948420\pi\)
0.986900 0.161335i \(-0.0515799\pi\)
\(90\) 0 0
\(91\) 9.07533 + 2.96440i 0.951353 + 0.310754i
\(92\) 0 0
\(93\) −6.26418 4.55119i −0.649565 0.471937i
\(94\) 0 0
\(95\) −3.56662 1.15887i −0.365928 0.118897i
\(96\) 0 0
\(97\) 0.726346 + 0.999730i 0.0737493 + 0.101507i 0.844298 0.535874i \(-0.180018\pi\)
−0.770549 + 0.637381i \(0.780018\pi\)
\(98\) 0 0
\(99\) −1.49278 0.169103i −0.150030 0.0169955i
\(100\) 0 0
\(101\) −5.28642 + 3.84081i −0.526018 + 0.382175i −0.818866 0.573984i \(-0.805397\pi\)
0.292848 + 0.956159i \(0.405397\pi\)
\(102\) 0 0
\(103\) 6.52767 + 2.12097i 0.643190 + 0.208985i 0.612409 0.790541i \(-0.290201\pi\)
0.0307811 + 0.999526i \(0.490201\pi\)
\(104\) 0 0
\(105\) 1.78398 0.576578i 0.174099 0.0562682i
\(106\) 0 0
\(107\) −4.19341 + 1.36252i −0.405392 + 0.131720i −0.504613 0.863346i \(-0.668365\pi\)
0.0992212 + 0.995065i \(0.468365\pi\)
\(108\) 0 0
\(109\) 2.33520i 0.223671i 0.993727 + 0.111836i \(0.0356730\pi\)
−0.993727 + 0.111836i \(0.964327\pi\)
\(110\) 0 0
\(111\) 1.57771i 0.149749i
\(112\) 0 0
\(113\) −0.309026 0.951085i −0.0290707 0.0894705i 0.935468 0.353410i \(-0.114978\pi\)
−0.964539 + 0.263940i \(0.914978\pi\)
\(114\) 0 0
\(115\) 0.452267 0.622492i 0.0421741 0.0580477i
\(116\) 0 0
\(117\) −0.505100 + 1.55454i −0.0466965 + 0.143717i
\(118\) 0 0
\(119\) 0.00884787 5.67561i 0.000811083 0.520282i
\(120\) 0 0
\(121\) 0.972876 + 10.9569i 0.0884433 + 0.996081i
\(122\) 0 0
\(123\) 8.23398 + 11.3331i 0.742433 + 1.02187i
\(124\) 0 0
\(125\) 4.13959 + 1.34503i 0.370256 + 0.120303i
\(126\) 0 0
\(127\) 11.3191 15.5794i 1.00440 1.38244i 0.0818207 0.996647i \(-0.473927\pi\)
0.922584 0.385797i \(-0.126073\pi\)
\(128\) 0 0
\(129\) −2.13100 6.55855i −0.187624 0.577448i
\(130\) 0 0
\(131\) 8.11514 0.709023 0.354512 0.935052i \(-0.384647\pi\)
0.354512 + 0.935052i \(0.384647\pi\)
\(132\) 0 0
\(133\) 13.1629 18.0579i 1.14136 1.56581i
\(134\) 0 0
\(135\) 0.756120 + 2.32710i 0.0650764 + 0.200285i
\(136\) 0 0
\(137\) 4.69203 + 3.40896i 0.400867 + 0.291247i 0.769894 0.638172i \(-0.220309\pi\)
−0.369027 + 0.929419i \(0.620309\pi\)
\(138\) 0 0
\(139\) 2.50684 7.71526i 0.212627 0.654399i −0.786686 0.617353i \(-0.788205\pi\)
0.999314 0.0370465i \(-0.0117950\pi\)
\(140\) 0 0
\(141\) −9.00267 + 6.54082i −0.758161 + 0.550837i
\(142\) 0 0
\(143\) 11.8920 + 1.34714i 0.994460 + 0.112653i
\(144\) 0 0
\(145\) −2.33812 + 1.69874i −0.194170 + 0.141073i
\(146\) 0 0
\(147\) −0.0348314 + 11.1715i −0.00287284 + 0.921413i
\(148\) 0 0
\(149\) 7.95668 10.9514i 0.651836 0.897176i −0.347340 0.937739i \(-0.612915\pi\)
0.999177 + 0.0405631i \(0.0129152\pi\)
\(150\) 0 0
\(151\) 10.2668 3.33588i 0.835498 0.271470i 0.140138 0.990132i \(-0.455245\pi\)
0.695359 + 0.718662i \(0.255245\pi\)
\(152\) 0 0
\(153\) 0.971698 0.0785571
\(154\) 0 0
\(155\) −2.15421 −0.173030
\(156\) 0 0
\(157\) 15.4769 5.02875i 1.23519 0.401338i 0.382599 0.923914i \(-0.375029\pi\)
0.852593 + 0.522576i \(0.175029\pi\)
\(158\) 0 0
\(159\) −8.22626 + 11.3225i −0.652385 + 0.897931i
\(160\) 0 0
\(161\) 2.68913 + 3.71343i 0.211933 + 0.292660i
\(162\) 0 0
\(163\) 3.86774 2.81008i 0.302945 0.220102i −0.425919 0.904761i \(-0.640049\pi\)
0.728863 + 0.684659i \(0.240049\pi\)
\(164\) 0 0
\(165\) 2.04480 1.15863i 0.159187 0.0901996i
\(166\) 0 0
\(167\) −1.74020 + 1.26433i −0.134661 + 0.0978367i −0.653076 0.757292i \(-0.726522\pi\)
0.518416 + 0.855129i \(0.326522\pi\)
\(168\) 0 0
\(169\) 0.00659036 0.0202831i 0.000506951 0.00156024i
\(170\) 0 0
\(171\) 3.09512 + 2.24874i 0.236690 + 0.171965i
\(172\) 0 0
\(173\) 5.67980 + 17.4806i 0.431827 + 1.32903i 0.896303 + 0.443442i \(0.146243\pi\)
−0.464476 + 0.885586i \(0.653757\pi\)
\(174\) 0 0
\(175\) −7.48509 + 10.2686i −0.565820 + 0.776236i
\(176\) 0 0
\(177\) 17.2679 1.29793
\(178\) 0 0
\(179\) 4.86637 + 14.9771i 0.363730 + 1.11944i 0.950773 + 0.309889i \(0.100292\pi\)
−0.587043 + 0.809556i \(0.699708\pi\)
\(180\) 0 0
\(181\) 2.36514 3.25534i 0.175800 0.241968i −0.712020 0.702159i \(-0.752219\pi\)
0.887820 + 0.460192i \(0.152219\pi\)
\(182\) 0 0
\(183\) −10.5503 3.42800i −0.779900 0.253405i
\(184\) 0 0
\(185\) −0.258004 0.355112i −0.0189688 0.0261083i
\(186\) 0 0
\(187\) −1.42296 6.97101i −0.104057 0.509771i
\(188\) 0 0
\(189\) −14.5800 0.0227292i −1.06054 0.00165331i
\(190\) 0 0
\(191\) −3.46219 + 10.6555i −0.250516 + 0.771008i 0.744165 + 0.667996i \(0.232848\pi\)
−0.994680 + 0.103011i \(0.967152\pi\)
\(192\) 0 0
\(193\) 4.05772 5.58497i 0.292081 0.402015i −0.637608 0.770361i \(-0.720076\pi\)
0.929689 + 0.368346i \(0.120076\pi\)
\(194\) 0 0
\(195\) −0.790179 2.43192i −0.0565859 0.174154i
\(196\) 0 0
\(197\) 7.21142i 0.513792i −0.966439 0.256896i \(-0.917300\pi\)
0.966439 0.256896i \(-0.0826998\pi\)
\(198\) 0 0
\(199\) 11.2445i 0.797102i −0.917146 0.398551i \(-0.869513\pi\)
0.917146 0.398551i \(-0.130487\pi\)
\(200\) 0 0
\(201\) 17.4354 5.66509i 1.22980 0.399585i
\(202\) 0 0
\(203\) −5.29606 16.3865i −0.371711 1.15011i
\(204\) 0 0
\(205\) 3.70663 + 1.20436i 0.258882 + 0.0841159i
\(206\) 0 0
\(207\) −0.635043 + 0.461385i −0.0441385 + 0.0320685i
\(208\) 0 0
\(209\) 11.6000 25.4976i 0.802391 1.76371i
\(210\) 0 0
\(211\) 9.47316 + 13.0387i 0.652159 + 0.897620i 0.999190 0.0402337i \(-0.0128103\pi\)
−0.347031 + 0.937854i \(0.612810\pi\)
\(212\) 0 0
\(213\) −19.8936 6.46383i −1.36309 0.442894i
\(214\) 0 0
\(215\) −1.55217 1.12772i −0.105857 0.0769099i
\(216\) 0 0
\(217\) 3.98565 12.2018i 0.270564 0.828313i
\(218\) 0 0
\(219\) 11.5279i 0.778984i
\(220\) 0 0
\(221\) −7.74090 −0.520709
\(222\) 0 0
\(223\) −27.4072 + 8.90514i −1.83532 + 0.596333i −0.836493 + 0.547978i \(0.815398\pi\)
−0.998830 + 0.0483543i \(0.984602\pi\)
\(224\) 0 0
\(225\) −1.76005 1.27875i −0.117336 0.0852499i
\(226\) 0 0
\(227\) −6.19616 + 19.0698i −0.411253 + 1.26571i 0.504306 + 0.863525i \(0.331748\pi\)
−0.915559 + 0.402183i \(0.868252\pi\)
\(228\) 0 0
\(229\) 1.89669 + 2.61056i 0.125337 + 0.172511i 0.867074 0.498179i \(-0.165998\pi\)
−0.741737 + 0.670690i \(0.765998\pi\)
\(230\) 0 0
\(231\) 2.77949 + 13.7257i 0.182877 + 0.903087i
\(232\) 0 0
\(233\) −4.51877 6.21955i −0.296034 0.407456i 0.634928 0.772571i \(-0.281030\pi\)
−0.930962 + 0.365115i \(0.881030\pi\)
\(234\) 0 0
\(235\) −0.956703 + 2.94443i −0.0624084 + 0.192073i
\(236\) 0 0
\(237\) −11.3294 8.23131i −0.735925 0.534681i
\(238\) 0 0
\(239\) −1.84016 + 0.597905i −0.119030 + 0.0386752i −0.367926 0.929855i \(-0.619932\pi\)
0.248896 + 0.968530i \(0.419932\pi\)
\(240\) 0 0
\(241\) 13.4236 0.864692 0.432346 0.901708i \(-0.357686\pi\)
0.432346 + 0.901708i \(0.357686\pi\)
\(242\) 0 0
\(243\) 4.66492i 0.299255i
\(244\) 0 0
\(245\) 1.81905 + 2.52020i 0.116215 + 0.161010i
\(246\) 0 0
\(247\) −24.6568 17.9142i −1.56888 1.13986i
\(248\) 0 0
\(249\) −23.7159 7.70575i −1.50293 0.488332i
\(250\) 0 0
\(251\) 17.4436 + 24.0090i 1.10103 + 1.51544i 0.834014 + 0.551744i \(0.186037\pi\)
0.267015 + 0.963692i \(0.413963\pi\)
\(252\) 0 0
\(253\) 4.23996 + 3.88017i 0.266564 + 0.243944i
\(254\) 0 0
\(255\) −1.22981 + 0.893507i −0.0770135 + 0.0559536i
\(256\) 0 0
\(257\) −20.4663 6.64992i −1.27666 0.414810i −0.409254 0.912420i \(-0.634211\pi\)
−0.867401 + 0.497610i \(0.834211\pi\)
\(258\) 0 0
\(259\) 2.48876 0.804361i 0.154644 0.0499806i
\(260\) 0 0
\(261\) 2.80404 0.911089i 0.173566 0.0563950i
\(262\) 0 0
\(263\) 18.6389i 1.14932i −0.818392 0.574660i \(-0.805134\pi\)
0.818392 0.574660i \(-0.194866\pi\)
\(264\) 0 0
\(265\) 3.89372i 0.239190i
\(266\) 0 0
\(267\) −1.50125 4.62037i −0.0918750 0.282762i
\(268\) 0 0
\(269\) −11.3715 + 15.6516i −0.693335 + 0.954293i 0.306662 + 0.951818i \(0.400788\pi\)
−0.999997 + 0.00247482i \(0.999212\pi\)
\(270\) 0 0
\(271\) −3.14727 + 9.68630i −0.191183 + 0.588401i 0.808817 + 0.588061i \(0.200108\pi\)
−1.00000 0.000340354i \(0.999892\pi\)
\(272\) 0 0
\(273\) 15.2368 + 0.0237531i 0.922172 + 0.00143760i
\(274\) 0 0
\(275\) −6.59638 + 14.4993i −0.397777 + 0.874339i
\(276\) 0 0
\(277\) −0.827606 1.13910i −0.0497260 0.0684420i 0.783430 0.621480i \(-0.213468\pi\)
−0.833156 + 0.553038i \(0.813468\pi\)
\(278\) 0 0
\(279\) 2.09008 + 0.679109i 0.125130 + 0.0406572i
\(280\) 0 0
\(281\) 0.401849 0.553097i 0.0239723 0.0329950i −0.796863 0.604161i \(-0.793509\pi\)
0.820835 + 0.571166i \(0.193509\pi\)
\(282\) 0 0
\(283\) −2.07722 6.39302i −0.123478 0.380026i 0.870143 0.492800i \(-0.164026\pi\)
−0.993621 + 0.112774i \(0.964026\pi\)
\(284\) 0 0
\(285\) −5.98505 −0.354524
\(286\) 0 0
\(287\) −13.6796 + 18.7667i −0.807479 + 1.10776i
\(288\) 0 0
\(289\) −3.83126 11.7914i −0.225368 0.693611i
\(290\) 0 0
\(291\) 1.59551 + 1.15921i 0.0935305 + 0.0679539i
\(292\) 0 0
\(293\) −1.60874 + 4.95120i −0.0939837 + 0.289252i −0.986987 0.160797i \(-0.948594\pi\)
0.893004 + 0.450049i \(0.148594\pi\)
\(294\) 0 0
\(295\) 3.88667 2.82383i 0.226291 0.164410i
\(296\) 0 0
\(297\) −17.9078 + 3.65543i −1.03911 + 0.212110i
\(298\) 0 0
\(299\) 5.05898 3.67557i 0.292568 0.212563i
\(300\) 0 0
\(301\) 9.25938 6.70530i 0.533702 0.386487i
\(302\) 0 0
\(303\) −6.12971 + 8.43682i −0.352142 + 0.484683i
\(304\) 0 0
\(305\) −2.93525 + 0.953721i −0.168072 + 0.0546099i
\(306\) 0 0
\(307\) 12.5775 0.717835 0.358917 0.933369i \(-0.383146\pi\)
0.358917 + 0.933369i \(0.383146\pi\)
\(308\) 0 0
\(309\) 10.9539 0.623146
\(310\) 0 0
\(311\) 18.5680 6.03310i 1.05289 0.342105i 0.269090 0.963115i \(-0.413277\pi\)
0.783803 + 0.621010i \(0.213277\pi\)
\(312\) 0 0
\(313\) −1.42488 + 1.96118i −0.0805389 + 0.110852i −0.847386 0.530978i \(-0.821825\pi\)
0.766847 + 0.641830i \(0.221825\pi\)
\(314\) 0 0
\(315\) −0.430986 + 0.312105i −0.0242833 + 0.0175851i
\(316\) 0 0
\(317\) 17.9456 13.0383i 1.00793 0.732303i 0.0441545 0.999025i \(-0.485941\pi\)
0.963773 + 0.266722i \(0.0859406\pi\)
\(318\) 0 0
\(319\) −10.6425 18.7821i −0.595863 1.05160i
\(320\) 0 0
\(321\) −5.69293 + 4.13615i −0.317748 + 0.230858i
\(322\) 0 0
\(323\) −5.59884 + 17.2315i −0.311528 + 0.958785i
\(324\) 0 0
\(325\) 14.0212 + 10.1870i 0.777755 + 0.565072i
\(326\) 0 0
\(327\) 1.15166 + 3.54444i 0.0636868 + 0.196008i
\(328\) 0 0
\(329\) −14.9077 10.8666i −0.821888 0.599096i
\(330\) 0 0
\(331\) −17.0689 −0.938192 −0.469096 0.883147i \(-0.655420\pi\)
−0.469096 + 0.883147i \(0.655420\pi\)
\(332\) 0 0
\(333\) 0.138375 + 0.425875i 0.00758292 + 0.0233378i
\(334\) 0 0
\(335\) 2.99795 4.12633i 0.163796 0.225445i
\(336\) 0 0
\(337\) 3.56954 + 1.15981i 0.194445 + 0.0631791i 0.404621 0.914485i \(-0.367404\pi\)
−0.210176 + 0.977664i \(0.567404\pi\)
\(338\) 0 0
\(339\) −0.938099 1.29118i −0.0509506 0.0701274i
\(340\) 0 0
\(341\) 1.81123 15.9888i 0.0980837 0.865844i
\(342\) 0 0
\(343\) −17.6404 + 5.64064i −0.952491 + 0.304566i
\(344\) 0 0
\(345\) 0.379469 1.16788i 0.0204299 0.0628768i
\(346\) 0 0
\(347\) 19.8432 27.3118i 1.06524 1.46617i 0.190430 0.981701i \(-0.439012\pi\)
0.874807 0.484472i \(-0.160988\pi\)
\(348\) 0 0
\(349\) 7.15449 + 22.0193i 0.382971 + 1.17866i 0.937941 + 0.346794i \(0.112730\pi\)
−0.554970 + 0.831870i \(0.687270\pi\)
\(350\) 0 0
\(351\) 19.8855i 1.06141i
\(352\) 0 0
\(353\) 16.2534i 0.865082i −0.901614 0.432541i \(-0.857617\pi\)
0.901614 0.432541i \(-0.142383\pi\)
\(354\) 0 0
\(355\) −5.53471 + 1.79834i −0.293752 + 0.0954459i
\(356\) 0 0
\(357\) −2.78563 8.61898i −0.147431 0.456165i
\(358\) 0 0
\(359\) 14.3580 + 4.66519i 0.757785 + 0.246219i 0.662328 0.749214i \(-0.269569\pi\)
0.0954573 + 0.995434i \(0.469569\pi\)
\(360\) 0 0
\(361\) −42.3401 + 30.7619i −2.22843 + 1.61905i
\(362\) 0 0
\(363\) 6.88031 + 16.1509i 0.361123 + 0.847703i
\(364\) 0 0
\(365\) 1.88517 + 2.59471i 0.0986743 + 0.135813i
\(366\) 0 0
\(367\) 2.21153 + 0.718570i 0.115441 + 0.0375090i 0.366168 0.930549i \(-0.380670\pi\)
−0.250727 + 0.968058i \(0.580670\pi\)
\(368\) 0 0
\(369\) −3.21661 2.33701i −0.167450 0.121660i
\(370\) 0 0
\(371\) −22.0547 7.20404i −1.14502 0.374015i
\(372\) 0 0
\(373\) 3.48084i 0.180231i 0.995931 + 0.0901156i \(0.0287236\pi\)
−0.995931 + 0.0901156i \(0.971276\pi\)
\(374\) 0 0
\(375\) 6.94653 0.358717
\(376\) 0 0
\(377\) −22.3380 + 7.25807i −1.15047 + 0.373809i
\(378\) 0 0
\(379\) 19.2469 + 13.9837i 0.988647 + 0.718294i 0.959624 0.281285i \(-0.0907606\pi\)
0.0290224 + 0.999579i \(0.490761\pi\)
\(380\) 0 0
\(381\) 9.49711 29.2291i 0.486552 1.49745i
\(382\) 0 0
\(383\) −18.8512 25.9464i −0.963249 1.32580i −0.945384 0.325958i \(-0.894313\pi\)
−0.0178650 0.999840i \(-0.505687\pi\)
\(384\) 0 0
\(385\) 2.87019 + 2.63487i 0.146279 + 0.134285i
\(386\) 0 0
\(387\) 1.15046 + 1.58347i 0.0584810 + 0.0804922i
\(388\) 0 0
\(389\) 3.64253 11.2106i 0.184684 0.568398i −0.815259 0.579096i \(-0.803406\pi\)
0.999943 + 0.0106986i \(0.00340555\pi\)
\(390\) 0 0
\(391\) −3.00746 2.18504i −0.152094 0.110502i
\(392\) 0 0
\(393\) 12.3174 4.00217i 0.621332 0.201883i
\(394\) 0 0
\(395\) −3.89611 −0.196035
\(396\) 0 0
\(397\) 6.42269i 0.322346i −0.986926 0.161173i \(-0.948472\pi\)
0.986926 0.161173i \(-0.0515276\pi\)
\(398\) 0 0
\(399\) 11.0733 33.9004i 0.554361 1.69714i
\(400\) 0 0
\(401\) 23.7999 + 17.2916i 1.18851 + 0.863503i 0.993106 0.117220i \(-0.0373984\pi\)
0.195403 + 0.980723i \(0.437398\pi\)
\(402\) 0 0
\(403\) −16.6504 5.41003i −0.829413 0.269493i
\(404\) 0 0
\(405\) 1.94067 + 2.67110i 0.0964327 + 0.132728i
\(406\) 0 0
\(407\) 2.85261 1.61637i 0.141399 0.0801203i
\(408\) 0 0
\(409\) −17.6354 + 12.8129i −0.872015 + 0.633556i −0.931127 0.364695i \(-0.881173\pi\)
0.0591118 + 0.998251i \(0.481173\pi\)
\(410\) 0 0
\(411\) 8.80292 + 2.86024i 0.434216 + 0.141085i
\(412\) 0 0
\(413\) 8.80367 + 27.2393i 0.433200 + 1.34036i
\(414\) 0 0
\(415\) −6.59812 + 2.14386i −0.323889 + 0.105238i
\(416\) 0 0
\(417\) 12.9468i 0.634006i
\(418\) 0 0
\(419\) 3.55781i 0.173810i −0.996217 0.0869052i \(-0.972302\pi\)
0.996217 0.0869052i \(-0.0276977\pi\)
\(420\) 0 0
\(421\) 12.4365 + 38.2757i 0.606120 + 1.86545i 0.488901 + 0.872339i \(0.337398\pi\)
0.117219 + 0.993106i \(0.462602\pi\)
\(422\) 0 0
\(423\) 1.85645 2.55518i 0.0902635 0.124237i
\(424\) 0 0
\(425\) 3.18380 9.79872i 0.154437 0.475308i
\(426\) 0 0
\(427\) 0.0286692 18.3903i 0.00138740 0.889970i
\(428\) 0 0
\(429\) 18.7144 3.82009i 0.903541 0.184436i
\(430\) 0 0
\(431\) 14.5687 + 20.0520i 0.701748 + 0.965873i 0.999935 + 0.0113655i \(0.00361782\pi\)
−0.298188 + 0.954507i \(0.596382\pi\)
\(432\) 0 0
\(433\) 4.75912 + 1.54633i 0.228709 + 0.0743120i 0.421129 0.907001i \(-0.361634\pi\)
−0.192421 + 0.981313i \(0.561634\pi\)
\(434\) 0 0
\(435\) −2.71110 + 3.73151i −0.129987 + 0.178912i
\(436\) 0 0
\(437\) −4.52285 13.9199i −0.216357 0.665880i
\(438\) 0 0
\(439\) 5.36847 0.256223 0.128112 0.991760i \(-0.459108\pi\)
0.128112 + 0.991760i \(0.459108\pi\)
\(440\) 0 0
\(441\) −0.970416 3.01863i −0.0462103 0.143744i
\(442\) 0 0
\(443\) 3.07670 + 9.46910i 0.146178 + 0.449891i 0.997161 0.0753037i \(-0.0239926\pi\)
−0.850982 + 0.525194i \(0.823993\pi\)
\(444\) 0 0
\(445\) −1.09348 0.794457i −0.0518358 0.0376609i
\(446\) 0 0
\(447\) 6.67594 20.5464i 0.315761 0.971813i
\(448\) 0 0
\(449\) −5.95718 + 4.32815i −0.281137 + 0.204258i −0.719413 0.694582i \(-0.755589\pi\)
0.438276 + 0.898840i \(0.355589\pi\)
\(450\) 0 0
\(451\) −12.0554 + 26.4985i −0.567666 + 1.24776i
\(452\) 0 0
\(453\) 13.9381 10.1266i 0.654867 0.475789i
\(454\) 0 0
\(455\) 3.43340 2.48634i 0.160960 0.116561i
\(456\) 0 0
\(457\) −18.4581 + 25.4054i −0.863434 + 1.18842i 0.117305 + 0.993096i \(0.462574\pi\)
−0.980740 + 0.195319i \(0.937426\pi\)
\(458\) 0 0
\(459\) 11.2429 3.65305i 0.524775 0.170510i
\(460\) 0 0
\(461\) −5.60541 −0.261070 −0.130535 0.991444i \(-0.541670\pi\)
−0.130535 + 0.991444i \(0.541670\pi\)
\(462\) 0 0
\(463\) 9.20728 0.427899 0.213949 0.976845i \(-0.431367\pi\)
0.213949 + 0.976845i \(0.431367\pi\)
\(464\) 0 0
\(465\) −3.26973 + 1.06240i −0.151630 + 0.0492676i
\(466\) 0 0
\(467\) 15.4473 21.2614i 0.714816 0.983860i −0.284864 0.958568i \(-0.591948\pi\)
0.999680 0.0252920i \(-0.00805156\pi\)
\(468\) 0 0
\(469\) 17.8255 + 24.6153i 0.823105 + 1.13663i
\(470\) 0 0
\(471\) 21.0113 15.2656i 0.968149 0.703402i
\(472\) 0 0
\(473\) 9.67514 10.5723i 0.444863 0.486114i
\(474\) 0 0
\(475\) 32.8178 23.8435i 1.50578 1.09401i
\(476\) 0 0
\(477\) 1.22749 3.77781i 0.0562027 0.172974i
\(478\) 0 0
\(479\) −8.65578 6.28879i −0.395493 0.287342i 0.372210 0.928149i \(-0.378600\pi\)
−0.767703 + 0.640806i \(0.778600\pi\)
\(480\) 0 0
\(481\) −1.10235 3.39268i −0.0502628 0.154693i
\(482\) 0 0
\(483\) 5.91302 + 4.31016i 0.269052 + 0.196119i
\(484\) 0 0
\(485\) 0.548685 0.0249145
\(486\) 0 0
\(487\) −5.62084 17.2992i −0.254705 0.783900i −0.993888 0.110396i \(-0.964788\pi\)
0.739183 0.673505i \(-0.235212\pi\)
\(488\) 0 0
\(489\) 4.48472 6.17268i 0.202806 0.279138i
\(490\) 0 0
\(491\) 19.5042 + 6.33731i 0.880214 + 0.285999i 0.714046 0.700099i \(-0.246861\pi\)
0.166168 + 0.986098i \(0.446861\pi\)
\(492\) 0 0
\(493\) 8.20717 + 11.2962i 0.369632 + 0.508755i
\(494\) 0 0
\(495\) −0.450338 + 0.492096i −0.0202412 + 0.0221181i
\(496\) 0 0
\(497\) 0.0540587 34.6768i 0.00242486 1.55547i
\(498\) 0 0
\(499\) 0.232751 0.716334i 0.0104194 0.0320675i −0.945712 0.325007i \(-0.894633\pi\)
0.956131 + 0.292939i \(0.0946334\pi\)
\(500\) 0 0
\(501\) −2.01780 + 2.77726i −0.0901484 + 0.124079i
\(502\) 0 0
\(503\) 4.80094 + 14.7758i 0.214063 + 0.658819i 0.999219 + 0.0395202i \(0.0125829\pi\)
−0.785156 + 0.619299i \(0.787417\pi\)
\(504\) 0 0
\(505\) 2.90136i 0.129109i
\(506\) 0 0
\(507\) 0.0340365i 0.00151161i
\(508\) 0 0
\(509\) −17.8539 + 5.80107i −0.791359 + 0.257128i −0.676683 0.736275i \(-0.736583\pi\)
−0.114676 + 0.993403i \(0.536583\pi\)
\(510\) 0 0
\(511\) −18.1848 + 5.87727i −0.804447 + 0.259995i
\(512\) 0 0
\(513\) 44.2658 + 14.3828i 1.95438 + 0.635017i
\(514\) 0 0
\(515\) 2.46552 1.79130i 0.108644 0.0789342i
\(516\) 0 0
\(517\) −21.0496 9.57642i −0.925759 0.421171i
\(518\) 0 0
\(519\) 17.2420 + 23.7315i 0.756838 + 1.04170i
\(520\) 0 0
\(521\) 33.6176 + 10.9230i 1.47281 + 0.478546i 0.931957 0.362570i \(-0.118100\pi\)
0.540856 + 0.841115i \(0.318100\pi\)
\(522\) 0 0
\(523\) −9.67925 7.03239i −0.423244 0.307505i 0.355698 0.934601i \(-0.384243\pi\)
−0.778942 + 0.627096i \(0.784243\pi\)
\(524\) 0 0
\(525\) −6.29689 + 19.2775i −0.274819 + 0.841340i
\(526\) 0 0
\(527\) 10.4077i 0.453365i
\(528\) 0 0
\(529\) −19.9970 −0.869435
\(530\) 0 0
\(531\) −4.66118 + 1.51451i −0.202278 + 0.0657240i
\(532\) 0 0
\(533\) 25.6247 + 18.6175i 1.10993 + 0.806411i
\(534\) 0 0
\(535\) −0.604981 + 1.86194i −0.0261556 + 0.0804986i
\(536\) 0 0
\(537\) 14.7727 + 20.3328i 0.637487 + 0.877426i
\(538\) 0 0
\(539\) −20.2347 + 11.3823i −0.871570 + 0.490271i
\(540\) 0 0
\(541\) −18.6807 25.7117i −0.803145 1.10543i −0.992345 0.123496i \(-0.960589\pi\)
0.189200 0.981939i \(-0.439411\pi\)
\(542\) 0 0
\(543\) 1.98444 6.10749i 0.0851606 0.262097i
\(544\) 0 0
\(545\) 0.838842 + 0.609454i 0.0359320 + 0.0261061i
\(546\) 0 0
\(547\) 17.9119 5.81992i 0.765856 0.248842i 0.100066 0.994981i \(-0.468095\pi\)
0.665790 + 0.746139i \(0.268095\pi\)
\(548\) 0 0
\(549\) 3.14853 0.134376
\(550\) 0 0
\(551\) 54.9747i 2.34200i
\(552\) 0 0
\(553\) 7.20846 22.0682i 0.306535 0.938437i
\(554\) 0 0
\(555\) −0.566738 0.411759i −0.0240567 0.0174782i
\(556\) 0 0
\(557\) −39.4101 12.8051i −1.66986 0.542571i −0.686958 0.726697i \(-0.741054\pi\)
−0.982903 + 0.184127i \(0.941054\pi\)
\(558\) 0 0
\(559\) −9.16496 12.6145i −0.387636 0.533536i
\(560\) 0 0
\(561\) −5.59773 9.87905i −0.236336 0.417094i
\(562\) 0 0
\(563\) 15.5284 11.2821i 0.654445 0.475482i −0.210338 0.977629i \(-0.567456\pi\)
0.864782 + 0.502147i \(0.167456\pi\)
\(564\) 0 0
\(565\) −0.422297 0.137213i −0.0177662 0.00577257i
\(566\) 0 0
\(567\) −18.7201 + 6.05030i −0.786172 + 0.254089i
\(568\) 0 0
\(569\) −12.8183 + 4.16491i −0.537370 + 0.174602i −0.565114 0.825013i \(-0.691168\pi\)
0.0277437 + 0.999615i \(0.491168\pi\)
\(570\) 0 0
\(571\) 20.4722i 0.856736i −0.903604 0.428368i \(-0.859089\pi\)
0.903604 0.428368i \(-0.140911\pi\)
\(572\) 0 0
\(573\) 17.8808i 0.746980i
\(574\) 0 0
\(575\) 2.57193 + 7.91559i 0.107257 + 0.330103i
\(576\) 0 0
\(577\) 18.7638 25.8262i 0.781148 1.07516i −0.214006 0.976832i \(-0.568651\pi\)
0.995154 0.0983260i \(-0.0313488\pi\)
\(578\) 0 0
\(579\) 3.40458 10.4782i 0.141489 0.435459i
\(580\) 0 0
\(581\) 0.0644452 41.3394i 0.00267364 1.71505i
\(582\) 0 0
\(583\) −28.8998 3.27379i −1.19691 0.135587i
\(584\) 0 0
\(585\) 0.426591 + 0.587153i 0.0176374 + 0.0242758i
\(586\) 0 0
\(587\) −4.79284 1.55729i −0.197822 0.0642762i 0.208430 0.978037i \(-0.433165\pi\)
−0.406252 + 0.913761i \(0.633165\pi\)
\(588\) 0 0
\(589\) −24.0858 + 33.1512i −0.992437 + 1.36597i
\(590\) 0 0
\(591\) −3.55648 10.9457i −0.146294 0.450247i
\(592\) 0 0
\(593\) −22.5830 −0.927373 −0.463686 0.885999i \(-0.653474\pi\)
−0.463686 + 0.885999i \(0.653474\pi\)
\(594\) 0 0
\(595\) −2.03646 1.48443i −0.0834868 0.0608558i
\(596\) 0 0
\(597\) −5.54549 17.0673i −0.226962 0.698516i
\(598\) 0 0
\(599\) 31.9037 + 23.1794i 1.30355 + 0.947084i 0.999984 0.00572612i \(-0.00182269\pi\)
0.303566 + 0.952810i \(0.401823\pi\)
\(600\) 0 0
\(601\) 4.65003 14.3113i 0.189679 0.583771i −0.810319 0.585989i \(-0.800706\pi\)
0.999998 + 0.00221837i \(0.000706130\pi\)
\(602\) 0 0
\(603\) −4.20952 + 3.05839i −0.171425 + 0.124547i
\(604\) 0 0
\(605\) 4.18980 + 2.51012i 0.170340 + 0.102051i
\(606\) 0 0
\(607\) −3.06776 + 2.22886i −0.124517 + 0.0904666i −0.648300 0.761385i \(-0.724520\pi\)
0.523784 + 0.851851i \(0.324520\pi\)
\(608\) 0 0
\(609\) −16.1199 22.2600i −0.653211 0.902022i
\(610\) 0 0
\(611\) −14.7891 + 20.3555i −0.598304 + 0.823495i
\(612\) 0 0
\(613\) −20.4135 + 6.63276i −0.824495 + 0.267895i −0.690725 0.723118i \(-0.742708\pi\)
−0.133770 + 0.991012i \(0.542708\pi\)
\(614\) 0 0
\(615\) 6.21999 0.250814
\(616\) 0 0
\(617\) −5.69432 −0.229245 −0.114622 0.993409i \(-0.536566\pi\)
−0.114622 + 0.993409i \(0.536566\pi\)
\(618\) 0 0
\(619\) −41.2403 + 13.3998i −1.65759 + 0.538582i −0.980364 0.197196i \(-0.936816\pi\)
−0.677222 + 0.735778i \(0.736816\pi\)
\(620\) 0 0
\(621\) −5.61315 + 7.72583i −0.225248 + 0.310027i
\(622\) 0 0
\(623\) 6.52306 4.72376i 0.261341 0.189253i
\(624\) 0 0
\(625\) −17.8644 + 12.9792i −0.714576 + 0.519170i
\(626\) 0 0
\(627\) 5.03216 44.4219i 0.200965 1.77404i
\(628\) 0 0
\(629\) −1.71566 + 1.24650i −0.0684077 + 0.0497011i
\(630\) 0 0
\(631\) 7.23686 22.2728i 0.288095 0.886665i −0.697359 0.716722i \(-0.745642\pi\)
0.985454 0.169943i \(-0.0543583\pi\)
\(632\) 0 0
\(633\) 20.8090 + 15.1186i 0.827083 + 0.600911i
\(634\) 0 0
\(635\) −2.64224 8.13198i −0.104854 0.322708i
\(636\) 0 0
\(637\) 7.73069 + 24.0475i 0.306301 + 0.952796i
\(638\) 0 0
\(639\) 5.93687 0.234859
\(640\) 0 0
\(641\) 3.56318 + 10.9663i 0.140737 + 0.433145i 0.996438 0.0843259i \(-0.0268737\pi\)
−0.855701 + 0.517471i \(0.826874\pi\)
\(642\) 0 0
\(643\) −22.4020 + 30.8337i −0.883449 + 1.21596i 0.0920053 + 0.995759i \(0.470672\pi\)
−0.975454 + 0.220204i \(0.929328\pi\)
\(644\) 0 0
\(645\) −2.91210 0.946198i −0.114664 0.0372565i
\(646\) 0 0
\(647\) −25.2211 34.7139i −0.991545 1.36475i −0.930372 0.366618i \(-0.880516\pi\)
−0.0611738 0.998127i \(-0.519484\pi\)
\(648\) 0 0
\(649\) 17.6910 + 31.2217i 0.694433 + 1.22556i
\(650\) 0 0
\(651\) 0.0319361 20.4859i 0.00125167 0.802906i
\(652\) 0 0
\(653\) 12.1563 37.4131i 0.475711 1.46409i −0.369285 0.929316i \(-0.620397\pi\)
0.844996 0.534772i \(-0.179603\pi\)
\(654\) 0 0
\(655\) 2.11794 2.91509i 0.0827547 0.113902i
\(656\) 0 0
\(657\) −1.01107 3.11177i −0.0394458 0.121402i
\(658\) 0 0
\(659\) 32.6010i 1.26995i −0.772531 0.634977i \(-0.781009\pi\)
0.772531 0.634977i \(-0.218991\pi\)
\(660\) 0 0
\(661\) 35.0666i 1.36393i 0.731383 + 0.681967i \(0.238875\pi\)
−0.731383 + 0.681967i \(0.761125\pi\)
\(662\) 0 0
\(663\) −11.7494 + 3.81760i −0.456308 + 0.148263i
\(664\) 0 0
\(665\) −3.05136 9.44116i −0.118326 0.366113i
\(666\) 0 0
\(667\) −10.7274 3.48555i −0.415367 0.134961i
\(668\) 0 0
\(669\) −37.2078 + 27.0330i −1.43853 + 1.04516i
\(670\) 0 0
\(671\) −4.61073 22.5877i −0.177995 0.871990i
\(672\) 0 0
\(673\) 4.29258 + 5.90822i 0.165467 + 0.227745i 0.883696 0.468061i \(-0.155047\pi\)
−0.718230 + 0.695806i \(0.755047\pi\)
\(674\) 0 0
\(675\) −25.1718 8.17883i −0.968865 0.314803i
\(676\) 0 0
\(677\) 36.0174 + 26.1682i 1.38426 + 1.00572i 0.996468 + 0.0839776i \(0.0267624\pi\)
0.387793 + 0.921747i \(0.373238\pi\)
\(678\) 0 0
\(679\) −1.01516 + 3.10785i −0.0389583 + 0.119268i
\(680\) 0 0
\(681\) 32.0005i 1.22626i
\(682\) 0 0
\(683\) −48.6281 −1.86070 −0.930351 0.366671i \(-0.880498\pi\)
−0.930351 + 0.366671i \(0.880498\pi\)
\(684\) 0 0
\(685\) 2.44911 0.795764i 0.0935756 0.0304046i
\(686\) 0 0
\(687\) 4.16631 + 3.02700i 0.158955 + 0.115487i
\(688\) 0 0
\(689\) −9.77860 + 30.0954i −0.372535 + 1.14654i
\(690\) 0 0
\(691\) 6.10596 + 8.40414i 0.232282 + 0.319709i 0.909208 0.416343i \(-0.136688\pi\)
−0.676926 + 0.736051i \(0.736688\pi\)
\(692\) 0 0
\(693\) −1.95412 3.46125i −0.0742307 0.131482i
\(694\) 0 0
\(695\) −2.11720 2.91407i −0.0803098 0.110537i
\(696\) 0 0
\(697\) 5.81862 17.9079i 0.220396 0.678309i
\(698\) 0 0
\(699\) −9.92605 7.21169i −0.375438 0.272771i
\(700\) 0 0
\(701\) −32.1350 + 10.4413i −1.21372 + 0.394362i −0.844791 0.535096i \(-0.820275\pi\)
−0.368929 + 0.929458i \(0.620275\pi\)
\(702\) 0 0
\(703\) −8.34951 −0.314908
\(704\) 0 0
\(705\) 4.94097i 0.186088i
\(706\) 0 0
\(707\) −16.4338 5.36801i −0.618058 0.201885i
\(708\) 0 0
\(709\) −20.5659 14.9420i −0.772369 0.561159i 0.130310 0.991473i \(-0.458403\pi\)
−0.902679 + 0.430314i \(0.858403\pi\)
\(710\) 0 0
\(711\) 3.78013 + 1.22824i 0.141766 + 0.0460626i
\(712\) 0 0
\(713\) −4.94181 6.80182i −0.185072 0.254730i
\(714\) 0 0
\(715\) 3.58756 3.92022i 0.134167 0.146608i
\(716\) 0 0
\(717\) −2.49818 + 1.81504i −0.0932964 + 0.0677838i
\(718\) 0 0
\(719\) 25.7655 + 8.37173i 0.960893 + 0.312213i 0.747134 0.664674i \(-0.231429\pi\)
0.213759 + 0.976886i \(0.431429\pi\)
\(720\) 0 0
\(721\) 5.58462 + 17.2793i 0.207982 + 0.643515i
\(722\) 0 0
\(723\) 20.3748 6.62018i 0.757747 0.246207i
\(724\) 0 0
\(725\) 31.2615i 1.16102i
\(726\) 0 0
\(727\) 33.1937i 1.23109i 0.788103 + 0.615543i \(0.211063\pi\)
−0.788103 + 0.615543i \(0.788937\pi\)
\(728\) 0 0
\(729\) −9.19409 28.2965i −0.340522 1.04802i
\(730\) 0 0
\(731\) −5.44837 + 7.49904i −0.201515 + 0.277362i
\(732\) 0 0
\(733\) −2.28281 + 7.02575i −0.0843174 + 0.259502i −0.984323 0.176377i \(-0.943562\pi\)
0.900005 + 0.435879i \(0.143562\pi\)
\(734\) 0 0
\(735\) 4.00391 + 2.92813i 0.147686 + 0.108006i
\(736\) 0 0
\(737\) 28.1055 + 25.7206i 1.03528 + 0.947430i
\(738\) 0 0
\(739\) 21.5322 + 29.6365i 0.792074 + 1.09020i 0.993847 + 0.110763i \(0.0353296\pi\)
−0.201773 + 0.979432i \(0.564670\pi\)
\(740\) 0 0
\(741\) −46.2598 15.0307i −1.69939 0.552167i
\(742\) 0 0
\(743\) −1.33518 + 1.83771i −0.0489828 + 0.0674191i −0.832806 0.553565i \(-0.813267\pi\)
0.783823 + 0.620984i \(0.213267\pi\)
\(744\) 0 0
\(745\) −1.85735 5.71634i −0.0680481 0.209430i
\(746\) 0 0
\(747\) 7.07755 0.258954
\(748\) 0 0
\(749\) −9.42703 6.87161i −0.344456 0.251083i
\(750\) 0 0
\(751\) −7.28375 22.4171i −0.265788 0.818010i −0.991511 0.130024i \(-0.958495\pi\)
0.725723 0.687987i \(-0.241505\pi\)
\(752\) 0 0
\(753\) 38.3170 + 27.8389i 1.39635 + 1.01451i
\(754\) 0 0
\(755\) 1.48118 4.55861i 0.0539057 0.165905i
\(756\) 0 0
\(757\) −2.26770 + 1.64758i −0.0824211 + 0.0598824i −0.628233 0.778025i \(-0.716221\pi\)
0.545812 + 0.837908i \(0.316221\pi\)
\(758\) 0 0
\(759\) 8.34915 + 3.79841i 0.303055 + 0.137874i
\(760\) 0 0
\(761\) −18.9065 + 13.7363i −0.685358 + 0.497942i −0.875131 0.483886i \(-0.839225\pi\)
0.189773 + 0.981828i \(0.439225\pi\)
\(762\) 0 0
\(763\) −5.00405 + 3.62375i −0.181159 + 0.131189i
\(764\) 0 0
\(765\) 0.253599 0.349050i 0.00916891 0.0126199i
\(766\) 0 0
\(767\) 37.1326 12.0651i 1.34078 0.435646i
\(768\) 0 0
\(769\) 28.5824 1.03071 0.515354 0.856978i \(-0.327661\pi\)
0.515354 + 0.856978i \(0.327661\pi\)
\(770\) 0 0
\(771\) −34.3440 −1.23687
\(772\) 0 0
\(773\) 39.0657 12.6932i 1.40510 0.456543i 0.494261 0.869314i \(-0.335439\pi\)
0.910835 + 0.412770i \(0.135439\pi\)
\(774\) 0 0
\(775\) 13.6964 18.8515i 0.491990 0.677166i
\(776\) 0 0
\(777\) 3.38083 2.44828i 0.121287 0.0878314i
\(778\) 0 0
\(779\) 59.9769 43.5758i 2.14889 1.56126i
\(780\) 0 0
\(781\) −8.69399 42.5914i −0.311096 1.52404i
\(782\) 0 0
\(783\) 29.0187 21.0833i 1.03704 0.753457i
\(784\) 0 0
\(785\) 2.23285 6.87199i 0.0796937 0.245272i
\(786\) 0 0
\(787\) 36.8738 + 26.7904i 1.31441 + 0.954974i 0.999984 + 0.00569143i \(0.00181165\pi\)
0.314425 + 0.949282i \(0.398188\pi\)
\(788\) 0 0
\(789\) −9.19218 28.2906i −0.327250 1.00717i
\(790\) 0 0
\(791\) 1.55851 2.13809i 0.0554144 0.0760219i
\(792\) 0 0
\(793\) −25.0824 −0.890700
\(794\) 0 0
\(795\) 1.92028 + 5.91002i 0.0681053 + 0.209607i
\(796\) 0 0
\(797\) 14.1160 19.4290i 0.500014 0.688210i −0.482182 0.876071i \(-0.660155\pi\)
0.982196 + 0.187861i \(0.0601554\pi\)
\(798\) 0 0
\(799\) 14.2255 + 4.62213i 0.503261 + 0.163519i
\(800\) 0 0
\(801\) 0.810475 + 1.11552i 0.0286367 + 0.0394151i
\(802\) 0 0
\(803\) −20.8433 + 11.8104i −0.735546 + 0.416779i
\(804\) 0 0
\(805\) 2.03575 + 0.00317359i 0.0717508 + 0.000111854i
\(806\) 0 0
\(807\) −9.54113 + 29.3646i −0.335864 + 1.03368i
\(808\) 0 0
\(809\) −20.7362 + 28.5409i −0.729045 + 1.00344i 0.270129 + 0.962824i \(0.412934\pi\)
−0.999175 + 0.0406209i \(0.987066\pi\)
\(810\) 0 0
\(811\) 0.102098 + 0.314226i 0.00358516 + 0.0110340i 0.952833 0.303495i \(-0.0981535\pi\)
−0.949248 + 0.314529i \(0.898154\pi\)
\(812\) 0 0
\(813\) 16.2543i 0.570064i
\(814\) 0 0
\(815\) 2.12274i 0.0743565i
\(816\) 0 0
\(817\) −34.7090 + 11.2777i −1.21432 + 0.394555i
\(818\) 0 0
\(819\) −4.11500 + 1.32996i −0.143790 + 0.0464724i
\(820\) 0 0
\(821\) 38.2380 + 12.4243i 1.33451 + 0.433610i 0.887455 0.460894i \(-0.152471\pi\)
0.447059 + 0.894504i \(0.352471\pi\)
\(822\) 0 0
\(823\) −27.9511 + 20.3076i −0.974313 + 0.707880i −0.956430 0.291960i \(-0.905693\pi\)
−0.0178826 + 0.999840i \(0.505693\pi\)
\(824\) 0 0
\(825\) −2.86155 + 25.2606i −0.0996263 + 0.879461i
\(826\) 0 0
\(827\) 0.991748 + 1.36502i 0.0344865 + 0.0474665i 0.825912 0.563799i \(-0.190661\pi\)
−0.791426 + 0.611266i \(0.790661\pi\)
\(828\) 0 0
\(829\) −18.0317 5.85886i −0.626267 0.203486i −0.0213463 0.999772i \(-0.506795\pi\)
−0.604921 + 0.796286i \(0.706795\pi\)
\(830\) 0 0
\(831\) −1.81794 1.32081i −0.0630637 0.0458185i
\(832\) 0 0
\(833\) 12.1759 8.78842i 0.421869 0.304501i
\(834\) 0 0
\(835\) 0.955080i 0.0330519i
\(836\) 0 0
\(837\) 26.7362 0.924137
\(838\) 0 0
\(839\) 32.6897 10.6215i 1.12857 0.366696i 0.315540 0.948912i \(-0.397814\pi\)
0.813034 + 0.582216i \(0.197814\pi\)
\(840\) 0 0
\(841\) 10.8137 + 7.85659i 0.372885 + 0.270917i
\(842\) 0 0
\(843\) 0.337166 1.03769i 0.0116126 0.0357399i
\(844\) 0 0
\(845\) −0.00556601 0.00766096i −0.000191477 0.000263545i
\(846\) 0 0
\(847\) −21.9696 + 19.0876i −0.754884 + 0.655858i
\(848\) 0 0
\(849\) −6.30574 8.67910i −0.216412 0.297866i
\(850\) 0 0
\(851\) 0.529382 1.62927i 0.0181470 0.0558507i
\(852\) 0 0
\(853\) −2.77371 2.01522i −0.0949699 0.0689997i 0.539287 0.842122i \(-0.318694\pi\)
−0.634257 + 0.773122i \(0.718694\pi\)
\(854\) 0 0
\(855\) 1.61556 0.524929i 0.0552511 0.0179522i
\(856\) 0 0
\(857\) −17.2507 −0.589271 −0.294636 0.955610i \(-0.595198\pi\)
−0.294636 + 0.955610i \(0.595198\pi\)
\(858\) 0 0
\(859\) 19.9333i 0.680115i −0.940405 0.340057i \(-0.889554\pi\)
0.940405 0.340057i \(-0.110446\pi\)
\(860\) 0 0
\(861\) −11.5080 + 35.2311i −0.392192 + 1.20067i
\(862\) 0 0
\(863\) 3.10629 + 2.25685i 0.105739 + 0.0768240i 0.639398 0.768876i \(-0.279183\pi\)
−0.533659 + 0.845700i \(0.679183\pi\)
\(864\) 0 0
\(865\) 7.76168 + 2.52192i 0.263905 + 0.0857479i
\(866\) 0 0
\(867\) −11.6304 16.0079i −0.394989 0.543656i
\(868\) 0 0
\(869\) 3.27580 28.9175i 0.111124 0.980959i
\(870\) 0 0
\(871\) 33.5346 24.3643i 1.13628 0.825552i
\(872\) 0 0
\(873\) −0.532352 0.172972i −0.0180174 0.00585420i
\(874\) 0 0
\(875\) 3.54155 + 10.9579i 0.119726 + 0.370443i
\(876\) 0 0
\(877\) −47.3831 + 15.3957i −1.60001 + 0.519876i −0.967111 0.254355i \(-0.918137\pi\)
−0.632903 + 0.774231i \(0.718137\pi\)
\(878\) 0 0
\(879\) 8.30847i 0.280238i
\(880\) 0 0
\(881\) 2.18519i 0.0736210i −0.999322 0.0368105i \(-0.988280\pi\)
0.999322 0.0368105i \(-0.0117198\pi\)
\(882\) 0 0
\(883\) −15.1574 46.6496i −0.510086 1.56988i −0.792049 0.610458i \(-0.790985\pi\)
0.281963 0.959425i \(-0.409015\pi\)
\(884\) 0 0
\(885\) 4.50667 6.20290i 0.151490 0.208508i
\(886\) 0 0
\(887\) 4.76899 14.6774i 0.160127 0.492820i −0.838517 0.544875i \(-0.816577\pi\)
0.998644 + 0.0520548i \(0.0165771\pi\)
\(888\) 0 0
\(889\) 50.9495 + 0.0794268i 1.70879 + 0.00266389i
\(890\) 0 0
\(891\) −21.4570 + 12.1581i −0.718836 + 0.407311i
\(892\) 0 0
\(893\) 34.6152 + 47.6438i 1.15835 + 1.59434i
\(894\) 0 0
\(895\) 6.65009 + 2.16074i 0.222288 + 0.0722257i
\(896\) 0 0
\(897\) 5.86599 8.07384i 0.195860 0.269578i
\(898\) 0 0
\(899\) 9.75849 + 30.0336i 0.325464 + 1.00168i
\(900\) 0 0
\(901\) 18.8118 0.626712
\(902\) 0 0
\(903\) 10.7473 14.7440i 0.357648 0.490650i
\(904\) 0 0
\(905\) −0.552103 1.69920i −0.0183525 0.0564832i
\(906\) 0 0
\(907\) 16.2886 + 11.8344i 0.540855 + 0.392954i 0.824403 0.566004i \(-0.191511\pi\)
−0.283547 + 0.958958i \(0.591511\pi\)
\(908\) 0 0
\(909\) 0.914647 2.81499i 0.0303369 0.0933675i
\(910\) 0 0
\(911\) −8.24104 + 5.98747i −0.273038 + 0.198374i −0.715875 0.698228i \(-0.753972\pi\)
0.442837 + 0.896602i \(0.353972\pi\)
\(912\) 0 0
\(913\) −10.3644 50.7747i −0.343012 1.68040i
\(914\) 0 0
\(915\) −3.98487 + 2.89518i −0.131736 + 0.0957116i
\(916\) 0 0
\(917\) 12.5930 + 17.3898i 0.415859 + 0.574261i
\(918\) 0 0
\(919\) −16.4458 + 22.6358i −0.542498 + 0.746685i −0.988970 0.148113i \(-0.952680\pi\)
0.446472 + 0.894797i \(0.352680\pi\)
\(920\) 0 0
\(921\) 19.0905 6.20288i 0.629053 0.204392i
\(922\) 0 0
\(923\) −47.2953 −1.55674
\(924\) 0 0
\(925\) 4.74797 0.156112
\(926\) 0 0
\(927\) −2.95682 + 0.960730i −0.0971148 + 0.0315545i
\(928\) 0 0
\(929\) 29.5284 40.6424i 0.968797 1.33343i 0.0261446 0.999658i \(-0.491677\pi\)
0.942652 0.333776i \(-0.108323\pi\)
\(930\) 0 0
\(931\) 59.1219 + 0.184334i 1.93764 + 0.00604131i
\(932\) 0 0
\(933\) 25.2077 18.3144i 0.825262 0.599588i
\(934\) 0 0
\(935\) −2.87547 1.30818i −0.0940380 0.0427822i
\(936\) 0 0
\(937\) −24.4626 + 17.7732i −0.799160 + 0.580624i −0.910668 0.413140i \(-0.864432\pi\)
0.111508 + 0.993764i \(0.464432\pi\)
\(938\) 0 0
\(939\) −1.19552 + 3.67945i −0.0390145 + 0.120074i
\(940\) 0 0
\(941\) −33.5587 24.3818i −1.09398 0.794824i −0.113914 0.993491i \(-0.536339\pi\)
−0.980067 + 0.198667i \(0.936339\pi\)
\(942\) 0 0
\(943\) 4.70039 + 14.4663i 0.153066 + 0.471088i
\(944\) 0 0
\(945\) −3.81335 + 5.23145i −0.124048 + 0.170179i
\(946\) 0 0
\(947\) −14.2417 −0.462794 −0.231397 0.972859i \(-0.574330\pi\)
−0.231397 + 0.972859i \(0.574330\pi\)
\(948\) 0 0
\(949\) 8.05459 + 24.7895i 0.261463 + 0.804700i
\(950\) 0 0
\(951\) 20.8083 28.6402i 0.674757 0.928723i
\(952\) 0 0
\(953\) −34.8615 11.3272i −1.12927 0.366923i −0.315974 0.948768i \(-0.602331\pi\)
−0.813300 + 0.581845i \(0.802331\pi\)
\(954\) 0 0
\(955\) 2.92406 + 4.02462i 0.0946203 + 0.130234i
\(956\) 0 0
\(957\) −25.4163 23.2595i −0.821592 0.751874i
\(958\) 0 0
\(959\) −0.0239209 + 15.3445i −0.000772448 + 0.495499i
\(960\) 0 0
\(961\) 2.30573 7.09629i 0.0743782 0.228913i
\(962\) 0 0
\(963\) 1.17394 1.61579i 0.0378298 0.0520682i
\(964\) 0 0
\(965\) −0.947205 2.91520i −0.0304916 0.0938436i
\(966\) 0 0
\(967\) 19.7552i 0.635285i 0.948211 + 0.317642i \(0.102891\pi\)
−0.948211 + 0.317642i \(0.897109\pi\)
\(968\) 0 0
\(969\) 28.9157i 0.928905i
\(970\) 0 0
\(971\) 38.8681 12.6290i 1.24734 0.405284i 0.390371 0.920658i \(-0.372347\pi\)
0.856966 + 0.515373i \(0.172347\pi\)
\(972\) 0 0
\(973\) 20.4230 6.60064i 0.654730 0.211607i
\(974\) 0 0
\(975\) 26.3057 + 8.54725i 0.842457 + 0.273731i
\(976\) 0 0
\(977\) −1.74168 + 1.26541i −0.0557214 + 0.0404840i −0.615297 0.788295i \(-0.710964\pi\)
0.559576 + 0.828779i \(0.310964\pi\)
\(978\) 0 0
\(979\) 6.81595 7.44797i 0.217839 0.238038i
\(980\) 0 0
\(981\) −0.621742 0.855754i −0.0198507 0.0273221i
\(982\) 0 0
\(983\) −6.40312 2.08050i −0.204228 0.0663576i 0.205117 0.978738i \(-0.434243\pi\)
−0.409345 + 0.912380i \(0.634243\pi\)
\(984\) 0 0
\(985\) −2.59046 1.88208i −0.0825389 0.0599680i
\(986\) 0 0
\(987\) −27.9865 9.14162i −0.890820 0.290981i
\(988\) 0 0
\(989\) 7.48793i 0.238102i
\(990\) 0 0
\(991\) 0.474384 0.0150693 0.00753465 0.999972i \(-0.497602\pi\)
0.00753465 + 0.999972i \(0.497602\pi\)
\(992\) 0 0
\(993\) −25.9077 + 8.41793i −0.822157 + 0.267135i
\(994\) 0 0
\(995\) −4.03921 2.93466i −0.128052 0.0930349i
\(996\) 0 0
\(997\) 8.67631 26.7029i 0.274782 0.845691i −0.714495 0.699640i \(-0.753344\pi\)
0.989277 0.146051i \(-0.0466563\pi\)
\(998\) 0 0
\(999\) 3.20212 + 4.40734i 0.101311 + 0.139442i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.2.w.a.41.6 yes 32
7.6 odd 2 inner 308.2.w.a.41.3 32
11.2 odd 10 3388.2.c.c.1693.21 32
11.7 odd 10 inner 308.2.w.a.293.3 yes 32
11.9 even 5 3388.2.c.c.1693.11 32
77.13 even 10 3388.2.c.c.1693.12 32
77.20 odd 10 3388.2.c.c.1693.22 32
77.62 even 10 inner 308.2.w.a.293.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.w.a.41.3 32 7.6 odd 2 inner
308.2.w.a.41.6 yes 32 1.1 even 1 trivial
308.2.w.a.293.3 yes 32 11.7 odd 10 inner
308.2.w.a.293.6 yes 32 77.62 even 10 inner
3388.2.c.c.1693.11 32 11.9 even 5
3388.2.c.c.1693.12 32 77.13 even 10
3388.2.c.c.1693.21 32 11.2 odd 10
3388.2.c.c.1693.22 32 77.20 odd 10