Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [308,2,Mod(13,308)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(308, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 5, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("308.13");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 308 = 2^{2} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 308.w (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.45939238226\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | 0 | −1.89651 | − | 2.61033i | 0 | −1.37174 | + | 0.445705i | 0 | −1.29885 | + | 2.30499i | 0 | −2.28999 | + | 7.04787i | 0 | ||||||||||
13.2 | 0 | −1.09677 | − | 1.50958i | 0 | 4.07202 | − | 1.32308i | 0 | 1.58132 | + | 2.12119i | 0 | −0.148869 | + | 0.458171i | 0 | ||||||||||
13.3 | 0 | −0.525576 | − | 0.723393i | 0 | −2.65575 | + | 0.862904i | 0 | 2.56006 | − | 0.667889i | 0 | 0.679983 | − | 2.09277i | 0 | ||||||||||
13.4 | 0 | −0.488294 | − | 0.672078i | 0 | 0.892371 | − | 0.289949i | 0 | −2.59757 | − | 0.502635i | 0 | 0.713792 | − | 2.19683i | 0 | ||||||||||
13.5 | 0 | 0.488294 | + | 0.672078i | 0 | −0.892371 | + | 0.289949i | 0 | 1.28073 | + | 2.31511i | 0 | 0.713792 | − | 2.19683i | 0 | ||||||||||
13.6 | 0 | 0.525576 | + | 0.723393i | 0 | 2.65575 | − | 0.862904i | 0 | −0.155903 | − | 2.64115i | 0 | 0.679983 | − | 2.09277i | 0 | ||||||||||
13.7 | 0 | 1.09677 | + | 1.50958i | 0 | −4.07202 | + | 1.32308i | 0 | −2.50602 | − | 0.848437i | 0 | −0.148869 | + | 0.458171i | 0 | ||||||||||
13.8 | 0 | 1.89651 | + | 2.61033i | 0 | 1.37174 | − | 0.445705i | 0 | −1.79081 | + | 1.94756i | 0 | −2.28999 | + | 7.04787i | 0 | ||||||||||
41.1 | 0 | −2.74247 | + | 0.891082i | 0 | 1.27787 | − | 1.75883i | 0 | −0.297393 | + | 2.62898i | 0 | 4.30005 | − | 3.12417i | 0 | ||||||||||
41.2 | 0 | −2.44572 | + | 0.794664i | 0 | −1.36739 | + | 1.88205i | 0 | −2.17692 | − | 1.50366i | 0 | 2.92302 | − | 2.12370i | 0 | ||||||||||
41.3 | 0 | −1.51783 | + | 0.493173i | 0 | −0.260986 | + | 0.359216i | 0 | 2.51498 | − | 0.821504i | 0 | −0.366459 | + | 0.266248i | 0 | ||||||||||
41.4 | 0 | −0.359392 | + | 0.116773i | 0 | 1.61768 | − | 2.22654i | 0 | 0.904543 | − | 2.48632i | 0 | −2.31152 | + | 1.67942i | 0 | ||||||||||
41.5 | 0 | 0.359392 | − | 0.116773i | 0 | −1.61768 | + | 2.22654i | 0 | −0.729634 | + | 2.54315i | 0 | −2.31152 | + | 1.67942i | 0 | ||||||||||
41.6 | 0 | 1.51783 | − | 0.493173i | 0 | 0.260986 | − | 0.359216i | 0 | 1.55179 | + | 2.14288i | 0 | −0.366459 | + | 0.266248i | 0 | ||||||||||
41.7 | 0 | 2.44572 | − | 0.794664i | 0 | 1.36739 | − | 1.88205i | 0 | −2.64500 | − | 0.0630766i | 0 | 2.92302 | − | 2.12370i | 0 | ||||||||||
41.8 | 0 | 2.74247 | − | 0.891082i | 0 | −1.27787 | + | 1.75883i | 0 | 1.30468 | − | 2.30170i | 0 | 4.30005 | − | 3.12417i | 0 | ||||||||||
237.1 | 0 | −1.89651 | + | 2.61033i | 0 | −1.37174 | − | 0.445705i | 0 | −1.29885 | − | 2.30499i | 0 | −2.28999 | − | 7.04787i | 0 | ||||||||||
237.2 | 0 | −1.09677 | + | 1.50958i | 0 | 4.07202 | + | 1.32308i | 0 | 1.58132 | − | 2.12119i | 0 | −0.148869 | − | 0.458171i | 0 | ||||||||||
237.3 | 0 | −0.525576 | + | 0.723393i | 0 | −2.65575 | − | 0.862904i | 0 | 2.56006 | + | 0.667889i | 0 | 0.679983 | + | 2.09277i | 0 | ||||||||||
237.4 | 0 | −0.488294 | + | 0.672078i | 0 | 0.892371 | + | 0.289949i | 0 | −2.59757 | + | 0.502635i | 0 | 0.713792 | + | 2.19683i | 0 | ||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
77.l | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 308.2.w.a | ✓ | 32 |
7.b | odd | 2 | 1 | inner | 308.2.w.a | ✓ | 32 |
11.c | even | 5 | 1 | 3388.2.c.c | 32 | ||
11.d | odd | 10 | 1 | inner | 308.2.w.a | ✓ | 32 |
11.d | odd | 10 | 1 | 3388.2.c.c | 32 | ||
77.j | odd | 10 | 1 | 3388.2.c.c | 32 | ||
77.l | even | 10 | 1 | inner | 308.2.w.a | ✓ | 32 |
77.l | even | 10 | 1 | 3388.2.c.c | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
308.2.w.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
308.2.w.a | ✓ | 32 | 7.b | odd | 2 | 1 | inner |
308.2.w.a | ✓ | 32 | 11.d | odd | 10 | 1 | inner |
308.2.w.a | ✓ | 32 | 77.l | even | 10 | 1 | inner |
3388.2.c.c | 32 | 11.c | even | 5 | 1 | ||
3388.2.c.c | 32 | 11.d | odd | 10 | 1 | ||
3388.2.c.c | 32 | 77.j | odd | 10 | 1 | ||
3388.2.c.c | 32 | 77.l | even | 10 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(308, [\chi])\).