Properties

Label 308.4.i.a.177.6
Level $308$
Weight $4$
Character 308.177
Analytic conductor $18.173$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,4,Mod(177,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.177");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 308.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1725882818\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 194 x^{18} - 432 x^{17} + 24205 x^{16} - 47156 x^{15} + 1632616 x^{14} + \cdots + 7996651776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.6
Root \(0.192948 - 0.334196i\) of defining polynomial
Character \(\chi\) \(=\) 308.177
Dual form 308.4.i.a.221.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.307052 - 0.531830i) q^{3} +(-0.388866 + 0.673536i) q^{5} +(6.69839 + 17.2665i) q^{7} +(13.3114 - 23.0561i) q^{9} +(-5.50000 - 9.52628i) q^{11} +2.92263 q^{13} +0.477608 q^{15} +(21.1983 + 36.7165i) q^{17} +(-6.76559 + 11.7184i) q^{19} +(7.12608 - 8.86411i) q^{21} +(-13.2164 + 22.8915i) q^{23} +(62.1976 + 107.729i) q^{25} -32.9300 q^{27} +158.877 q^{29} +(94.4858 + 163.654i) q^{31} +(-3.37757 + 5.85013i) q^{33} +(-14.2344 - 2.20274i) q^{35} +(98.0421 - 169.814i) q^{37} +(-0.897400 - 1.55434i) q^{39} +370.208 q^{41} +423.999 q^{43} +(10.3527 + 17.9315i) q^{45} +(52.6992 - 91.2777i) q^{47} +(-253.263 + 231.315i) q^{49} +(13.0180 - 22.5478i) q^{51} +(-81.5097 - 141.179i) q^{53} +8.55505 q^{55} +8.30956 q^{57} +(187.419 + 324.619i) q^{59} +(-104.713 + 181.369i) q^{61} +(487.263 + 75.4031i) q^{63} +(-1.13651 + 1.96850i) q^{65} +(251.786 + 436.106i) q^{67} +16.2325 q^{69} -588.616 q^{71} +(120.465 + 208.651i) q^{73} +(38.1958 - 66.1570i) q^{75} +(127.644 - 158.776i) q^{77} +(-182.911 + 316.812i) q^{79} +(-349.298 - 605.001i) q^{81} +985.073 q^{83} -32.9732 q^{85} +(-48.7834 - 84.4953i) q^{87} +(-18.6680 + 32.3340i) q^{89} +(19.5769 + 50.4636i) q^{91} +(58.0241 - 100.501i) q^{93} +(-5.26182 - 9.11374i) q^{95} -79.8620 q^{97} -292.852 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{3} - 10 q^{5} - 20 q^{7} - 104 q^{9} - 110 q^{11} + 16 q^{13} + 108 q^{15} - 166 q^{17} - 342 q^{19} - 42 q^{21} + 54 q^{23} - 198 q^{25} + 612 q^{27} - 160 q^{29} - 492 q^{31} - 66 q^{33} + 310 q^{35}+ \cdots + 2288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.307052 0.531830i −0.0590922 0.102351i 0.834966 0.550302i \(-0.185487\pi\)
−0.894058 + 0.447951i \(0.852154\pi\)
\(4\) 0 0
\(5\) −0.388866 + 0.673536i −0.0347812 + 0.0602429i −0.882892 0.469576i \(-0.844407\pi\)
0.848111 + 0.529819i \(0.177740\pi\)
\(6\) 0 0
\(7\) 6.69839 + 17.2665i 0.361679 + 0.932303i
\(8\) 0 0
\(9\) 13.3114 23.0561i 0.493016 0.853929i
\(10\) 0 0
\(11\) −5.50000 9.52628i −0.150756 0.261116i
\(12\) 0 0
\(13\) 2.92263 0.0623533 0.0311766 0.999514i \(-0.490075\pi\)
0.0311766 + 0.999514i \(0.490075\pi\)
\(14\) 0 0
\(15\) 0.477608 0.00822120
\(16\) 0 0
\(17\) 21.1983 + 36.7165i 0.302432 + 0.523827i 0.976686 0.214672i \(-0.0688682\pi\)
−0.674254 + 0.738499i \(0.735535\pi\)
\(18\) 0 0
\(19\) −6.76559 + 11.7184i −0.0816912 + 0.141493i −0.903976 0.427582i \(-0.859365\pi\)
0.822285 + 0.569076i \(0.192699\pi\)
\(20\) 0 0
\(21\) 7.12608 8.86411i 0.0740494 0.0921099i
\(22\) 0 0
\(23\) −13.2164 + 22.8915i −0.119818 + 0.207531i −0.919695 0.392633i \(-0.871564\pi\)
0.799877 + 0.600163i \(0.204898\pi\)
\(24\) 0 0
\(25\) 62.1976 + 107.729i 0.497581 + 0.861835i
\(26\) 0 0
\(27\) −32.9300 −0.234718
\(28\) 0 0
\(29\) 158.877 1.01733 0.508667 0.860964i \(-0.330139\pi\)
0.508667 + 0.860964i \(0.330139\pi\)
\(30\) 0 0
\(31\) 94.4858 + 163.654i 0.547424 + 0.948166i 0.998450 + 0.0556554i \(0.0177248\pi\)
−0.451026 + 0.892511i \(0.648942\pi\)
\(32\) 0 0
\(33\) −3.37757 + 5.85013i −0.0178170 + 0.0308599i
\(34\) 0 0
\(35\) −14.2344 2.20274i −0.0687442 0.0106380i
\(36\) 0 0
\(37\) 98.0421 169.814i 0.435622 0.754520i −0.561724 0.827325i \(-0.689862\pi\)
0.997346 + 0.0728048i \(0.0231950\pi\)
\(38\) 0 0
\(39\) −0.897400 1.55434i −0.00368459 0.00638190i
\(40\) 0 0
\(41\) 370.208 1.41017 0.705084 0.709124i \(-0.250909\pi\)
0.705084 + 0.709124i \(0.250909\pi\)
\(42\) 0 0
\(43\) 423.999 1.50370 0.751851 0.659333i \(-0.229161\pi\)
0.751851 + 0.659333i \(0.229161\pi\)
\(44\) 0 0
\(45\) 10.3527 + 17.9315i 0.0342954 + 0.0594014i
\(46\) 0 0
\(47\) 52.6992 91.2777i 0.163553 0.283281i −0.772588 0.634908i \(-0.781038\pi\)
0.936140 + 0.351627i \(0.114371\pi\)
\(48\) 0 0
\(49\) −253.263 + 231.315i −0.738376 + 0.674389i
\(50\) 0 0
\(51\) 13.0180 22.5478i 0.0357427 0.0619082i
\(52\) 0 0
\(53\) −81.5097 141.179i −0.211249 0.365894i 0.740856 0.671663i \(-0.234420\pi\)
−0.952106 + 0.305769i \(0.901087\pi\)
\(54\) 0 0
\(55\) 8.55505 0.0209739
\(56\) 0 0
\(57\) 8.30956 0.0193093
\(58\) 0 0
\(59\) 187.419 + 324.619i 0.413557 + 0.716302i 0.995276 0.0970882i \(-0.0309529\pi\)
−0.581719 + 0.813390i \(0.697620\pi\)
\(60\) 0 0
\(61\) −104.713 + 181.369i −0.219790 + 0.380687i −0.954744 0.297430i \(-0.903871\pi\)
0.734954 + 0.678117i \(0.237204\pi\)
\(62\) 0 0
\(63\) 487.263 + 75.4031i 0.974434 + 0.150792i
\(64\) 0 0
\(65\) −1.13651 + 1.96850i −0.00216872 + 0.00375634i
\(66\) 0 0
\(67\) 251.786 + 436.106i 0.459113 + 0.795207i 0.998914 0.0465854i \(-0.0148340\pi\)
−0.539801 + 0.841792i \(0.681501\pi\)
\(68\) 0 0
\(69\) 16.2325 0.0283212
\(70\) 0 0
\(71\) −588.616 −0.983885 −0.491943 0.870628i \(-0.663713\pi\)
−0.491943 + 0.870628i \(0.663713\pi\)
\(72\) 0 0
\(73\) 120.465 + 208.651i 0.193142 + 0.334531i 0.946290 0.323320i \(-0.104799\pi\)
−0.753148 + 0.657851i \(0.771466\pi\)
\(74\) 0 0
\(75\) 38.1958 66.1570i 0.0588062 0.101855i
\(76\) 0 0
\(77\) 127.644 158.776i 0.188914 0.234990i
\(78\) 0 0
\(79\) −182.911 + 316.812i −0.260495 + 0.451191i −0.966374 0.257142i \(-0.917219\pi\)
0.705878 + 0.708333i \(0.250552\pi\)
\(80\) 0 0
\(81\) −349.298 605.001i −0.479146 0.829906i
\(82\) 0 0
\(83\) 985.073 1.30272 0.651360 0.758768i \(-0.274199\pi\)
0.651360 + 0.758768i \(0.274199\pi\)
\(84\) 0 0
\(85\) −32.9732 −0.0420758
\(86\) 0 0
\(87\) −48.7834 84.4953i −0.0601164 0.104125i
\(88\) 0 0
\(89\) −18.6680 + 32.3340i −0.0222338 + 0.0385101i −0.876928 0.480621i \(-0.840411\pi\)
0.854694 + 0.519131i \(0.173744\pi\)
\(90\) 0 0
\(91\) 19.5769 + 50.4636i 0.0225519 + 0.0581321i
\(92\) 0 0
\(93\) 58.0241 100.501i 0.0646970 0.112058i
\(94\) 0 0
\(95\) −5.26182 9.11374i −0.00568264 0.00984263i
\(96\) 0 0
\(97\) −79.8620 −0.0835954 −0.0417977 0.999126i \(-0.513309\pi\)
−0.0417977 + 0.999126i \(0.513309\pi\)
\(98\) 0 0
\(99\) −292.852 −0.297300
\(100\) 0 0
\(101\) −965.030 1671.48i −0.950734 1.64672i −0.743842 0.668355i \(-0.766999\pi\)
−0.206891 0.978364i \(-0.566335\pi\)
\(102\) 0 0
\(103\) −62.9437 + 109.022i −0.0602139 + 0.104293i −0.894561 0.446946i \(-0.852512\pi\)
0.834347 + 0.551239i \(0.185845\pi\)
\(104\) 0 0
\(105\) 3.19921 + 8.24662i 0.00297344 + 0.00766464i
\(106\) 0 0
\(107\) −245.224 + 424.741i −0.221558 + 0.383750i −0.955281 0.295698i \(-0.904448\pi\)
0.733723 + 0.679449i \(0.237781\pi\)
\(108\) 0 0
\(109\) −447.232 774.628i −0.393000 0.680697i 0.599843 0.800118i \(-0.295230\pi\)
−0.992844 + 0.119421i \(0.961896\pi\)
\(110\) 0 0
\(111\) −120.416 −0.102967
\(112\) 0 0
\(113\) 346.489 0.288450 0.144225 0.989545i \(-0.453931\pi\)
0.144225 + 0.989545i \(0.453931\pi\)
\(114\) 0 0
\(115\) −10.2788 17.8034i −0.00833483 0.0144363i
\(116\) 0 0
\(117\) 38.9044 67.3845i 0.0307412 0.0532453i
\(118\) 0 0
\(119\) −491.971 + 611.961i −0.378982 + 0.471415i
\(120\) 0 0
\(121\) −60.5000 + 104.789i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) −113.673 196.888i −0.0833299 0.144332i
\(124\) 0 0
\(125\) −193.963 −0.138788
\(126\) 0 0
\(127\) −2039.36 −1.42491 −0.712457 0.701716i \(-0.752418\pi\)
−0.712457 + 0.701716i \(0.752418\pi\)
\(128\) 0 0
\(129\) −130.190 225.495i −0.0888570 0.153905i
\(130\) 0 0
\(131\) −1076.72 + 1864.93i −0.718117 + 1.24382i 0.243627 + 0.969869i \(0.421663\pi\)
−0.961745 + 0.273947i \(0.911671\pi\)
\(132\) 0 0
\(133\) −247.653 38.3239i −0.161461 0.0249858i
\(134\) 0 0
\(135\) 12.8054 22.1795i 0.00816378 0.0141401i
\(136\) 0 0
\(137\) −207.156 358.804i −0.129186 0.223757i 0.794175 0.607689i \(-0.207903\pi\)
−0.923361 + 0.383932i \(0.874570\pi\)
\(138\) 0 0
\(139\) −965.844 −0.589366 −0.294683 0.955595i \(-0.595214\pi\)
−0.294683 + 0.955595i \(0.595214\pi\)
\(140\) 0 0
\(141\) −64.7256 −0.0386587
\(142\) 0 0
\(143\) −16.0745 27.8418i −0.00940011 0.0162815i
\(144\) 0 0
\(145\) −61.7817 + 107.009i −0.0353841 + 0.0612871i
\(146\) 0 0
\(147\) 200.785 + 63.6670i 0.112656 + 0.0357222i
\(148\) 0 0
\(149\) 1006.10 1742.62i 0.553176 0.958128i −0.444867 0.895597i \(-0.646749\pi\)
0.998043 0.0625319i \(-0.0199175\pi\)
\(150\) 0 0
\(151\) −853.320 1477.99i −0.459882 0.796539i 0.539072 0.842260i \(-0.318775\pi\)
−0.998954 + 0.0457205i \(0.985442\pi\)
\(152\) 0 0
\(153\) 1128.72 0.596415
\(154\) 0 0
\(155\) −146.969 −0.0761603
\(156\) 0 0
\(157\) −1379.71 2389.72i −0.701354 1.21478i −0.967991 0.250984i \(-0.919246\pi\)
0.266637 0.963797i \(-0.414088\pi\)
\(158\) 0 0
\(159\) −50.0554 + 86.6985i −0.0249664 + 0.0432430i
\(160\) 0 0
\(161\) −483.784 74.8648i −0.236817 0.0366470i
\(162\) 0 0
\(163\) 313.400 542.825i 0.150598 0.260843i −0.780850 0.624719i \(-0.785214\pi\)
0.931447 + 0.363876i \(0.118547\pi\)
\(164\) 0 0
\(165\) −2.62685 4.54983i −0.00123939 0.00214669i
\(166\) 0 0
\(167\) 1952.08 0.904529 0.452265 0.891884i \(-0.350616\pi\)
0.452265 + 0.891884i \(0.350616\pi\)
\(168\) 0 0
\(169\) −2188.46 −0.996112
\(170\) 0 0
\(171\) 180.120 + 311.976i 0.0805502 + 0.139517i
\(172\) 0 0
\(173\) −165.093 + 285.950i −0.0725538 + 0.125667i −0.900020 0.435849i \(-0.856448\pi\)
0.827466 + 0.561516i \(0.189782\pi\)
\(174\) 0 0
\(175\) −1443.48 + 1795.55i −0.623526 + 0.775603i
\(176\) 0 0
\(177\) 115.095 199.350i 0.0488760 0.0846557i
\(178\) 0 0
\(179\) −1159.90 2009.00i −0.484329 0.838883i 0.515509 0.856884i \(-0.327603\pi\)
−0.999838 + 0.0180013i \(0.994270\pi\)
\(180\) 0 0
\(181\) 2064.16 0.847668 0.423834 0.905740i \(-0.360684\pi\)
0.423834 + 0.905740i \(0.360684\pi\)
\(182\) 0 0
\(183\) 128.610 0.0519515
\(184\) 0 0
\(185\) 76.2505 + 132.070i 0.0303030 + 0.0524863i
\(186\) 0 0
\(187\) 233.181 403.882i 0.0911866 0.157940i
\(188\) 0 0
\(189\) −220.578 568.586i −0.0848926 0.218828i
\(190\) 0 0
\(191\) −694.827 + 1203.48i −0.263225 + 0.455919i −0.967097 0.254408i \(-0.918119\pi\)
0.703872 + 0.710327i \(0.251453\pi\)
\(192\) 0 0
\(193\) −1554.86 2693.10i −0.579903 1.00442i −0.995490 0.0948675i \(-0.969757\pi\)
0.415587 0.909553i \(-0.363576\pi\)
\(194\) 0 0
\(195\) 1.39587 0.000512618
\(196\) 0 0
\(197\) −478.386 −0.173013 −0.0865067 0.996251i \(-0.527570\pi\)
−0.0865067 + 0.996251i \(0.527570\pi\)
\(198\) 0 0
\(199\) 2082.32 + 3606.69i 0.741768 + 1.28478i 0.951689 + 0.307062i \(0.0993460\pi\)
−0.209921 + 0.977718i \(0.567321\pi\)
\(200\) 0 0
\(201\) 154.623 267.815i 0.0542600 0.0939810i
\(202\) 0 0
\(203\) 1064.22 + 2743.24i 0.367948 + 0.948462i
\(204\) 0 0
\(205\) −143.961 + 249.349i −0.0490473 + 0.0849525i
\(206\) 0 0
\(207\) 351.859 + 609.437i 0.118144 + 0.204632i
\(208\) 0 0
\(209\) 148.843 0.0492617
\(210\) 0 0
\(211\) 1053.87 0.343844 0.171922 0.985111i \(-0.445002\pi\)
0.171922 + 0.985111i \(0.445002\pi\)
\(212\) 0 0
\(213\) 180.736 + 313.043i 0.0581399 + 0.100701i
\(214\) 0 0
\(215\) −164.879 + 285.578i −0.0523006 + 0.0905873i
\(216\) 0 0
\(217\) −2192.83 + 2727.66i −0.685986 + 0.853297i
\(218\) 0 0
\(219\) 73.9779 128.134i 0.0228263 0.0395364i
\(220\) 0 0
\(221\) 61.9548 + 107.309i 0.0188576 + 0.0326623i
\(222\) 0 0
\(223\) 1069.13 0.321050 0.160525 0.987032i \(-0.448681\pi\)
0.160525 + 0.987032i \(0.448681\pi\)
\(224\) 0 0
\(225\) 3311.76 0.981261
\(226\) 0 0
\(227\) −726.734 1258.74i −0.212489 0.368042i 0.740004 0.672603i \(-0.234824\pi\)
−0.952493 + 0.304561i \(0.901490\pi\)
\(228\) 0 0
\(229\) −2902.06 + 5026.52i −0.837440 + 1.45049i 0.0545885 + 0.998509i \(0.482615\pi\)
−0.892028 + 0.451979i \(0.850718\pi\)
\(230\) 0 0
\(231\) −123.635 19.1324i −0.0352148 0.00544943i
\(232\) 0 0
\(233\) 2948.92 5107.68i 0.829143 1.43612i −0.0695692 0.997577i \(-0.522162\pi\)
0.898712 0.438540i \(-0.144504\pi\)
\(234\) 0 0
\(235\) 40.9859 + 70.9896i 0.0113771 + 0.0197057i
\(236\) 0 0
\(237\) 224.653 0.0615729
\(238\) 0 0
\(239\) −183.362 −0.0496263 −0.0248131 0.999692i \(-0.507899\pi\)
−0.0248131 + 0.999692i \(0.507899\pi\)
\(240\) 0 0
\(241\) 441.072 + 763.959i 0.117892 + 0.204195i 0.918932 0.394416i \(-0.129053\pi\)
−0.801040 + 0.598611i \(0.795720\pi\)
\(242\) 0 0
\(243\) −659.060 + 1141.53i −0.173987 + 0.301354i
\(244\) 0 0
\(245\) −57.3137 260.532i −0.0149455 0.0679380i
\(246\) 0 0
\(247\) −19.7733 + 34.2484i −0.00509372 + 0.00882257i
\(248\) 0 0
\(249\) −302.469 523.891i −0.0769806 0.133334i
\(250\) 0 0
\(251\) 5270.37 1.32535 0.662675 0.748907i \(-0.269421\pi\)
0.662675 + 0.748907i \(0.269421\pi\)
\(252\) 0 0
\(253\) 290.761 0.0722529
\(254\) 0 0
\(255\) 10.1245 + 17.5361i 0.00248635 + 0.00430649i
\(256\) 0 0
\(257\) 2651.53 4592.59i 0.643573 1.11470i −0.341057 0.940043i \(-0.610785\pi\)
0.984629 0.174658i \(-0.0558819\pi\)
\(258\) 0 0
\(259\) 3588.81 + 555.363i 0.860996 + 0.133238i
\(260\) 0 0
\(261\) 2114.88 3663.07i 0.501562 0.868730i
\(262\) 0 0
\(263\) 2198.60 + 3808.09i 0.515481 + 0.892840i 0.999839 + 0.0179696i \(0.00572022\pi\)
−0.484357 + 0.874870i \(0.660946\pi\)
\(264\) 0 0
\(265\) 126.785 0.0293900
\(266\) 0 0
\(267\) 22.9282 0.00525538
\(268\) 0 0
\(269\) 1523.07 + 2638.04i 0.345217 + 0.597933i 0.985393 0.170295i \(-0.0544721\pi\)
−0.640176 + 0.768228i \(0.721139\pi\)
\(270\) 0 0
\(271\) −2777.55 + 4810.85i −0.622597 + 1.07837i 0.366403 + 0.930456i \(0.380589\pi\)
−0.989000 + 0.147914i \(0.952744\pi\)
\(272\) 0 0
\(273\) 20.8269 25.9065i 0.00461722 0.00574335i
\(274\) 0 0
\(275\) 684.173 1185.02i 0.150026 0.259853i
\(276\) 0 0
\(277\) −2665.52 4616.81i −0.578178 1.00143i −0.995688 0.0927620i \(-0.970430\pi\)
0.417510 0.908672i \(-0.362903\pi\)
\(278\) 0 0
\(279\) 5030.97 1.07956
\(280\) 0 0
\(281\) −2917.59 −0.619390 −0.309695 0.950836i \(-0.600227\pi\)
−0.309695 + 0.950836i \(0.600227\pi\)
\(282\) 0 0
\(283\) −529.171 916.552i −0.111152 0.192521i 0.805083 0.593162i \(-0.202121\pi\)
−0.916235 + 0.400641i \(0.868787\pi\)
\(284\) 0 0
\(285\) −3.23130 + 5.59678i −0.000671600 + 0.00116324i
\(286\) 0 0
\(287\) 2479.80 + 6392.20i 0.510028 + 1.31470i
\(288\) 0 0
\(289\) 1557.77 2698.13i 0.317070 0.549181i
\(290\) 0 0
\(291\) 24.5218 + 42.4730i 0.00493984 + 0.00855605i
\(292\) 0 0
\(293\) 7625.47 1.52043 0.760213 0.649674i \(-0.225095\pi\)
0.760213 + 0.649674i \(0.225095\pi\)
\(294\) 0 0
\(295\) −291.523 −0.0575361
\(296\) 0 0
\(297\) 181.115 + 313.701i 0.0353851 + 0.0612887i
\(298\) 0 0
\(299\) −38.6267 + 66.9034i −0.00747104 + 0.0129402i
\(300\) 0 0
\(301\) 2840.11 + 7320.97i 0.543858 + 1.40191i
\(302\) 0 0
\(303\) −592.629 + 1026.46i −0.112362 + 0.194616i
\(304\) 0 0
\(305\) −81.4390 141.057i −0.0152891 0.0264816i
\(306\) 0 0
\(307\) 5138.09 0.955199 0.477600 0.878578i \(-0.341507\pi\)
0.477600 + 0.878578i \(0.341507\pi\)
\(308\) 0 0
\(309\) 77.3080 0.0142327
\(310\) 0 0
\(311\) −2640.95 4574.26i −0.481526 0.834027i 0.518250 0.855229i \(-0.326584\pi\)
−0.999775 + 0.0212025i \(0.993251\pi\)
\(312\) 0 0
\(313\) −4103.85 + 7108.07i −0.741097 + 1.28362i 0.210900 + 0.977508i \(0.432361\pi\)
−0.951996 + 0.306109i \(0.900973\pi\)
\(314\) 0 0
\(315\) −240.267 + 298.867i −0.0429762 + 0.0534580i
\(316\) 0 0
\(317\) −697.788 + 1208.60i −0.123633 + 0.214139i −0.921198 0.389095i \(-0.872788\pi\)
0.797565 + 0.603233i \(0.206121\pi\)
\(318\) 0 0
\(319\) −873.822 1513.50i −0.153369 0.265642i
\(320\) 0 0
\(321\) 301.187 0.0523694
\(322\) 0 0
\(323\) −573.676 −0.0988241
\(324\) 0 0
\(325\) 181.781 + 314.853i 0.0310258 + 0.0537382i
\(326\) 0 0
\(327\) −274.647 + 475.702i −0.0464465 + 0.0804477i
\(328\) 0 0
\(329\) 1929.05 + 298.516i 0.323257 + 0.0500235i
\(330\) 0 0
\(331\) −4567.17 + 7910.58i −0.758413 + 1.31361i 0.185247 + 0.982692i \(0.440691\pi\)
−0.943660 + 0.330917i \(0.892642\pi\)
\(332\) 0 0
\(333\) −2610.16 4520.93i −0.429538 0.743981i
\(334\) 0 0
\(335\) −391.644 −0.0638741
\(336\) 0 0
\(337\) −2501.41 −0.404333 −0.202166 0.979351i \(-0.564798\pi\)
−0.202166 + 0.979351i \(0.564798\pi\)
\(338\) 0 0
\(339\) −106.390 184.273i −0.0170452 0.0295231i
\(340\) 0 0
\(341\) 1039.34 1800.20i 0.165055 0.285883i
\(342\) 0 0
\(343\) −5690.46 2823.52i −0.895790 0.444478i
\(344\) 0 0
\(345\) −6.31227 + 10.9332i −0.000985047 + 0.00170615i
\(346\) 0 0
\(347\) −2747.24 4758.36i −0.425013 0.736144i 0.571409 0.820666i \(-0.306397\pi\)
−0.996422 + 0.0845217i \(0.973064\pi\)
\(348\) 0 0
\(349\) 4763.86 0.730670 0.365335 0.930876i \(-0.380954\pi\)
0.365335 + 0.930876i \(0.380954\pi\)
\(350\) 0 0
\(351\) −96.2424 −0.0146354
\(352\) 0 0
\(353\) −5.04275 8.73430i −0.000760335 0.00131694i 0.865645 0.500658i \(-0.166909\pi\)
−0.866405 + 0.499341i \(0.833575\pi\)
\(354\) 0 0
\(355\) 228.893 396.454i 0.0342207 0.0592721i
\(356\) 0 0
\(357\) 476.520 + 73.7406i 0.0706446 + 0.0109321i
\(358\) 0 0
\(359\) 3220.84 5578.67i 0.473509 0.820141i −0.526031 0.850465i \(-0.676321\pi\)
0.999540 + 0.0303239i \(0.00965386\pi\)
\(360\) 0 0
\(361\) 3337.95 + 5781.51i 0.486653 + 0.842908i
\(362\) 0 0
\(363\) 74.3066 0.0107440
\(364\) 0 0
\(365\) −187.379 −0.0268708
\(366\) 0 0
\(367\) −1696.89 2939.10i −0.241354 0.418037i 0.719746 0.694237i \(-0.244258\pi\)
−0.961100 + 0.276200i \(0.910925\pi\)
\(368\) 0 0
\(369\) 4928.01 8535.56i 0.695235 1.20418i
\(370\) 0 0
\(371\) 1891.68 2353.06i 0.264720 0.329285i
\(372\) 0 0
\(373\) −1576.88 + 2731.24i −0.218895 + 0.379138i −0.954471 0.298305i \(-0.903579\pi\)
0.735575 + 0.677443i \(0.236912\pi\)
\(374\) 0 0
\(375\) 59.5566 + 103.155i 0.00820131 + 0.0142051i
\(376\) 0 0
\(377\) 464.338 0.0634340
\(378\) 0 0
\(379\) −7645.29 −1.03618 −0.518090 0.855326i \(-0.673357\pi\)
−0.518090 + 0.855326i \(0.673357\pi\)
\(380\) 0 0
\(381\) 626.190 + 1084.59i 0.0842013 + 0.145841i
\(382\) 0 0
\(383\) −4080.84 + 7068.23i −0.544442 + 0.943001i 0.454200 + 0.890900i \(0.349925\pi\)
−0.998642 + 0.0521013i \(0.983408\pi\)
\(384\) 0 0
\(385\) 57.3051 + 147.716i 0.00758581 + 0.0195540i
\(386\) 0 0
\(387\) 5644.03 9775.75i 0.741349 1.28405i
\(388\) 0 0
\(389\) −5887.53 10197.5i −0.767377 1.32914i −0.938981 0.343970i \(-0.888228\pi\)
0.171603 0.985166i \(-0.445105\pi\)
\(390\) 0 0
\(391\) −1120.66 −0.144947
\(392\) 0 0
\(393\) 1322.44 0.169741
\(394\) 0 0
\(395\) −142.256 246.394i −0.0181207 0.0313860i
\(396\) 0 0
\(397\) −5045.80 + 8739.58i −0.637888 + 1.10485i 0.348008 + 0.937492i \(0.386858\pi\)
−0.985895 + 0.167363i \(0.946475\pi\)
\(398\) 0 0
\(399\) 55.6607 + 143.477i 0.00698375 + 0.0180021i
\(400\) 0 0
\(401\) −4345.00 + 7525.76i −0.541095 + 0.937203i 0.457747 + 0.889082i \(0.348657\pi\)
−0.998842 + 0.0481207i \(0.984677\pi\)
\(402\) 0 0
\(403\) 276.147 + 478.301i 0.0341337 + 0.0591213i
\(404\) 0 0
\(405\) 543.320 0.0666612
\(406\) 0 0
\(407\) −2156.93 −0.262690
\(408\) 0 0
\(409\) −6752.35 11695.4i −0.816337 1.41394i −0.908364 0.418181i \(-0.862668\pi\)
0.0920263 0.995757i \(-0.470666\pi\)
\(410\) 0 0
\(411\) −127.215 + 220.343i −0.0152678 + 0.0264446i
\(412\) 0 0
\(413\) −4349.63 + 5410.49i −0.518235 + 0.644632i
\(414\) 0 0
\(415\) −383.061 + 663.482i −0.0453102 + 0.0784796i
\(416\) 0 0
\(417\) 296.564 + 513.665i 0.0348269 + 0.0603220i
\(418\) 0 0
\(419\) 12360.1 1.44112 0.720559 0.693394i \(-0.243885\pi\)
0.720559 + 0.693394i \(0.243885\pi\)
\(420\) 0 0
\(421\) −2082.48 −0.241078 −0.120539 0.992709i \(-0.538462\pi\)
−0.120539 + 0.992709i \(0.538462\pi\)
\(422\) 0 0
\(423\) −1403.00 2430.07i −0.161268 0.279325i
\(424\) 0 0
\(425\) −2636.96 + 4567.36i −0.300968 + 0.521292i
\(426\) 0 0
\(427\) −3833.02 593.153i −0.434409 0.0672241i
\(428\) 0 0
\(429\) −9.87140 + 17.0978i −0.00111095 + 0.00192421i
\(430\) 0 0
\(431\) −6230.17 10791.0i −0.696280 1.20599i −0.969747 0.244111i \(-0.921504\pi\)
0.273468 0.961881i \(-0.411829\pi\)
\(432\) 0 0
\(433\) −9716.57 −1.07840 −0.539201 0.842177i \(-0.681274\pi\)
−0.539201 + 0.842177i \(0.681274\pi\)
\(434\) 0 0
\(435\) 75.8808 0.00836370
\(436\) 0 0
\(437\) −178.834 309.749i −0.0195762 0.0339069i
\(438\) 0 0
\(439\) −7512.57 + 13012.1i −0.816755 + 1.41466i 0.0913066 + 0.995823i \(0.470896\pi\)
−0.908061 + 0.418838i \(0.862438\pi\)
\(440\) 0 0
\(441\) 1961.93 + 8918.40i 0.211849 + 0.963006i
\(442\) 0 0
\(443\) 7254.42 12565.0i 0.778032 1.34759i −0.155043 0.987908i \(-0.549552\pi\)
0.933075 0.359683i \(-0.117115\pi\)
\(444\) 0 0
\(445\) −14.5187 25.1472i −0.00154664 0.00267886i
\(446\) 0 0
\(447\) −1235.70 −0.130753
\(448\) 0 0
\(449\) −1320.31 −0.138774 −0.0693869 0.997590i \(-0.522104\pi\)
−0.0693869 + 0.997590i \(0.522104\pi\)
\(450\) 0 0
\(451\) −2036.15 3526.71i −0.212591 0.368218i
\(452\) 0 0
\(453\) −524.027 + 907.642i −0.0543509 + 0.0941385i
\(454\) 0 0
\(455\) −41.6018 6.43781i −0.00428643 0.000663317i
\(456\) 0 0
\(457\) 2948.18 5106.40i 0.301773 0.522686i −0.674765 0.738033i \(-0.735755\pi\)
0.976538 + 0.215347i \(0.0690883\pi\)
\(458\) 0 0
\(459\) −698.060 1209.08i −0.0709862 0.122952i
\(460\) 0 0
\(461\) −2076.99 −0.209837 −0.104919 0.994481i \(-0.533458\pi\)
−0.104919 + 0.994481i \(0.533458\pi\)
\(462\) 0 0
\(463\) −13195.4 −1.32450 −0.662249 0.749284i \(-0.730398\pi\)
−0.662249 + 0.749284i \(0.730398\pi\)
\(464\) 0 0
\(465\) 45.1272 + 78.1626i 0.00450048 + 0.00779506i
\(466\) 0 0
\(467\) 2433.80 4215.46i 0.241162 0.417705i −0.719883 0.694095i \(-0.755805\pi\)
0.961046 + 0.276390i \(0.0891381\pi\)
\(468\) 0 0
\(469\) −5843.46 + 7268.67i −0.575322 + 0.715642i
\(470\) 0 0
\(471\) −847.284 + 1467.54i −0.0828891 + 0.143568i
\(472\) 0 0
\(473\) −2331.99 4039.13i −0.226692 0.392641i
\(474\) 0 0
\(475\) −1683.21 −0.162592
\(476\) 0 0
\(477\) −4340.04 −0.416597
\(478\) 0 0
\(479\) −1491.85 2583.97i −0.142306 0.246481i 0.786059 0.618152i \(-0.212118\pi\)
−0.928365 + 0.371671i \(0.878785\pi\)
\(480\) 0 0
\(481\) 286.541 496.304i 0.0271625 0.0470468i
\(482\) 0 0
\(483\) 108.732 + 280.278i 0.0102432 + 0.0264039i
\(484\) 0 0
\(485\) 31.0556 53.7899i 0.00290755 0.00503603i
\(486\) 0 0
\(487\) −6612.45 11453.1i −0.615274 1.06569i −0.990336 0.138687i \(-0.955712\pi\)
0.375062 0.927000i \(-0.377621\pi\)
\(488\) 0 0
\(489\) −384.921 −0.0355966
\(490\) 0 0
\(491\) 13182.9 1.21168 0.605841 0.795586i \(-0.292837\pi\)
0.605841 + 0.795586i \(0.292837\pi\)
\(492\) 0 0
\(493\) 3367.91 + 5833.40i 0.307674 + 0.532907i
\(494\) 0 0
\(495\) 113.880 197.246i 0.0103405 0.0179102i
\(496\) 0 0
\(497\) −3942.78 10163.3i −0.355851 0.917279i
\(498\) 0 0
\(499\) 808.066 1399.61i 0.0724930 0.125562i −0.827500 0.561465i \(-0.810238\pi\)
0.899993 + 0.435904i \(0.143571\pi\)
\(500\) 0 0
\(501\) −599.390 1038.17i −0.0534506 0.0925792i
\(502\) 0 0
\(503\) −7369.76 −0.653283 −0.326642 0.945148i \(-0.605917\pi\)
−0.326642 + 0.945148i \(0.605917\pi\)
\(504\) 0 0
\(505\) 1501.07 0.132271
\(506\) 0 0
\(507\) 671.971 + 1163.89i 0.0588624 + 0.101953i
\(508\) 0 0
\(509\) 6434.20 11144.4i 0.560296 0.970461i −0.437174 0.899377i \(-0.644021\pi\)
0.997470 0.0710845i \(-0.0226460\pi\)
\(510\) 0 0
\(511\) −2795.75 + 3477.63i −0.242029 + 0.301059i
\(512\) 0 0
\(513\) 222.791 385.886i 0.0191744 0.0332110i
\(514\) 0 0
\(515\) −48.9533 84.7897i −0.00418862 0.00725491i
\(516\) 0 0
\(517\) −1159.38 −0.0986259
\(518\) 0 0
\(519\) 202.769 0.0171494
\(520\) 0 0
\(521\) 10943.1 + 18954.0i 0.920201 + 1.59383i 0.799103 + 0.601194i \(0.205308\pi\)
0.121098 + 0.992641i \(0.461359\pi\)
\(522\) 0 0
\(523\) 5529.04 9576.58i 0.462272 0.800678i −0.536802 0.843708i \(-0.680368\pi\)
0.999074 + 0.0430303i \(0.0137012\pi\)
\(524\) 0 0
\(525\) 1398.15 + 216.361i 0.116229 + 0.0179862i
\(526\) 0 0
\(527\) −4005.87 + 6938.38i −0.331117 + 0.573511i
\(528\) 0 0
\(529\) 5734.15 + 9931.84i 0.471287 + 0.816294i
\(530\) 0 0
\(531\) 9979.26 0.815561
\(532\) 0 0
\(533\) 1081.98 0.0879285
\(534\) 0 0
\(535\) −190.719 330.335i −0.0154121 0.0266946i
\(536\) 0 0
\(537\) −712.299 + 1233.74i −0.0572402 + 0.0991429i
\(538\) 0 0
\(539\) 3596.52 + 1140.42i 0.287408 + 0.0911343i
\(540\) 0 0
\(541\) 3696.83 6403.09i 0.293788 0.508855i −0.680915 0.732363i \(-0.738418\pi\)
0.974702 + 0.223508i \(0.0717508\pi\)
\(542\) 0 0
\(543\) −633.805 1097.78i −0.0500906 0.0867594i
\(544\) 0 0
\(545\) 695.653 0.0546762
\(546\) 0 0
\(547\) −7218.17 −0.564217 −0.282108 0.959383i \(-0.591034\pi\)
−0.282108 + 0.959383i \(0.591034\pi\)
\(548\) 0 0
\(549\) 2787.77 + 4828.57i 0.216720 + 0.375370i
\(550\) 0 0
\(551\) −1074.90 + 1861.77i −0.0831072 + 0.143946i
\(552\) 0 0
\(553\) −6695.43 1036.11i −0.514862 0.0796740i
\(554\) 0 0
\(555\) 46.8257 81.1045i 0.00358134 0.00620306i
\(556\) 0 0
\(557\) −1890.80 3274.97i −0.143835 0.249129i 0.785103 0.619365i \(-0.212610\pi\)
−0.928938 + 0.370236i \(0.879277\pi\)
\(558\) 0 0
\(559\) 1239.19 0.0937607
\(560\) 0 0
\(561\) −286.395 −0.0215537
\(562\) 0 0
\(563\) −8866.86 15357.9i −0.663754 1.14966i −0.979621 0.200853i \(-0.935629\pi\)
0.315867 0.948803i \(-0.397705\pi\)
\(564\) 0 0
\(565\) −134.738 + 233.372i −0.0100327 + 0.0173771i
\(566\) 0 0
\(567\) 8106.51 10083.7i 0.600426 0.746869i
\(568\) 0 0
\(569\) 814.217 1410.26i 0.0599890 0.103904i −0.834471 0.551052i \(-0.814227\pi\)
0.894460 + 0.447148i \(0.147560\pi\)
\(570\) 0 0
\(571\) 3126.26 + 5414.83i 0.229124 + 0.396854i 0.957549 0.288272i \(-0.0930806\pi\)
−0.728425 + 0.685126i \(0.759747\pi\)
\(572\) 0 0
\(573\) 853.392 0.0622181
\(574\) 0 0
\(575\) −3288.11 −0.238476
\(576\) 0 0
\(577\) 8488.32 + 14702.2i 0.612432 + 1.06076i 0.990829 + 0.135120i \(0.0431420\pi\)
−0.378397 + 0.925643i \(0.623525\pi\)
\(578\) 0 0
\(579\) −954.845 + 1653.84i −0.0685354 + 0.118707i
\(580\) 0 0
\(581\) 6598.41 + 17008.8i 0.471167 + 1.21453i
\(582\) 0 0
\(583\) −896.606 + 1552.97i −0.0636941 + 0.110321i
\(584\) 0 0
\(585\) 30.2572 + 52.4071i 0.00213843 + 0.00370387i
\(586\) 0 0
\(587\) 6987.50 0.491320 0.245660 0.969356i \(-0.420995\pi\)
0.245660 + 0.969356i \(0.420995\pi\)
\(588\) 0 0
\(589\) −2557.01 −0.178879
\(590\) 0 0
\(591\) 146.890 + 254.420i 0.0102237 + 0.0177080i
\(592\) 0 0
\(593\) −8175.55 + 14160.5i −0.566154 + 0.980608i 0.430787 + 0.902454i \(0.358236\pi\)
−0.996941 + 0.0781545i \(0.975097\pi\)
\(594\) 0 0
\(595\) −220.867 569.331i −0.0152179 0.0392274i
\(596\) 0 0
\(597\) 1278.76 2214.88i 0.0876654 0.151841i
\(598\) 0 0
\(599\) 8466.18 + 14663.9i 0.577494 + 1.00025i 0.995766 + 0.0919269i \(0.0293026\pi\)
−0.418272 + 0.908322i \(0.637364\pi\)
\(600\) 0 0
\(601\) −6651.59 −0.451454 −0.225727 0.974191i \(-0.572476\pi\)
−0.225727 + 0.974191i \(0.572476\pi\)
\(602\) 0 0
\(603\) 13406.5 0.905401
\(604\) 0 0
\(605\) −47.0528 81.4978i −0.00316193 0.00547662i
\(606\) 0 0
\(607\) 5761.25 9978.77i 0.385242 0.667258i −0.606561 0.795037i \(-0.707451\pi\)
0.991803 + 0.127779i \(0.0407847\pi\)
\(608\) 0 0
\(609\) 1132.17 1408.30i 0.0753329 0.0937065i
\(610\) 0 0
\(611\) 154.020 266.771i 0.0101980 0.0176635i
\(612\) 0 0
\(613\) −2445.04 4234.94i −0.161100 0.279034i 0.774163 0.632986i \(-0.218171\pi\)
−0.935263 + 0.353952i \(0.884838\pi\)
\(614\) 0 0
\(615\) 176.815 0.0115933
\(616\) 0 0
\(617\) 18700.2 1.22016 0.610082 0.792338i \(-0.291137\pi\)
0.610082 + 0.792338i \(0.291137\pi\)
\(618\) 0 0
\(619\) −10163.7 17604.0i −0.659955 1.14308i −0.980627 0.195886i \(-0.937242\pi\)
0.320671 0.947191i \(-0.396092\pi\)
\(620\) 0 0
\(621\) 435.217 753.818i 0.0281234 0.0487112i
\(622\) 0 0
\(623\) −683.340 105.746i −0.0439446 0.00680034i
\(624\) 0 0
\(625\) −7699.27 + 13335.5i −0.492753 + 0.853474i
\(626\) 0 0
\(627\) −45.7026 79.1592i −0.00291098 0.00504197i
\(628\) 0 0
\(629\) 8313.30 0.526984
\(630\) 0 0
\(631\) −5658.00 −0.356959 −0.178480 0.983944i \(-0.557118\pi\)
−0.178480 + 0.983944i \(0.557118\pi\)
\(632\) 0 0
\(633\) −323.592 560.478i −0.0203185 0.0351927i
\(634\) 0 0
\(635\) 793.039 1373.58i 0.0495603 0.0858409i
\(636\) 0 0
\(637\) −740.195 + 676.050i −0.0460402 + 0.0420503i
\(638\) 0 0
\(639\) −7835.32 + 13571.2i −0.485071 + 0.840168i
\(640\) 0 0
\(641\) 4061.92 + 7035.45i 0.250291 + 0.433516i 0.963606 0.267327i \(-0.0861405\pi\)
−0.713315 + 0.700843i \(0.752807\pi\)
\(642\) 0 0
\(643\) 21274.9 1.30482 0.652411 0.757865i \(-0.273758\pi\)
0.652411 + 0.757865i \(0.273758\pi\)
\(644\) 0 0
\(645\) 202.505 0.0123622
\(646\) 0 0
\(647\) −1545.18 2676.34i −0.0938909 0.162624i 0.815254 0.579103i \(-0.196597\pi\)
−0.909145 + 0.416479i \(0.863264\pi\)
\(648\) 0 0
\(649\) 2061.61 3570.81i 0.124692 0.215973i
\(650\) 0 0
\(651\) 2123.96 + 328.679i 0.127872 + 0.0197880i
\(652\) 0 0
\(653\) 2826.85 4896.25i 0.169408 0.293423i −0.768804 0.639484i \(-0.779148\pi\)
0.938212 + 0.346062i \(0.112481\pi\)
\(654\) 0 0
\(655\) −837.399 1450.42i −0.0499540 0.0865229i
\(656\) 0 0
\(657\) 6414.24 0.380888
\(658\) 0 0
\(659\) 4493.32 0.265607 0.132803 0.991142i \(-0.457602\pi\)
0.132803 + 0.991142i \(0.457602\pi\)
\(660\) 0 0
\(661\) 14381.9 + 24910.2i 0.846282 + 1.46580i 0.884503 + 0.466535i \(0.154498\pi\)
−0.0382207 + 0.999269i \(0.512169\pi\)
\(662\) 0 0
\(663\) 38.0467 65.8988i 0.00222867 0.00386018i
\(664\) 0 0
\(665\) 122.116 151.900i 0.00712101 0.00885782i
\(666\) 0 0
\(667\) −2099.78 + 3636.93i −0.121895 + 0.211128i
\(668\) 0 0
\(669\) −328.278 568.595i −0.0189716 0.0328597i
\(670\) 0 0
\(671\) 2303.70 0.132538
\(672\) 0 0
\(673\) 23237.8 1.33098 0.665492 0.746405i \(-0.268222\pi\)
0.665492 + 0.746405i \(0.268222\pi\)
\(674\) 0 0
\(675\) −2048.17 3547.53i −0.116791 0.202288i
\(676\) 0 0
\(677\) −4622.69 + 8006.73i −0.262429 + 0.454540i −0.966887 0.255206i \(-0.917857\pi\)
0.704458 + 0.709746i \(0.251190\pi\)
\(678\) 0 0
\(679\) −534.947 1378.94i −0.0302347 0.0779362i
\(680\) 0 0
\(681\) −446.291 + 772.998i −0.0251129 + 0.0434968i
\(682\) 0 0
\(683\) 5013.31 + 8683.30i 0.280862 + 0.486467i 0.971597 0.236640i \(-0.0760463\pi\)
−0.690735 + 0.723108i \(0.742713\pi\)
\(684\) 0 0
\(685\) 322.223 0.0179730
\(686\) 0 0
\(687\) 3564.34 0.197945
\(688\) 0 0
\(689\) −238.223 412.614i −0.0131721 0.0228147i
\(690\) 0 0
\(691\) 1120.34 1940.48i 0.0616783 0.106830i −0.833537 0.552463i \(-0.813688\pi\)
0.895216 + 0.445633i \(0.147021\pi\)
\(692\) 0 0
\(693\) −1961.63 5056.52i −0.107527 0.277174i
\(694\) 0 0
\(695\) 375.584 650.531i 0.0204989 0.0355051i
\(696\) 0 0
\(697\) 7847.79 + 13592.8i 0.426479 + 0.738684i
\(698\) 0 0
\(699\) −3621.89 −0.195983
\(700\) 0 0
\(701\) −2362.56 −0.127293 −0.0636467 0.997972i \(-0.520273\pi\)
−0.0636467 + 0.997972i \(0.520273\pi\)
\(702\) 0 0
\(703\) 1326.63 + 2297.78i 0.0711730 + 0.123275i
\(704\) 0 0
\(705\) 25.1696 43.5950i 0.00134460 0.00232891i
\(706\) 0 0
\(707\) 22396.5 27858.9i 1.19138 1.48196i
\(708\) 0 0
\(709\) 3202.58 5547.03i 0.169641 0.293827i −0.768653 0.639666i \(-0.779073\pi\)
0.938294 + 0.345840i \(0.112406\pi\)
\(710\) 0 0
\(711\) 4869.62 + 8434.44i 0.256857 + 0.444889i
\(712\) 0 0
\(713\) −4995.05 −0.262365
\(714\) 0 0
\(715\) 25.0033 0.00130779
\(716\) 0 0
\(717\) 56.3015 + 97.5171i 0.00293252 + 0.00507928i
\(718\) 0 0
\(719\) 4851.51 8403.07i 0.251642 0.435857i −0.712336 0.701839i \(-0.752363\pi\)
0.963978 + 0.265981i \(0.0856960\pi\)
\(720\) 0 0
\(721\) −2304.04 356.547i −0.119011 0.0184168i
\(722\) 0 0
\(723\) 270.864 469.150i 0.0139330 0.0241326i
\(724\) 0 0
\(725\) 9881.74 + 17115.7i 0.506205 + 0.876773i
\(726\) 0 0
\(727\) −23233.2 −1.18524 −0.592621 0.805481i \(-0.701907\pi\)
−0.592621 + 0.805481i \(0.701907\pi\)
\(728\) 0 0
\(729\) −18052.6 −0.917167
\(730\) 0 0
\(731\) 8988.04 + 15567.7i 0.454767 + 0.787680i
\(732\) 0 0
\(733\) 1072.05 1856.85i 0.0540206 0.0935664i −0.837751 0.546053i \(-0.816130\pi\)
0.891771 + 0.452487i \(0.149463\pi\)
\(734\) 0 0
\(735\) −120.961 + 110.478i −0.00607034 + 0.00554428i
\(736\) 0 0
\(737\) 2769.65 4797.17i 0.138428 0.239764i
\(738\) 0 0
\(739\) −5149.39 8919.01i −0.256324 0.443966i 0.708930 0.705279i \(-0.249178\pi\)
−0.965254 + 0.261312i \(0.915845\pi\)
\(740\) 0 0
\(741\) 24.2858 0.00120400
\(742\) 0 0
\(743\) −7196.07 −0.355314 −0.177657 0.984092i \(-0.556852\pi\)
−0.177657 + 0.984092i \(0.556852\pi\)
\(744\) 0 0
\(745\) 782.479 + 1355.29i 0.0384803 + 0.0666498i
\(746\) 0 0
\(747\) 13112.7 22711.9i 0.642263 1.11243i
\(748\) 0 0
\(749\) −8976.39 1389.08i −0.437904 0.0677649i
\(750\) 0 0
\(751\) −13040.4 + 22586.7i −0.633624 + 1.09747i 0.353180 + 0.935555i \(0.385100\pi\)
−0.986805 + 0.161915i \(0.948233\pi\)
\(752\) 0 0
\(753\) −1618.28 2802.94i −0.0783178 0.135650i
\(754\) 0 0
\(755\) 1327.31 0.0639811
\(756\) 0 0
\(757\) 11607.4 0.557302 0.278651 0.960392i \(-0.410113\pi\)
0.278651 + 0.960392i \(0.410113\pi\)
\(758\) 0 0
\(759\) −89.2788 154.635i −0.00426958 0.00739514i
\(760\) 0 0
\(761\) 9518.76 16487.0i 0.453423 0.785351i −0.545173 0.838323i \(-0.683536\pi\)
0.998596 + 0.0529723i \(0.0168695\pi\)
\(762\) 0 0
\(763\) 10379.4 12910.9i 0.492475 0.612589i
\(764\) 0 0
\(765\) −438.920 + 760.232i −0.0207441 + 0.0359297i
\(766\) 0 0
\(767\) 547.757 + 948.742i 0.0257866 + 0.0446638i
\(768\) 0 0
\(769\) 6598.66 0.309433 0.154716 0.987959i \(-0.450554\pi\)
0.154716 + 0.987959i \(0.450554\pi\)
\(770\) 0 0
\(771\) −3256.64 −0.152120
\(772\) 0 0
\(773\) −9933.59 17205.5i −0.462207 0.800567i 0.536863 0.843669i \(-0.319609\pi\)
−0.999071 + 0.0431025i \(0.986276\pi\)
\(774\) 0 0
\(775\) −11753.6 + 20357.8i −0.544775 + 0.943578i
\(776\) 0 0
\(777\) −806.594 2079.16i −0.0372412 0.0959969i
\(778\) 0 0
\(779\) −2504.68 + 4338.23i −0.115198 + 0.199529i
\(780\) 0 0
\(781\) 3237.39 + 5607.32i 0.148326 + 0.256909i
\(782\) 0 0
\(783\) −5231.81 −0.238786
\(784\) 0 0
\(785\) 2146.08 0.0975759
\(786\) 0 0
\(787\) −10806.5 18717.4i −0.489466 0.847779i 0.510461 0.859901i \(-0.329475\pi\)
−0.999927 + 0.0121217i \(0.996141\pi\)
\(788\) 0 0
\(789\) 1350.17 2338.56i 0.0609219 0.105520i
\(790\) 0 0
\(791\) 2320.92 + 5982.64i 0.104326 + 0.268923i
\(792\) 0 0
\(793\) −306.039 + 530.075i −0.0137046 + 0.0237371i
\(794\) 0 0
\(795\) −38.9297 67.4282i −0.00173672 0.00300809i
\(796\) 0 0
\(797\) −34265.2 −1.52288 −0.761441 0.648234i \(-0.775508\pi\)
−0.761441 + 0.648234i \(0.775508\pi\)
\(798\) 0 0
\(799\) 4468.53 0.197854
\(800\) 0 0
\(801\) 496.997 + 860.824i 0.0219233 + 0.0379722i
\(802\) 0 0
\(803\) 1325.11 2295.16i 0.0582344 0.100865i
\(804\) 0 0
\(805\) 238.551 296.734i 0.0104445 0.0129919i
\(806\) 0 0
\(807\) 935.324 1620.03i 0.0407992 0.0706663i
\(808\) 0 0
\(809\) −6359.67 11015.3i −0.276383 0.478710i 0.694100 0.719879i \(-0.255803\pi\)
−0.970483 + 0.241169i \(0.922469\pi\)
\(810\) 0 0
\(811\) −24550.0 −1.06297 −0.531483 0.847069i \(-0.678365\pi\)
−0.531483 + 0.847069i \(0.678365\pi\)
\(812\) 0 0
\(813\) 3411.40 0.147163
\(814\) 0 0
\(815\) 243.741 + 422.173i 0.0104759 + 0.0181449i
\(816\) 0 0
\(817\) −2868.60 + 4968.56i −0.122839 + 0.212764i
\(818\) 0 0
\(819\) 1424.09 + 220.376i 0.0607591 + 0.00940237i
\(820\) 0 0
\(821\) −6241.28 + 10810.2i −0.265313 + 0.459536i −0.967646 0.252313i \(-0.918809\pi\)
0.702332 + 0.711849i \(0.252142\pi\)
\(822\) 0 0
\(823\) 17471.3 + 30261.2i 0.739990 + 1.28170i 0.952499 + 0.304541i \(0.0985029\pi\)
−0.212510 + 0.977159i \(0.568164\pi\)
\(824\) 0 0
\(825\) −840.307 −0.0354615
\(826\) 0 0
\(827\) −16671.7 −0.701007 −0.350503 0.936561i \(-0.613989\pi\)
−0.350503 + 0.936561i \(0.613989\pi\)
\(828\) 0 0
\(829\) −1201.84 2081.66i −0.0503520 0.0872122i 0.839751 0.542972i \(-0.182701\pi\)
−0.890103 + 0.455760i \(0.849368\pi\)
\(830\) 0 0
\(831\) −1636.91 + 2835.20i −0.0683317 + 0.118354i
\(832\) 0 0
\(833\) −13861.8 4395.45i −0.576572 0.182825i
\(834\) 0 0
\(835\) −759.097 + 1314.79i −0.0314606 + 0.0544914i
\(836\) 0 0
\(837\) −3111.42 5389.13i −0.128490 0.222552i
\(838\) 0 0
\(839\) −25451.3 −1.04729 −0.523646 0.851936i \(-0.675428\pi\)
−0.523646 + 0.851936i \(0.675428\pi\)
\(840\) 0 0
\(841\) 852.803 0.0349667
\(842\) 0 0
\(843\) 895.851 + 1551.66i 0.0366011 + 0.0633950i
\(844\) 0 0
\(845\) 851.017 1474.00i 0.0346460 0.0600086i
\(846\) 0 0
\(847\) −2214.59 342.704i −0.0898398 0.0139025i
\(848\) 0 0
\(849\) −324.966 + 562.858i −0.0131364 + 0.0227529i
\(850\) 0 0
\(851\) 2591.53 + 4488.66i 0.104391 + 0.180810i
\(852\) 0 0
\(853\) −360.609 −0.0144748 −0.00723741 0.999974i \(-0.502304\pi\)
−0.00723741 + 0.999974i \(0.502304\pi\)
\(854\) 0 0
\(855\) −280.169 −0.0112065
\(856\) 0 0
\(857\) −5909.27 10235.2i −0.235539 0.407966i 0.723890 0.689915i \(-0.242352\pi\)
−0.959429 + 0.281950i \(0.909019\pi\)
\(858\) 0 0
\(859\) −2655.32 + 4599.14i −0.105469 + 0.182678i −0.913930 0.405872i \(-0.866968\pi\)
0.808461 + 0.588550i \(0.200301\pi\)
\(860\) 0 0
\(861\) 2638.13 3281.57i 0.104422 0.129890i
\(862\) 0 0
\(863\) −7320.55 + 12679.6i −0.288754 + 0.500136i −0.973513 0.228634i \(-0.926574\pi\)
0.684759 + 0.728770i \(0.259908\pi\)
\(864\) 0 0
\(865\) −128.398 222.392i −0.00504702 0.00874169i
\(866\) 0 0
\(867\) −1913.26 −0.0749455
\(868\) 0 0
\(869\) 4024.05 0.157085
\(870\) 0 0
\(871\) 735.878 + 1274.58i 0.0286272 + 0.0495838i
\(872\) 0 0
\(873\) −1063.08 + 1841.30i −0.0412139 + 0.0713846i
\(874\) 0 0
\(875\) −1299.24 3349.05i −0.0501968 0.129393i
\(876\) 0 0
\(877\) 25370.5 43942.9i 0.976852 1.69196i 0.303169 0.952937i \(-0.401955\pi\)
0.673683 0.739021i \(-0.264711\pi\)
\(878\) 0 0
\(879\) −2341.42 4055.45i −0.0898452 0.155617i
\(880\) 0 0
\(881\) −23328.6 −0.892122 −0.446061 0.895003i \(-0.647174\pi\)
−0.446061 + 0.895003i \(0.647174\pi\)
\(882\) 0 0
\(883\) 27284.1 1.03985 0.519923 0.854213i \(-0.325961\pi\)
0.519923 + 0.854213i \(0.325961\pi\)
\(884\) 0 0
\(885\) 89.5128 + 155.041i 0.00339993 + 0.00588886i
\(886\) 0 0
\(887\) 22661.1 39250.2i 0.857819 1.48579i −0.0161863 0.999869i \(-0.505152\pi\)
0.874005 0.485917i \(-0.161514\pi\)
\(888\) 0 0
\(889\) −13660.4 35212.6i −0.515362 1.32845i
\(890\) 0 0
\(891\) −3842.27 + 6655.01i −0.144468 + 0.250226i
\(892\) 0 0
\(893\) 713.083 + 1235.10i 0.0267216 + 0.0462832i
\(894\) 0 0
\(895\) 1804.18 0.0673823
\(896\) 0 0
\(897\) 47.4416 0.00176592
\(898\) 0 0
\(899\) 15011.6 + 26000.8i 0.556913 + 0.964601i
\(900\) 0 0
\(901\) 3455.73 5985.50i 0.127777 0.221316i
\(902\) 0 0
\(903\) 3021.45 3758.37i 0.111348 0.138506i
\(904\) 0 0
\(905\) −802.682 + 1390.29i −0.0294829 + 0.0510660i
\(906\) 0 0
\(907\) −7640.29 13233.4i −0.279704 0.484462i 0.691607 0.722274i \(-0.256903\pi\)
−0.971311 + 0.237812i \(0.923570\pi\)
\(908\) 0 0
\(909\) −51383.8 −1.87491
\(910\) 0 0
\(911\) −34690.9 −1.26165 −0.630824 0.775926i \(-0.717283\pi\)
−0.630824 + 0.775926i \(0.717283\pi\)
\(912\) 0 0
\(913\) −5417.90 9384.08i −0.196393 0.340162i
\(914\) 0 0
\(915\) −50.0120 + 86.6234i −0.00180694 + 0.00312971i
\(916\) 0 0
\(917\) −39413.1 6099.11i −1.41934 0.219641i
\(918\) 0 0
\(919\) −4162.22 + 7209.18i −0.149401 + 0.258769i −0.931006 0.365004i \(-0.881068\pi\)
0.781606 + 0.623773i \(0.214401\pi\)
\(920\) 0 0
\(921\) −1577.66 2732.59i −0.0564448 0.0977653i
\(922\) 0 0
\(923\) −1720.31 −0.0613485
\(924\) 0 0
\(925\) 24391.9 0.867029
\(926\) 0 0
\(927\) 1675.74 + 2902.47i 0.0593728 + 0.102837i
\(928\) 0 0
\(929\) 8095.37 14021.6i 0.285899 0.495192i −0.686927 0.726726i \(-0.741041\pi\)
0.972827 + 0.231534i \(0.0743743\pi\)
\(930\) 0 0
\(931\) −997.159 4532.81i −0.0351027 0.159567i
\(932\) 0 0
\(933\) −1621.82 + 2809.07i −0.0569088 + 0.0985690i
\(934\) 0 0
\(935\) 181.352 + 314.112i 0.00634316 + 0.0109867i
\(936\) 0 0
\(937\) −43218.7 −1.50682 −0.753411 0.657550i \(-0.771593\pi\)
−0.753411 + 0.657550i \(0.771593\pi\)
\(938\) 0 0
\(939\) 5040.38 0.175172
\(940\) 0 0
\(941\) 10615.2 + 18386.0i 0.367741 + 0.636947i 0.989212 0.146491i \(-0.0467979\pi\)
−0.621471 + 0.783437i \(0.713465\pi\)
\(942\) 0 0
\(943\) −4892.83 + 8474.63i −0.168963 + 0.292653i
\(944\) 0 0
\(945\) 468.738 + 72.5364i 0.0161355 + 0.00249694i
\(946\) 0 0
\(947\) −2135.57 + 3698.91i −0.0732805 + 0.126926i −0.900337 0.435193i \(-0.856680\pi\)
0.827057 + 0.562118i \(0.190014\pi\)
\(948\) 0 0
\(949\) 352.074 + 609.811i 0.0120430 + 0.0208591i
\(950\) 0 0
\(951\) 857.029 0.0292230
\(952\) 0 0
\(953\) 7808.73 0.265425 0.132712 0.991155i \(-0.457631\pi\)
0.132712 + 0.991155i \(0.457631\pi\)
\(954\) 0 0
\(955\) −540.389 935.982i −0.0183106 0.0317148i
\(956\) 0 0
\(957\) −536.617 + 929.449i −0.0181258 + 0.0313948i
\(958\) 0 0
\(959\) 4807.67 5980.26i 0.161885 0.201369i
\(960\) 0 0
\(961\) −2959.62 + 5126.21i −0.0993461 + 0.172072i
\(962\) 0 0
\(963\) 6528.58 + 11307.8i 0.218464 + 0.378390i
\(964\) 0 0
\(965\) 2418.53 0.0806789
\(966\) 0 0
\(967\) −42531.9 −1.41441 −0.707205 0.707009i \(-0.750044\pi\)
−0.707205 + 0.707009i \(0.750044\pi\)
\(968\) 0 0
\(969\) 176.148 + 305.098i 0.00583973 + 0.0101147i
\(970\) 0 0
\(971\) 5644.05 9775.78i 0.186536 0.323089i −0.757557 0.652769i \(-0.773607\pi\)
0.944093 + 0.329679i \(0.106941\pi\)
\(972\) 0 0
\(973\) −6469.60 16676.7i −0.213161 0.549467i
\(974\) 0 0
\(975\) 111.632 193.353i 0.00366676 0.00635102i
\(976\) 0 0
\(977\) −13220.8 22899.1i −0.432928 0.749853i 0.564196 0.825641i \(-0.309186\pi\)
−0.997124 + 0.0757877i \(0.975853\pi\)
\(978\) 0 0
\(979\) 410.697 0.0134075
\(980\) 0 0
\(981\) −23813.2 −0.775022
\(982\) 0 0
\(983\) −7703.39 13342.7i −0.249949 0.432925i 0.713562 0.700592i \(-0.247081\pi\)
−0.963511 + 0.267667i \(0.913747\pi\)
\(984\) 0 0
\(985\) 186.028 322.210i 0.00601762 0.0104228i
\(986\) 0 0
\(987\) −433.557 1117.58i −0.0139820 0.0360416i
\(988\) 0 0
\(989\) −5603.74 + 9705.96i −0.180170 + 0.312064i
\(990\) 0 0
\(991\) 13907.8 + 24089.0i 0.445807 + 0.772160i 0.998108 0.0614844i \(-0.0195834\pi\)
−0.552301 + 0.833645i \(0.686250\pi\)
\(992\) 0 0
\(993\) 5609.44 0.179265
\(994\) 0 0
\(995\) −3238.98 −0.103198
\(996\) 0 0
\(997\) 16624.7 + 28794.8i 0.528093 + 0.914683i 0.999464 + 0.0327484i \(0.0104260\pi\)
−0.471371 + 0.881935i \(0.656241\pi\)
\(998\) 0 0
\(999\) −3228.53 + 5591.98i −0.102248 + 0.177099i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.4.i.a.177.6 20
7.2 even 3 2156.4.a.m.1.5 10
7.4 even 3 inner 308.4.i.a.221.6 yes 20
7.5 odd 6 2156.4.a.j.1.6 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.i.a.177.6 20 1.1 even 1 trivial
308.4.i.a.221.6 yes 20 7.4 even 3 inner
2156.4.a.j.1.6 10 7.5 odd 6
2156.4.a.m.1.5 10 7.2 even 3