Properties

Label 308.4.i.a.221.10
Level $308$
Weight $4$
Character 308.221
Analytic conductor $18.173$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,4,Mod(177,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.177");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 308.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1725882818\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 194 x^{18} - 432 x^{17} + 24205 x^{16} - 47156 x^{15} + 1632616 x^{14} + \cdots + 7996651776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 221.10
Root \(5.05636 + 8.75787i\) of defining polynomial
Character \(\chi\) \(=\) 308.221
Dual form 308.4.i.a.177.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.55636 - 7.89185i) q^{3} +(-4.96059 - 8.59200i) q^{5} +(-7.98145 + 16.7122i) q^{7} +(-28.0208 - 48.5335i) q^{9} +(-5.50000 + 9.52628i) q^{11} -15.7278 q^{13} -90.4090 q^{15} +(-37.3293 + 64.6563i) q^{17} +(-62.3286 - 107.956i) q^{19} +(95.5235 + 139.135i) q^{21} +(-62.6087 - 108.441i) q^{23} +(13.2850 - 23.0104i) q^{25} -264.649 q^{27} -79.6577 q^{29} +(-112.549 + 194.941i) q^{31} +(50.1200 + 86.8103i) q^{33} +(183.184 - 14.3257i) q^{35} +(68.3380 + 118.365i) q^{37} +(-71.6613 + 124.121i) q^{39} +229.968 q^{41} +481.487 q^{43} +(-278.000 + 481.510i) q^{45} +(-76.5479 - 132.585i) q^{47} +(-215.593 - 266.775i) q^{49} +(340.172 + 589.194i) q^{51} +(-151.797 + 262.920i) q^{53} +109.133 q^{55} -1135.97 q^{57} +(-199.782 + 346.032i) q^{59} +(-279.508 - 484.123i) q^{61} +(1034.75 - 80.9213i) q^{63} +(78.0190 + 135.133i) q^{65} +(456.175 - 790.118i) q^{67} -1141.07 q^{69} -544.084 q^{71} +(399.846 - 692.554i) q^{73} +(-121.063 - 209.687i) q^{75} +(-115.307 - 167.950i) q^{77} +(-28.5350 - 49.4242i) q^{79} +(-449.272 + 778.162i) q^{81} -448.212 q^{83} +740.702 q^{85} +(-362.949 + 628.647i) q^{87} +(-618.816 - 1071.82i) q^{89} +(125.530 - 262.845i) q^{91} +(1025.63 + 1776.44i) q^{93} +(-618.373 + 1071.05i) q^{95} -1506.36 q^{97} +616.458 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{3} - 10 q^{5} - 20 q^{7} - 104 q^{9} - 110 q^{11} + 16 q^{13} + 108 q^{15} - 166 q^{17} - 342 q^{19} - 42 q^{21} + 54 q^{23} - 198 q^{25} + 612 q^{27} - 160 q^{29} - 492 q^{31} - 66 q^{33} + 310 q^{35}+ \cdots + 2288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.55636 7.89185i 0.876872 1.51879i 0.0221168 0.999755i \(-0.492959\pi\)
0.854755 0.519031i \(-0.173707\pi\)
\(4\) 0 0
\(5\) −4.96059 8.59200i −0.443689 0.768492i 0.554271 0.832336i \(-0.312997\pi\)
−0.997960 + 0.0638446i \(0.979664\pi\)
\(6\) 0 0
\(7\) −7.98145 + 16.7122i −0.430958 + 0.902372i
\(8\) 0 0
\(9\) −28.0208 48.5335i −1.03781 1.79754i
\(10\) 0 0
\(11\) −5.50000 + 9.52628i −0.150756 + 0.261116i
\(12\) 0 0
\(13\) −15.7278 −0.335546 −0.167773 0.985826i \(-0.553658\pi\)
−0.167773 + 0.985826i \(0.553658\pi\)
\(14\) 0 0
\(15\) −90.4090 −1.55623
\(16\) 0 0
\(17\) −37.3293 + 64.6563i −0.532570 + 0.922438i 0.466707 + 0.884412i \(0.345440\pi\)
−0.999277 + 0.0380260i \(0.987893\pi\)
\(18\) 0 0
\(19\) −62.3286 107.956i −0.752587 1.30352i −0.946565 0.322513i \(-0.895472\pi\)
0.193978 0.981006i \(-0.437861\pi\)
\(20\) 0 0
\(21\) 95.5235 + 139.135i 0.992616 + 1.44580i
\(22\) 0 0
\(23\) −62.6087 108.441i −0.567601 0.983113i −0.996803 0.0799047i \(-0.974538\pi\)
0.429202 0.903209i \(-0.358795\pi\)
\(24\) 0 0
\(25\) 13.2850 23.0104i 0.106280 0.184083i
\(26\) 0 0
\(27\) −264.649 −1.88636
\(28\) 0 0
\(29\) −79.6577 −0.510071 −0.255036 0.966932i \(-0.582087\pi\)
−0.255036 + 0.966932i \(0.582087\pi\)
\(30\) 0 0
\(31\) −112.549 + 194.941i −0.652079 + 1.12943i 0.330539 + 0.943792i \(0.392769\pi\)
−0.982618 + 0.185641i \(0.940564\pi\)
\(32\) 0 0
\(33\) 50.1200 + 86.8103i 0.264387 + 0.457931i
\(34\) 0 0
\(35\) 183.184 14.3257i 0.884677 0.0691852i
\(36\) 0 0
\(37\) 68.3380 + 118.365i 0.303640 + 0.525921i 0.976958 0.213433i \(-0.0684645\pi\)
−0.673317 + 0.739354i \(0.735131\pi\)
\(38\) 0 0
\(39\) −71.6613 + 124.121i −0.294231 + 0.509623i
\(40\) 0 0
\(41\) 229.968 0.875973 0.437986 0.898982i \(-0.355692\pi\)
0.437986 + 0.898982i \(0.355692\pi\)
\(42\) 0 0
\(43\) 481.487 1.70758 0.853792 0.520615i \(-0.174297\pi\)
0.853792 + 0.520615i \(0.174297\pi\)
\(44\) 0 0
\(45\) −278.000 + 481.510i −0.920928 + 1.59509i
\(46\) 0 0
\(47\) −76.5479 132.585i −0.237567 0.411479i 0.722448 0.691425i \(-0.243017\pi\)
−0.960016 + 0.279946i \(0.909683\pi\)
\(48\) 0 0
\(49\) −215.593 266.775i −0.628551 0.777768i
\(50\) 0 0
\(51\) 340.172 + 589.194i 0.933991 + 1.61772i
\(52\) 0 0
\(53\) −151.797 + 262.920i −0.393414 + 0.681413i −0.992897 0.118974i \(-0.962039\pi\)
0.599483 + 0.800387i \(0.295373\pi\)
\(54\) 0 0
\(55\) 109.133 0.267554
\(56\) 0 0
\(57\) −1135.97 −2.63969
\(58\) 0 0
\(59\) −199.782 + 346.032i −0.440837 + 0.763551i −0.997752 0.0670179i \(-0.978652\pi\)
0.556915 + 0.830569i \(0.311985\pi\)
\(60\) 0 0
\(61\) −279.508 484.123i −0.586678 1.01616i −0.994664 0.103168i \(-0.967102\pi\)
0.407985 0.912988i \(-0.366231\pi\)
\(62\) 0 0
\(63\) 1034.75 80.9213i 2.06930 0.161827i
\(64\) 0 0
\(65\) 78.0190 + 135.133i 0.148878 + 0.257864i
\(66\) 0 0
\(67\) 456.175 790.118i 0.831801 1.44072i −0.0648080 0.997898i \(-0.520643\pi\)
0.896609 0.442823i \(-0.146023\pi\)
\(68\) 0 0
\(69\) −1141.07 −1.99085
\(70\) 0 0
\(71\) −544.084 −0.909449 −0.454724 0.890632i \(-0.650262\pi\)
−0.454724 + 0.890632i \(0.650262\pi\)
\(72\) 0 0
\(73\) 399.846 692.554i 0.641075 1.11037i −0.344119 0.938926i \(-0.611822\pi\)
0.985193 0.171448i \(-0.0548445\pi\)
\(74\) 0 0
\(75\) −121.063 209.687i −0.186388 0.322834i
\(76\) 0 0
\(77\) −115.307 167.950i −0.170655 0.248568i
\(78\) 0 0
\(79\) −28.5350 49.4242i −0.0406385 0.0703880i 0.844991 0.534781i \(-0.179606\pi\)
−0.885629 + 0.464393i \(0.846273\pi\)
\(80\) 0 0
\(81\) −449.272 + 778.162i −0.616285 + 1.06744i
\(82\) 0 0
\(83\) −448.212 −0.592743 −0.296372 0.955073i \(-0.595777\pi\)
−0.296372 + 0.955073i \(0.595777\pi\)
\(84\) 0 0
\(85\) 740.702 0.945181
\(86\) 0 0
\(87\) −362.949 + 628.647i −0.447267 + 0.774690i
\(88\) 0 0
\(89\) −618.816 1071.82i −0.737016 1.27655i −0.953833 0.300337i \(-0.902901\pi\)
0.216817 0.976212i \(-0.430432\pi\)
\(90\) 0 0
\(91\) 125.530 262.845i 0.144606 0.302787i
\(92\) 0 0
\(93\) 1025.63 + 1776.44i 1.14358 + 1.98074i
\(94\) 0 0
\(95\) −618.373 + 1071.05i −0.667829 + 1.15671i
\(96\) 0 0
\(97\) −1506.36 −1.57678 −0.788389 0.615177i \(-0.789085\pi\)
−0.788389 + 0.615177i \(0.789085\pi\)
\(98\) 0 0
\(99\) 616.458 0.625822
\(100\) 0 0
\(101\) 451.249 781.587i 0.444564 0.770008i −0.553458 0.832877i \(-0.686692\pi\)
0.998022 + 0.0628696i \(0.0200252\pi\)
\(102\) 0 0
\(103\) −301.466 522.154i −0.288392 0.499509i 0.685034 0.728511i \(-0.259787\pi\)
−0.973426 + 0.229002i \(0.926454\pi\)
\(104\) 0 0
\(105\) 721.594 1510.93i 0.670671 1.40430i
\(106\) 0 0
\(107\) 237.118 + 410.701i 0.214234 + 0.371065i 0.953035 0.302859i \(-0.0979410\pi\)
−0.738801 + 0.673924i \(0.764608\pi\)
\(108\) 0 0
\(109\) −62.3166 + 107.936i −0.0547601 + 0.0948473i −0.892106 0.451826i \(-0.850773\pi\)
0.837346 + 0.546673i \(0.184106\pi\)
\(110\) 0 0
\(111\) 1245.49 1.06501
\(112\) 0 0
\(113\) −72.0601 −0.0599898 −0.0299949 0.999550i \(-0.509549\pi\)
−0.0299949 + 0.999550i \(0.509549\pi\)
\(114\) 0 0
\(115\) −621.153 + 1075.87i −0.503676 + 0.872393i
\(116\) 0 0
\(117\) 440.705 + 763.324i 0.348232 + 0.603156i
\(118\) 0 0
\(119\) −782.604 1139.90i −0.602867 0.878108i
\(120\) 0 0
\(121\) −60.5000 104.789i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) 1047.81 1814.87i 0.768116 1.33042i
\(124\) 0 0
\(125\) −1503.75 −1.07600
\(126\) 0 0
\(127\) 2417.76 1.68930 0.844651 0.535317i \(-0.179808\pi\)
0.844651 + 0.535317i \(0.179808\pi\)
\(128\) 0 0
\(129\) 2193.83 3799.82i 1.49733 2.59346i
\(130\) 0 0
\(131\) −417.009 722.280i −0.278124 0.481724i 0.692795 0.721135i \(-0.256379\pi\)
−0.970918 + 0.239410i \(0.923046\pi\)
\(132\) 0 0
\(133\) 2301.66 179.999i 1.50059 0.117352i
\(134\) 0 0
\(135\) 1312.81 + 2273.86i 0.836956 + 1.44965i
\(136\) 0 0
\(137\) 1501.61 2600.86i 0.936432 1.62195i 0.164371 0.986399i \(-0.447441\pi\)
0.772061 0.635548i \(-0.219226\pi\)
\(138\) 0 0
\(139\) −1328.93 −0.810924 −0.405462 0.914112i \(-0.632889\pi\)
−0.405462 + 0.914112i \(0.632889\pi\)
\(140\) 0 0
\(141\) −1395.12 −0.833264
\(142\) 0 0
\(143\) 86.5027 149.827i 0.0505854 0.0876166i
\(144\) 0 0
\(145\) 395.150 + 684.419i 0.226313 + 0.391986i
\(146\) 0 0
\(147\) −3087.66 + 485.907i −1.73242 + 0.272632i
\(148\) 0 0
\(149\) 550.274 + 953.102i 0.302552 + 0.524035i 0.976713 0.214549i \(-0.0688282\pi\)
−0.674162 + 0.738584i \(0.735495\pi\)
\(150\) 0 0
\(151\) 247.834 429.261i 0.133566 0.231343i −0.791483 0.611191i \(-0.790691\pi\)
0.925049 + 0.379849i \(0.124024\pi\)
\(152\) 0 0
\(153\) 4183.99 2.21082
\(154\) 0 0
\(155\) 2233.24 1.15728
\(156\) 0 0
\(157\) −132.962 + 230.296i −0.0675891 + 0.117068i −0.897840 0.440323i \(-0.854864\pi\)
0.830250 + 0.557391i \(0.188197\pi\)
\(158\) 0 0
\(159\) 1383.28 + 2395.92i 0.689947 + 1.19502i
\(160\) 0 0
\(161\) 2312.00 180.808i 1.13175 0.0885070i
\(162\) 0 0
\(163\) 1537.41 + 2662.87i 0.738768 + 1.27958i 0.953050 + 0.302813i \(0.0979256\pi\)
−0.214282 + 0.976772i \(0.568741\pi\)
\(164\) 0 0
\(165\) 497.249 861.261i 0.234611 0.406358i
\(166\) 0 0
\(167\) 2668.18 1.23635 0.618173 0.786042i \(-0.287873\pi\)
0.618173 + 0.786042i \(0.287873\pi\)
\(168\) 0 0
\(169\) −1949.64 −0.887409
\(170\) 0 0
\(171\) −3493.00 + 6050.05i −1.56208 + 2.70561i
\(172\) 0 0
\(173\) −559.386 968.885i −0.245834 0.425798i 0.716531 0.697555i \(-0.245729\pi\)
−0.962366 + 0.271757i \(0.912395\pi\)
\(174\) 0 0
\(175\) 278.519 + 405.678i 0.120309 + 0.175236i
\(176\) 0 0
\(177\) 1820.55 + 3153.29i 0.773115 + 1.33907i
\(178\) 0 0
\(179\) −431.108 + 746.701i −0.180014 + 0.311793i −0.941885 0.335935i \(-0.890948\pi\)
0.761871 + 0.647729i \(0.224281\pi\)
\(180\) 0 0
\(181\) 3606.28 1.48095 0.740477 0.672081i \(-0.234600\pi\)
0.740477 + 0.672081i \(0.234600\pi\)
\(182\) 0 0
\(183\) −5094.16 −2.05777
\(184\) 0 0
\(185\) 677.994 1174.32i 0.269444 0.466690i
\(186\) 0 0
\(187\) −410.622 711.219i −0.160576 0.278126i
\(188\) 0 0
\(189\) 2112.28 4422.85i 0.812940 1.70220i
\(190\) 0 0
\(191\) −1334.98 2312.25i −0.505736 0.875960i −0.999978 0.00663603i \(-0.997888\pi\)
0.494242 0.869324i \(-0.335446\pi\)
\(192\) 0 0
\(193\) 1073.01 1858.50i 0.400190 0.693149i −0.593559 0.804791i \(-0.702277\pi\)
0.993749 + 0.111641i \(0.0356108\pi\)
\(194\) 0 0
\(195\) 1421.93 0.522188
\(196\) 0 0
\(197\) −5098.87 −1.84406 −0.922029 0.387121i \(-0.873470\pi\)
−0.922029 + 0.387121i \(0.873470\pi\)
\(198\) 0 0
\(199\) −191.062 + 330.930i −0.0680606 + 0.117884i −0.898048 0.439898i \(-0.855014\pi\)
0.829987 + 0.557783i \(0.188348\pi\)
\(200\) 0 0
\(201\) −4157.00 7200.13i −1.45877 2.52666i
\(202\) 0 0
\(203\) 635.784 1331.25i 0.219819 0.460274i
\(204\) 0 0
\(205\) −1140.78 1975.88i −0.388659 0.673178i
\(206\) 0 0
\(207\) −3508.70 + 6077.24i −1.17812 + 2.04057i
\(208\) 0 0
\(209\) 1371.23 0.453827
\(210\) 0 0
\(211\) 150.503 0.0491046 0.0245523 0.999699i \(-0.492184\pi\)
0.0245523 + 0.999699i \(0.492184\pi\)
\(212\) 0 0
\(213\) −2479.04 + 4293.83i −0.797470 + 1.38126i
\(214\) 0 0
\(215\) −2388.46 4136.94i −0.757636 1.31226i
\(216\) 0 0
\(217\) −2359.58 3436.85i −0.738151 1.07516i
\(218\) 0 0
\(219\) −3643.69 6311.05i −1.12428 1.94731i
\(220\) 0 0
\(221\) 587.107 1016.90i 0.178702 0.309520i
\(222\) 0 0
\(223\) 1883.27 0.565530 0.282765 0.959189i \(-0.408748\pi\)
0.282765 + 0.959189i \(0.408748\pi\)
\(224\) 0 0
\(225\) −1489.03 −0.441195
\(226\) 0 0
\(227\) −2975.34 + 5153.44i −0.869957 + 1.50681i −0.00791828 + 0.999969i \(0.502520\pi\)
−0.862039 + 0.506842i \(0.830813\pi\)
\(228\) 0 0
\(229\) 2664.47 + 4615.00i 0.768878 + 1.33174i 0.938172 + 0.346170i \(0.112518\pi\)
−0.169293 + 0.985566i \(0.554149\pi\)
\(230\) 0 0
\(231\) −1850.82 + 144.741i −0.527164 + 0.0412263i
\(232\) 0 0
\(233\) −2417.76 4187.68i −0.679797 1.17744i −0.975042 0.222021i \(-0.928735\pi\)
0.295245 0.955421i \(-0.404599\pi\)
\(234\) 0 0
\(235\) −759.446 + 1315.40i −0.210812 + 0.365137i
\(236\) 0 0
\(237\) −520.064 −0.142539
\(238\) 0 0
\(239\) 5051.71 1.36723 0.683615 0.729843i \(-0.260407\pi\)
0.683615 + 0.729843i \(0.260407\pi\)
\(240\) 0 0
\(241\) −1320.30 + 2286.83i −0.352896 + 0.611235i −0.986756 0.162214i \(-0.948137\pi\)
0.633859 + 0.773448i \(0.281470\pi\)
\(242\) 0 0
\(243\) 521.334 + 902.977i 0.137628 + 0.238379i
\(244\) 0 0
\(245\) −1222.66 + 3175.73i −0.318827 + 0.828123i
\(246\) 0 0
\(247\) 980.289 + 1697.91i 0.252527 + 0.437390i
\(248\) 0 0
\(249\) −2042.22 + 3537.22i −0.519760 + 0.900250i
\(250\) 0 0
\(251\) −1714.05 −0.431037 −0.215518 0.976500i \(-0.569144\pi\)
−0.215518 + 0.976500i \(0.569144\pi\)
\(252\) 0 0
\(253\) 1377.39 0.342276
\(254\) 0 0
\(255\) 3374.91 5845.51i 0.828803 1.43553i
\(256\) 0 0
\(257\) −2437.85 4222.49i −0.591709 1.02487i −0.994002 0.109359i \(-0.965120\pi\)
0.402293 0.915511i \(-0.368213\pi\)
\(258\) 0 0
\(259\) −2523.57 + 197.353i −0.605432 + 0.0473472i
\(260\) 0 0
\(261\) 2232.08 + 3866.07i 0.529356 + 0.916872i
\(262\) 0 0
\(263\) −2669.25 + 4623.28i −0.625829 + 1.08397i 0.362550 + 0.931964i \(0.381906\pi\)
−0.988380 + 0.152004i \(0.951427\pi\)
\(264\) 0 0
\(265\) 3012.01 0.698214
\(266\) 0 0
\(267\) −11278.2 −2.58507
\(268\) 0 0
\(269\) 1533.09 2655.38i 0.347487 0.601865i −0.638316 0.769775i \(-0.720369\pi\)
0.985802 + 0.167910i \(0.0537019\pi\)
\(270\) 0 0
\(271\) 1969.71 + 3411.64i 0.441518 + 0.764731i 0.997802 0.0662606i \(-0.0211069\pi\)
−0.556285 + 0.830992i \(0.687774\pi\)
\(272\) 0 0
\(273\) −1502.37 2188.28i −0.333068 0.485131i
\(274\) 0 0
\(275\) 146.135 + 253.114i 0.0320447 + 0.0555031i
\(276\) 0 0
\(277\) −2255.90 + 3907.34i −0.489329 + 0.847543i −0.999925 0.0122782i \(-0.996092\pi\)
0.510596 + 0.859821i \(0.329425\pi\)
\(278\) 0 0
\(279\) 12614.9 2.70693
\(280\) 0 0
\(281\) 3887.05 0.825203 0.412601 0.910912i \(-0.364620\pi\)
0.412601 + 0.910912i \(0.364620\pi\)
\(282\) 0 0
\(283\) 1079.42 1869.60i 0.226730 0.392708i −0.730107 0.683333i \(-0.760530\pi\)
0.956837 + 0.290625i \(0.0938631\pi\)
\(284\) 0 0
\(285\) 5635.06 + 9760.22i 1.17120 + 2.02858i
\(286\) 0 0
\(287\) −1835.47 + 3843.26i −0.377507 + 0.790454i
\(288\) 0 0
\(289\) −330.455 572.365i −0.0672613 0.116500i
\(290\) 0 0
\(291\) −6863.51 + 11888.0i −1.38263 + 2.39479i
\(292\) 0 0
\(293\) 1115.27 0.222371 0.111186 0.993800i \(-0.464535\pi\)
0.111186 + 0.993800i \(0.464535\pi\)
\(294\) 0 0
\(295\) 3964.14 0.782377
\(296\) 0 0
\(297\) 1455.57 2521.12i 0.284379 0.492559i
\(298\) 0 0
\(299\) 984.695 + 1705.54i 0.190456 + 0.329880i
\(300\) 0 0
\(301\) −3842.96 + 8046.69i −0.735896 + 1.54088i
\(302\) 0 0
\(303\) −4112.11 7122.38i −0.779652 1.35040i
\(304\) 0 0
\(305\) −2773.05 + 4803.07i −0.520605 + 0.901715i
\(306\) 0 0
\(307\) 4618.19 0.858547 0.429273 0.903175i \(-0.358770\pi\)
0.429273 + 0.903175i \(0.358770\pi\)
\(308\) 0 0
\(309\) −5494.35 −1.01153
\(310\) 0 0
\(311\) 2372.45 4109.20i 0.432570 0.749233i −0.564524 0.825417i \(-0.690940\pi\)
0.997094 + 0.0761840i \(0.0242736\pi\)
\(312\) 0 0
\(313\) −5034.28 8719.63i −0.909120 1.57464i −0.815290 0.579053i \(-0.803422\pi\)
−0.0938302 0.995588i \(-0.529911\pi\)
\(314\) 0 0
\(315\) −5828.23 8489.13i −1.04249 1.51844i
\(316\) 0 0
\(317\) −1467.39 2541.60i −0.259990 0.450317i 0.706249 0.707964i \(-0.250386\pi\)
−0.966239 + 0.257647i \(0.917053\pi\)
\(318\) 0 0
\(319\) 438.117 758.842i 0.0768961 0.133188i
\(320\) 0 0
\(321\) 4321.58 0.751425
\(322\) 0 0
\(323\) 9306.73 1.60322
\(324\) 0 0
\(325\) −208.944 + 361.902i −0.0356619 + 0.0617683i
\(326\) 0 0
\(327\) 567.874 + 983.587i 0.0960352 + 0.166338i
\(328\) 0 0
\(329\) 2826.74 221.063i 0.473688 0.0370443i
\(330\) 0 0
\(331\) 3474.25 + 6017.58i 0.576924 + 0.999262i 0.995830 + 0.0912325i \(0.0290806\pi\)
−0.418905 + 0.908030i \(0.637586\pi\)
\(332\) 0 0
\(333\) 3829.77 6633.36i 0.630241 1.09161i
\(334\) 0 0
\(335\) −9051.59 −1.47624
\(336\) 0 0
\(337\) −6196.25 −1.00158 −0.500788 0.865570i \(-0.666956\pi\)
−0.500788 + 0.865570i \(0.666956\pi\)
\(338\) 0 0
\(339\) −328.332 + 568.688i −0.0526034 + 0.0911117i
\(340\) 0 0
\(341\) −1238.04 2144.35i −0.196609 0.340537i
\(342\) 0 0
\(343\) 6179.12 1473.78i 0.972715 0.232002i
\(344\) 0 0
\(345\) 5660.39 + 9804.08i 0.883319 + 1.52995i
\(346\) 0 0
\(347\) 581.902 1007.88i 0.0900234 0.155925i −0.817497 0.575932i \(-0.804639\pi\)
0.907521 + 0.420007i \(0.137972\pi\)
\(348\) 0 0
\(349\) 1043.63 0.160069 0.0800345 0.996792i \(-0.474497\pi\)
0.0800345 + 0.996792i \(0.474497\pi\)
\(350\) 0 0
\(351\) 4162.33 0.632960
\(352\) 0 0
\(353\) −2851.93 + 4939.68i −0.430008 + 0.744795i −0.996873 0.0790152i \(-0.974822\pi\)
0.566866 + 0.823810i \(0.308156\pi\)
\(354\) 0 0
\(355\) 2698.98 + 4674.77i 0.403512 + 0.698904i
\(356\) 0 0
\(357\) −12561.8 + 982.381i −1.86230 + 0.145639i
\(358\) 0 0
\(359\) 1375.80 + 2382.95i 0.202262 + 0.350327i 0.949257 0.314502i \(-0.101838\pi\)
−0.746995 + 0.664829i \(0.768504\pi\)
\(360\) 0 0
\(361\) −4340.20 + 7517.45i −0.632775 + 1.09600i
\(362\) 0 0
\(363\) −1102.64 −0.159431
\(364\) 0 0
\(365\) −7933.90 −1.13775
\(366\) 0 0
\(367\) 1067.83 1849.53i 0.151881 0.263065i −0.780038 0.625732i \(-0.784800\pi\)
0.931919 + 0.362667i \(0.118134\pi\)
\(368\) 0 0
\(369\) −6443.88 11161.1i −0.909092 1.57459i
\(370\) 0 0
\(371\) −3182.41 4635.34i −0.445343 0.648666i
\(372\) 0 0
\(373\) 4640.56 + 8037.68i 0.644179 + 1.11575i 0.984490 + 0.175438i \(0.0561343\pi\)
−0.340311 + 0.940313i \(0.610532\pi\)
\(374\) 0 0
\(375\) −6851.65 + 11867.4i −0.943514 + 1.63421i
\(376\) 0 0
\(377\) 1252.84 0.171152
\(378\) 0 0
\(379\) 14282.6 1.93574 0.967872 0.251443i \(-0.0809053\pi\)
0.967872 + 0.251443i \(0.0809053\pi\)
\(380\) 0 0
\(381\) 11016.2 19080.6i 1.48130 2.56569i
\(382\) 0 0
\(383\) 4819.64 + 8347.86i 0.643008 + 1.11372i 0.984758 + 0.173932i \(0.0556472\pi\)
−0.341750 + 0.939791i \(0.611020\pi\)
\(384\) 0 0
\(385\) −871.039 + 1823.85i −0.115305 + 0.241434i
\(386\) 0 0
\(387\) −13491.7 23368.3i −1.77215 3.06945i
\(388\) 0 0
\(389\) −695.552 + 1204.73i −0.0906579 + 0.157024i −0.907788 0.419429i \(-0.862230\pi\)
0.817130 + 0.576453i \(0.195564\pi\)
\(390\) 0 0
\(391\) 9348.56 1.20915
\(392\) 0 0
\(393\) −7600.16 −0.975515
\(394\) 0 0
\(395\) −283.102 + 490.346i −0.0360617 + 0.0624607i
\(396\) 0 0
\(397\) −6577.06 11391.8i −0.831468 1.44015i −0.896874 0.442287i \(-0.854167\pi\)
0.0654053 0.997859i \(-0.479166\pi\)
\(398\) 0 0
\(399\) 9066.65 18984.4i 1.13759 2.38198i
\(400\) 0 0
\(401\) −3777.51 6542.84i −0.470424 0.814798i 0.529004 0.848619i \(-0.322566\pi\)
−0.999428 + 0.0338213i \(0.989232\pi\)
\(402\) 0 0
\(403\) 1770.15 3065.99i 0.218802 0.378977i
\(404\) 0 0
\(405\) 8914.62 1.09376
\(406\) 0 0
\(407\) −1503.44 −0.183102
\(408\) 0 0
\(409\) 4638.54 8034.19i 0.560785 0.971309i −0.436643 0.899635i \(-0.643833\pi\)
0.997428 0.0716736i \(-0.0228340\pi\)
\(410\) 0 0
\(411\) −13683.7 23700.9i −1.64226 2.84448i
\(412\) 0 0
\(413\) −4188.40 6100.62i −0.499026 0.726857i
\(414\) 0 0
\(415\) 2223.40 + 3851.04i 0.262994 + 0.455518i
\(416\) 0 0
\(417\) −6055.09 + 10487.7i −0.711077 + 1.23162i
\(418\) 0 0
\(419\) 15266.0 1.77993 0.889967 0.456025i \(-0.150727\pi\)
0.889967 + 0.456025i \(0.150727\pi\)
\(420\) 0 0
\(421\) 7092.61 0.821075 0.410538 0.911844i \(-0.365341\pi\)
0.410538 + 0.911844i \(0.365341\pi\)
\(422\) 0 0
\(423\) −4289.87 + 7430.28i −0.493099 + 0.854072i
\(424\) 0 0
\(425\) 991.843 + 1717.92i 0.113203 + 0.196074i
\(426\) 0 0
\(427\) 10321.6 807.192i 1.16979 0.0914818i
\(428\) 0 0
\(429\) −788.275 1365.33i −0.0887139 0.153657i
\(430\) 0 0
\(431\) −6044.06 + 10468.6i −0.675481 + 1.16997i 0.300847 + 0.953672i \(0.402731\pi\)
−0.976328 + 0.216295i \(0.930603\pi\)
\(432\) 0 0
\(433\) 8256.16 0.916318 0.458159 0.888870i \(-0.348509\pi\)
0.458159 + 0.888870i \(0.348509\pi\)
\(434\) 0 0
\(435\) 7201.77 0.793790
\(436\) 0 0
\(437\) −7804.62 + 13518.0i −0.854338 + 1.47976i
\(438\) 0 0
\(439\) 2467.17 + 4273.27i 0.268227 + 0.464583i 0.968404 0.249386i \(-0.0802289\pi\)
−0.700177 + 0.713969i \(0.746896\pi\)
\(440\) 0 0
\(441\) −6906.41 + 17938.7i −0.745752 + 1.93702i
\(442\) 0 0
\(443\) −7042.35 12197.7i −0.755287 1.30820i −0.945232 0.326400i \(-0.894164\pi\)
0.189945 0.981795i \(-0.439169\pi\)
\(444\) 0 0
\(445\) −6139.39 + 10633.7i −0.654012 + 1.13278i
\(446\) 0 0
\(447\) 10029.0 1.06120
\(448\) 0 0
\(449\) 5036.63 0.529383 0.264692 0.964333i \(-0.414730\pi\)
0.264692 + 0.964333i \(0.414730\pi\)
\(450\) 0 0
\(451\) −1264.82 + 2190.73i −0.132058 + 0.228731i
\(452\) 0 0
\(453\) −2258.44 3911.73i −0.234240 0.405716i
\(454\) 0 0
\(455\) −2881.07 + 225.311i −0.296850 + 0.0232148i
\(456\) 0 0
\(457\) 5766.79 + 9988.38i 0.590283 + 1.02240i 0.994194 + 0.107602i \(0.0343171\pi\)
−0.403911 + 0.914798i \(0.632350\pi\)
\(458\) 0 0
\(459\) 9879.15 17111.2i 1.00462 1.74005i
\(460\) 0 0
\(461\) −13844.8 −1.39874 −0.699369 0.714761i \(-0.746535\pi\)
−0.699369 + 0.714761i \(0.746535\pi\)
\(462\) 0 0
\(463\) −11794.2 −1.18385 −0.591926 0.805992i \(-0.701632\pi\)
−0.591926 + 0.805992i \(0.701632\pi\)
\(464\) 0 0
\(465\) 10175.5 17624.4i 1.01479 1.75766i
\(466\) 0 0
\(467\) 8061.53 + 13963.0i 0.798807 + 1.38358i 0.920393 + 0.390994i \(0.127869\pi\)
−0.121586 + 0.992581i \(0.538798\pi\)
\(468\) 0 0
\(469\) 9563.65 + 13930.0i 0.941596 + 1.37148i
\(470\) 0 0
\(471\) 1211.64 + 2098.63i 0.118534 + 0.205307i
\(472\) 0 0
\(473\) −2648.18 + 4586.78i −0.257428 + 0.445878i
\(474\) 0 0
\(475\) −3312.15 −0.319941
\(476\) 0 0
\(477\) 17013.9 1.63315
\(478\) 0 0
\(479\) −6877.31 + 11911.9i −0.656017 + 1.13626i 0.325620 + 0.945501i \(0.394427\pi\)
−0.981638 + 0.190755i \(0.938906\pi\)
\(480\) 0 0
\(481\) −1074.80 1861.61i −0.101885 0.176470i
\(482\) 0 0
\(483\) 9107.40 19069.8i 0.857973 1.79649i
\(484\) 0 0
\(485\) 7472.43 + 12942.6i 0.699599 + 1.21174i
\(486\) 0 0
\(487\) 3508.26 6076.49i 0.326437 0.565405i −0.655365 0.755312i \(-0.727485\pi\)
0.981802 + 0.189907i \(0.0608187\pi\)
\(488\) 0 0
\(489\) 28020.0 2.59122
\(490\) 0 0
\(491\) 288.797 0.0265442 0.0132721 0.999912i \(-0.495775\pi\)
0.0132721 + 0.999912i \(0.495775\pi\)
\(492\) 0 0
\(493\) 2973.57 5150.37i 0.271649 0.470509i
\(494\) 0 0
\(495\) −3058.00 5296.61i −0.277670 0.480939i
\(496\) 0 0
\(497\) 4342.57 9092.82i 0.391934 0.820661i
\(498\) 0 0
\(499\) −394.015 682.453i −0.0353477 0.0612241i 0.847810 0.530300i \(-0.177921\pi\)
−0.883158 + 0.469076i \(0.844587\pi\)
\(500\) 0 0
\(501\) 12157.2 21056.8i 1.08412 1.87775i
\(502\) 0 0
\(503\) −17569.9 −1.55746 −0.778731 0.627358i \(-0.784136\pi\)
−0.778731 + 0.627358i \(0.784136\pi\)
\(504\) 0 0
\(505\) −8953.86 −0.788993
\(506\) 0 0
\(507\) −8883.25 + 15386.2i −0.778144 + 1.34778i
\(508\) 0 0
\(509\) −2061.77 3571.09i −0.179541 0.310974i 0.762182 0.647362i \(-0.224128\pi\)
−0.941723 + 0.336388i \(0.890795\pi\)
\(510\) 0 0
\(511\) 8382.72 + 12209.9i 0.725695 + 1.05701i
\(512\) 0 0
\(513\) 16495.2 + 28570.5i 1.41965 + 2.45890i
\(514\) 0 0
\(515\) −2990.90 + 5180.39i −0.255912 + 0.443253i
\(516\) 0 0
\(517\) 1684.05 0.143258
\(518\) 0 0
\(519\) −10195.1 −0.862261
\(520\) 0 0
\(521\) 2962.28 5130.83i 0.249098 0.431450i −0.714178 0.699964i \(-0.753199\pi\)
0.963276 + 0.268514i \(0.0865326\pi\)
\(522\) 0 0
\(523\) 4191.79 + 7260.40i 0.350467 + 0.607027i 0.986331 0.164774i \(-0.0526894\pi\)
−0.635864 + 0.771801i \(0.719356\pi\)
\(524\) 0 0
\(525\) 4470.58 349.617i 0.371642 0.0290639i
\(526\) 0 0
\(527\) −8402.77 14554.0i −0.694555 1.20300i
\(528\) 0 0
\(529\) −1756.20 + 3041.83i −0.144341 + 0.250006i
\(530\) 0 0
\(531\) 22392.2 1.83002
\(532\) 0 0
\(533\) −3616.87 −0.293929
\(534\) 0 0
\(535\) 2352.49 4074.64i 0.190107 0.329275i
\(536\) 0 0
\(537\) 3928.57 + 6804.47i 0.315698 + 0.546806i
\(538\) 0 0
\(539\) 3727.13 586.540i 0.297846 0.0468721i
\(540\) 0 0
\(541\) 476.917 + 826.045i 0.0379007 + 0.0656459i 0.884354 0.466818i \(-0.154600\pi\)
−0.846453 + 0.532464i \(0.821266\pi\)
\(542\) 0 0
\(543\) 16431.5 28460.2i 1.29861 2.24925i
\(544\) 0 0
\(545\) 1236.51 0.0971858
\(546\) 0 0
\(547\) −6400.37 −0.500292 −0.250146 0.968208i \(-0.580479\pi\)
−0.250146 + 0.968208i \(0.580479\pi\)
\(548\) 0 0
\(549\) −15664.1 + 27131.1i −1.21772 + 2.10915i
\(550\) 0 0
\(551\) 4964.95 + 8599.55i 0.383873 + 0.664888i
\(552\) 0 0
\(553\) 1053.74 82.4063i 0.0810297 0.00633684i
\(554\) 0 0
\(555\) −6178.37 10701.2i −0.472535 0.818455i
\(556\) 0 0
\(557\) 7663.38 13273.4i 0.582958 1.00971i −0.412168 0.911108i \(-0.635228\pi\)
0.995127 0.0986057i \(-0.0314382\pi\)
\(558\) 0 0
\(559\) −7572.71 −0.572973
\(560\) 0 0
\(561\) −7483.77 −0.563218
\(562\) 0 0
\(563\) 8791.19 15226.8i 0.658090 1.13984i −0.323020 0.946392i \(-0.604698\pi\)
0.981110 0.193453i \(-0.0619686\pi\)
\(564\) 0 0
\(565\) 357.461 + 619.140i 0.0266168 + 0.0461017i
\(566\) 0 0
\(567\) −9418.93 13719.2i −0.697633 1.01614i
\(568\) 0 0
\(569\) −5687.27 9850.65i −0.419021 0.725766i 0.576820 0.816871i \(-0.304293\pi\)
−0.995841 + 0.0911054i \(0.970960\pi\)
\(570\) 0 0
\(571\) −142.660 + 247.094i −0.0104556 + 0.0181096i −0.871206 0.490918i \(-0.836662\pi\)
0.860750 + 0.509027i \(0.169995\pi\)
\(572\) 0 0
\(573\) −24330.6 −1.77386
\(574\) 0 0
\(575\) −3327.04 −0.241299
\(576\) 0 0
\(577\) −5121.71 + 8871.07i −0.369532 + 0.640048i −0.989492 0.144585i \(-0.953815\pi\)
0.619961 + 0.784633i \(0.287149\pi\)
\(578\) 0 0
\(579\) −9778.01 16936.0i −0.701831 1.21561i
\(580\) 0 0
\(581\) 3577.38 7490.60i 0.255447 0.534875i
\(582\) 0 0
\(583\) −1669.77 2892.12i −0.118619 0.205454i
\(584\) 0 0
\(585\) 4372.32 7573.07i 0.309014 0.535228i
\(586\) 0 0
\(587\) −26130.4 −1.83734 −0.918669 0.395029i \(-0.870735\pi\)
−0.918669 + 0.395029i \(0.870735\pi\)
\(588\) 0 0
\(589\) 28060.1 1.96298
\(590\) 0 0
\(591\) −23232.3 + 40239.5i −1.61700 + 2.80073i
\(592\) 0 0
\(593\) 4418.25 + 7652.64i 0.305963 + 0.529943i 0.977475 0.211050i \(-0.0676883\pi\)
−0.671512 + 0.740993i \(0.734355\pi\)
\(594\) 0 0
\(595\) −5911.87 + 12378.7i −0.407333 + 0.852905i
\(596\) 0 0
\(597\) 1741.10 + 3015.67i 0.119361 + 0.206739i
\(598\) 0 0
\(599\) −1277.12 + 2212.03i −0.0871145 + 0.150887i −0.906290 0.422656i \(-0.861098\pi\)
0.819176 + 0.573543i \(0.194431\pi\)
\(600\) 0 0
\(601\) −630.033 −0.0427614 −0.0213807 0.999771i \(-0.506806\pi\)
−0.0213807 + 0.999771i \(0.506806\pi\)
\(602\) 0 0
\(603\) −51129.6 −3.45300
\(604\) 0 0
\(605\) −600.232 + 1039.63i −0.0403354 + 0.0698629i
\(606\) 0 0
\(607\) −1738.23 3010.70i −0.116232 0.201319i 0.802040 0.597271i \(-0.203748\pi\)
−0.918271 + 0.395952i \(0.870415\pi\)
\(608\) 0 0
\(609\) −7609.19 11083.2i −0.506305 0.737460i
\(610\) 0 0
\(611\) 1203.93 + 2085.26i 0.0797147 + 0.138070i
\(612\) 0 0
\(613\) −12192.9 + 21118.7i −0.803372 + 1.39148i 0.114013 + 0.993479i \(0.463630\pi\)
−0.917385 + 0.398002i \(0.869704\pi\)
\(614\) 0 0
\(615\) −20791.1 −1.36322
\(616\) 0 0
\(617\) −15661.2 −1.02187 −0.510937 0.859618i \(-0.670701\pi\)
−0.510937 + 0.859618i \(0.670701\pi\)
\(618\) 0 0
\(619\) −3923.58 + 6795.85i −0.254769 + 0.441273i −0.964833 0.262864i \(-0.915333\pi\)
0.710064 + 0.704138i \(0.248666\pi\)
\(620\) 0 0
\(621\) 16569.3 + 28698.9i 1.07070 + 1.85450i
\(622\) 0 0
\(623\) 22851.5 1787.08i 1.46954 0.114924i
\(624\) 0 0
\(625\) 5798.88 + 10044.0i 0.371129 + 0.642814i
\(626\) 0 0
\(627\) 6247.81 10821.5i 0.397948 0.689267i
\(628\) 0 0
\(629\) −10204.0 −0.646839
\(630\) 0 0
\(631\) 13758.6 0.868022 0.434011 0.900908i \(-0.357098\pi\)
0.434011 + 0.900908i \(0.357098\pi\)
\(632\) 0 0
\(633\) 685.747 1187.75i 0.0430585 0.0745795i
\(634\) 0 0
\(635\) −11993.5 20773.4i −0.749525 1.29821i
\(636\) 0 0
\(637\) 3390.80 + 4195.77i 0.210908 + 0.260977i
\(638\) 0 0
\(639\) 15245.7 + 26406.3i 0.943834 + 1.63477i
\(640\) 0 0
\(641\) 8687.52 15047.2i 0.535314 0.927191i −0.463834 0.885922i \(-0.653527\pi\)
0.999148 0.0412689i \(-0.0131400\pi\)
\(642\) 0 0
\(643\) 2616.82 0.160493 0.0802467 0.996775i \(-0.474429\pi\)
0.0802467 + 0.996775i \(0.474429\pi\)
\(644\) 0 0
\(645\) −43530.8 −2.65740
\(646\) 0 0
\(647\) 1465.35 2538.06i 0.0890401 0.154222i −0.818066 0.575125i \(-0.804953\pi\)
0.907106 + 0.420903i \(0.138287\pi\)
\(648\) 0 0
\(649\) −2197.60 3806.35i −0.132917 0.230219i
\(650\) 0 0
\(651\) −37874.2 + 2961.91i −2.28020 + 0.178320i
\(652\) 0 0
\(653\) 8268.38 + 14321.3i 0.495508 + 0.858245i 0.999987 0.00517928i \(-0.00164862\pi\)
−0.504479 + 0.863424i \(0.668315\pi\)
\(654\) 0 0
\(655\) −4137.22 + 7165.87i −0.246801 + 0.427471i
\(656\) 0 0
\(657\) −44816.1 −2.66125
\(658\) 0 0
\(659\) 11308.7 0.668473 0.334237 0.942489i \(-0.391521\pi\)
0.334237 + 0.942489i \(0.391521\pi\)
\(660\) 0 0
\(661\) 13423.5 23250.2i 0.789885 1.36812i −0.136152 0.990688i \(-0.543474\pi\)
0.926037 0.377433i \(-0.123193\pi\)
\(662\) 0 0
\(663\) −5350.14 9266.71i −0.313397 0.542819i
\(664\) 0 0
\(665\) −12964.1 18882.9i −0.755980 1.10113i
\(666\) 0 0
\(667\) 4987.27 + 8638.20i 0.289517 + 0.501458i
\(668\) 0 0
\(669\) 8580.86 14862.5i 0.495897 0.858919i
\(670\) 0 0
\(671\) 6149.19 0.353780
\(672\) 0 0
\(673\) −4676.83 −0.267873 −0.133936 0.990990i \(-0.542762\pi\)
−0.133936 + 0.990990i \(0.542762\pi\)
\(674\) 0 0
\(675\) −3515.87 + 6089.66i −0.200483 + 0.347246i
\(676\) 0 0
\(677\) −16419.0 28438.6i −0.932103 1.61445i −0.779719 0.626129i \(-0.784638\pi\)
−0.152384 0.988321i \(-0.548695\pi\)
\(678\) 0 0
\(679\) 12022.9 25174.5i 0.679525 1.42284i
\(680\) 0 0
\(681\) 27113.5 + 46961.9i 1.52568 + 2.64256i
\(682\) 0 0
\(683\) −10540.6 + 18256.9i −0.590521 + 1.02281i 0.403641 + 0.914917i \(0.367744\pi\)
−0.994162 + 0.107895i \(0.965589\pi\)
\(684\) 0 0
\(685\) −29795.5 −1.66194
\(686\) 0 0
\(687\) 48561.1 2.69683
\(688\) 0 0
\(689\) 2387.43 4135.15i 0.132008 0.228645i
\(690\) 0 0
\(691\) −4033.46 6986.16i −0.222055 0.384611i 0.733377 0.679823i \(-0.237943\pi\)
−0.955432 + 0.295212i \(0.904610\pi\)
\(692\) 0 0
\(693\) −4920.23 + 10302.4i −0.269703 + 0.564725i
\(694\) 0 0
\(695\) 6592.29 + 11418.2i 0.359798 + 0.623189i
\(696\) 0 0
\(697\) −8584.53 + 14868.8i −0.466517 + 0.808031i
\(698\) 0 0
\(699\) −44064.7 −2.38438
\(700\) 0 0
\(701\) 9129.93 0.491915 0.245958 0.969281i \(-0.420898\pi\)
0.245958 + 0.969281i \(0.420898\pi\)
\(702\) 0 0
\(703\) 8518.82 14755.0i 0.457032 0.791602i
\(704\) 0 0
\(705\) 6920.62 + 11986.9i 0.369710 + 0.640357i
\(706\) 0 0
\(707\) 9460.39 + 13779.5i 0.503245 + 0.733003i
\(708\) 0 0
\(709\) −14180.4 24561.1i −0.751135 1.30100i −0.947273 0.320428i \(-0.896173\pi\)
0.196138 0.980576i \(-0.437160\pi\)
\(710\) 0 0
\(711\) −1599.15 + 2769.81i −0.0843500 + 0.146099i
\(712\) 0 0
\(713\) 28186.2 1.48048
\(714\) 0 0
\(715\) −1716.42 −0.0897768
\(716\) 0 0
\(717\) 23017.4 39867.3i 1.19889 2.07653i
\(718\) 0 0
\(719\) 1708.38 + 2959.00i 0.0886118 + 0.153480i 0.906925 0.421293i \(-0.138424\pi\)
−0.818313 + 0.574773i \(0.805090\pi\)
\(720\) 0 0
\(721\) 11132.5 870.603i 0.575027 0.0449694i
\(722\) 0 0
\(723\) 12031.5 + 20839.2i 0.618890 + 1.07195i
\(724\) 0 0
\(725\) −1058.26 + 1832.95i −0.0542106 + 0.0938954i
\(726\) 0 0
\(727\) 953.823 0.0486593 0.0243297 0.999704i \(-0.492255\pi\)
0.0243297 + 0.999704i \(0.492255\pi\)
\(728\) 0 0
\(729\) −14759.2 −0.749843
\(730\) 0 0
\(731\) −17973.6 + 31131.2i −0.909408 + 1.57514i
\(732\) 0 0
\(733\) 8405.36 + 14558.5i 0.423546 + 0.733603i 0.996283 0.0861358i \(-0.0274519\pi\)
−0.572738 + 0.819739i \(0.694119\pi\)
\(734\) 0 0
\(735\) 19491.5 + 24118.8i 0.978172 + 1.21039i
\(736\) 0 0
\(737\) 5017.93 + 8691.30i 0.250797 + 0.434394i
\(738\) 0 0
\(739\) 17264.6 29903.2i 0.859392 1.48851i −0.0131187 0.999914i \(-0.504176\pi\)
0.872510 0.488596i \(-0.162491\pi\)
\(740\) 0 0
\(741\) 17866.2 0.885737
\(742\) 0 0
\(743\) 16824.5 0.830727 0.415364 0.909655i \(-0.363654\pi\)
0.415364 + 0.909655i \(0.363654\pi\)
\(744\) 0 0
\(745\) 5459.37 9455.91i 0.268478 0.465017i
\(746\) 0 0
\(747\) 12559.3 + 21753.3i 0.615154 + 1.06548i
\(748\) 0 0
\(749\) −8756.25 + 684.773i −0.427165 + 0.0334060i
\(750\) 0 0
\(751\) 8124.74 + 14072.5i 0.394775 + 0.683770i 0.993072 0.117504i \(-0.0374893\pi\)
−0.598298 + 0.801274i \(0.704156\pi\)
\(752\) 0 0
\(753\) −7809.85 + 13527.1i −0.377964 + 0.654653i
\(754\) 0 0
\(755\) −4917.61 −0.237046
\(756\) 0 0
\(757\) 20023.1 0.961365 0.480682 0.876895i \(-0.340389\pi\)
0.480682 + 0.876895i \(0.340389\pi\)
\(758\) 0 0
\(759\) 6275.89 10870.2i 0.300132 0.519844i
\(760\) 0 0
\(761\) −4106.85 7113.27i −0.195628 0.338838i 0.751478 0.659758i \(-0.229341\pi\)
−0.947106 + 0.320920i \(0.896008\pi\)
\(762\) 0 0
\(763\) −1306.46 1902.93i −0.0619883 0.0902891i
\(764\) 0 0
\(765\) −20755.1 35948.9i −0.980918 1.69900i
\(766\) 0 0
\(767\) 3142.12 5442.31i 0.147921 0.256207i
\(768\) 0 0
\(769\) 1053.56 0.0494046 0.0247023 0.999695i \(-0.492136\pi\)
0.0247023 + 0.999695i \(0.492136\pi\)
\(770\) 0 0
\(771\) −44431.0 −2.07541
\(772\) 0 0
\(773\) 5586.56 9676.21i 0.259941 0.450232i −0.706285 0.707928i \(-0.749630\pi\)
0.966226 + 0.257696i \(0.0829634\pi\)
\(774\) 0 0
\(775\) 2990.44 + 5179.60i 0.138606 + 0.240073i
\(776\) 0 0
\(777\) −9940.81 + 20814.8i −0.458976 + 0.961040i
\(778\) 0 0
\(779\) −14333.5 24826.4i −0.659246 1.14185i
\(780\) 0 0
\(781\) 2992.46 5183.09i 0.137105 0.237472i
\(782\) 0 0
\(783\) 21081.3 0.962177
\(784\) 0 0
\(785\) 2638.27 0.119954
\(786\) 0 0
\(787\) −7061.85 + 12231.5i −0.319857 + 0.554009i −0.980458 0.196728i \(-0.936968\pi\)
0.660601 + 0.750737i \(0.270302\pi\)
\(788\) 0 0
\(789\) 24324.1 + 42130.7i 1.09754 + 1.90100i
\(790\) 0 0
\(791\) 575.144 1204.28i 0.0258531 0.0541331i
\(792\) 0 0
\(793\) 4396.04 + 7614.17i 0.196858 + 0.340967i
\(794\) 0 0
\(795\) 13723.8 23770.4i 0.612244 1.06044i
\(796\) 0 0
\(797\) −5265.14 −0.234003 −0.117002 0.993132i \(-0.537328\pi\)
−0.117002 + 0.993132i \(0.537328\pi\)
\(798\) 0 0
\(799\) 11429.9 0.506085
\(800\) 0 0
\(801\) −34679.5 + 60066.7i −1.52976 + 2.64963i
\(802\) 0 0
\(803\) 4398.31 + 7618.09i 0.193291 + 0.334790i
\(804\) 0 0
\(805\) −13022.4 18967.8i −0.570160 0.830468i
\(806\) 0 0
\(807\) −13970.6 24197.8i −0.609403 1.05552i
\(808\) 0 0
\(809\) −19746.4 + 34201.7i −0.858152 + 1.48636i 0.0155368 + 0.999879i \(0.495054\pi\)
−0.873689 + 0.486484i \(0.838279\pi\)
\(810\) 0 0
\(811\) 25162.9 1.08950 0.544752 0.838597i \(-0.316624\pi\)
0.544752 + 0.838597i \(0.316624\pi\)
\(812\) 0 0
\(813\) 35898.8 1.54862
\(814\) 0 0
\(815\) 15252.9 26418.9i 0.655567 1.13547i
\(816\) 0 0
\(817\) −30010.4 51979.5i −1.28511 2.22587i
\(818\) 0 0
\(819\) −16274.3 + 1272.71i −0.694345 + 0.0543005i
\(820\) 0 0
\(821\) 11563.6 + 20028.7i 0.491560 + 0.851407i 0.999953 0.00971819i \(-0.00309344\pi\)
−0.508393 + 0.861125i \(0.669760\pi\)
\(822\) 0 0
\(823\) 8296.81 14370.5i 0.351408 0.608656i −0.635089 0.772439i \(-0.719036\pi\)
0.986496 + 0.163783i \(0.0523698\pi\)
\(824\) 0 0
\(825\) 2663.38 0.112396
\(826\) 0 0
\(827\) 31971.5 1.34433 0.672164 0.740402i \(-0.265365\pi\)
0.672164 + 0.740402i \(0.265365\pi\)
\(828\) 0 0
\(829\) −11365.4 + 19685.5i −0.476161 + 0.824734i −0.999627 0.0273119i \(-0.991305\pi\)
0.523466 + 0.852046i \(0.324639\pi\)
\(830\) 0 0
\(831\) 20557.4 + 35606.5i 0.858158 + 1.48637i
\(832\) 0 0
\(833\) 25296.6 3980.93i 1.05219 0.165584i
\(834\) 0 0
\(835\) −13235.7 22925.0i −0.548553 0.950121i
\(836\) 0 0
\(837\) 29786.0 51590.9i 1.23005 2.13052i
\(838\) 0 0
\(839\) −25162.2 −1.03539 −0.517697 0.855564i \(-0.673211\pi\)
−0.517697 + 0.855564i \(0.673211\pi\)
\(840\) 0 0
\(841\) −18043.6 −0.739827
\(842\) 0 0
\(843\) 17710.8 30676.0i 0.723597 1.25331i
\(844\) 0 0
\(845\) 9671.36 + 16751.3i 0.393733 + 0.681966i
\(846\) 0 0
\(847\) 2234.13 174.718i 0.0906324 0.00708781i
\(848\) 0 0
\(849\) −9836.42 17037.2i −0.397627 0.688710i
\(850\) 0 0
\(851\) 8557.11 14821.3i 0.344693 0.597026i
\(852\) 0 0
\(853\) −38703.4 −1.55355 −0.776775 0.629778i \(-0.783146\pi\)
−0.776775 + 0.629778i \(0.783146\pi\)
\(854\) 0 0
\(855\) 69309.4 2.77232
\(856\) 0 0
\(857\) −3772.40 + 6533.99i −0.150365 + 0.260440i −0.931362 0.364095i \(-0.881378\pi\)
0.780997 + 0.624535i \(0.214712\pi\)
\(858\) 0 0
\(859\) −22883.5 39635.4i −0.908935 1.57432i −0.815547 0.578691i \(-0.803564\pi\)
−0.0933882 0.995630i \(-0.529770\pi\)
\(860\) 0 0
\(861\) 21967.3 + 31996.5i 0.869505 + 1.26648i
\(862\) 0 0
\(863\) −18553.6 32135.7i −0.731832 1.26757i −0.956099 0.293042i \(-0.905332\pi\)
0.224268 0.974528i \(-0.428001\pi\)
\(864\) 0 0
\(865\) −5549.77 + 9612.49i −0.218148 + 0.377843i
\(866\) 0 0
\(867\) −6022.69 −0.235918
\(868\) 0 0
\(869\) 627.771 0.0245060
\(870\) 0 0
\(871\) −7174.61 + 12426.8i −0.279107 + 0.483428i
\(872\) 0 0
\(873\) 42209.4 + 73108.9i 1.63639 + 2.83432i
\(874\) 0 0
\(875\) 12002.1 25131.0i 0.463710 0.970952i
\(876\) 0 0
\(877\) −23680.6 41016.0i −0.911786 1.57926i −0.811540 0.584297i \(-0.801370\pi\)
−0.100246 0.994963i \(-0.531963\pi\)
\(878\) 0 0
\(879\) 5081.57 8801.53i 0.194991 0.337734i
\(880\) 0 0
\(881\) 16214.3 0.620062 0.310031 0.950727i \(-0.399661\pi\)
0.310031 + 0.950727i \(0.399661\pi\)
\(882\) 0 0
\(883\) −34094.7 −1.29941 −0.649705 0.760186i \(-0.725108\pi\)
−0.649705 + 0.760186i \(0.725108\pi\)
\(884\) 0 0
\(885\) 18062.1 31284.4i 0.686045 1.18826i
\(886\) 0 0
\(887\) −22393.2 38786.1i −0.847677 1.46822i −0.883276 0.468853i \(-0.844667\pi\)
0.0355995 0.999366i \(-0.488666\pi\)
\(888\) 0 0
\(889\) −19297.2 + 40406.0i −0.728018 + 1.52438i
\(890\) 0 0
\(891\) −4941.99 8559.78i −0.185817 0.321845i
\(892\) 0 0
\(893\) −9542.25 + 16527.7i −0.357580 + 0.619347i
\(894\) 0 0
\(895\) 8554.20 0.319481
\(896\) 0 0
\(897\) 17946.5 0.668022
\(898\) 0 0
\(899\) 8965.42 15528.6i 0.332607 0.576092i
\(900\) 0 0
\(901\) −11333.0 19629.3i −0.419041 0.725800i
\(902\) 0 0
\(903\) 45993.4 + 66991.7i 1.69498 + 2.46882i
\(904\) 0 0
\(905\) −17889.3 30985.2i −0.657083 1.13810i
\(906\) 0 0
\(907\) 13310.4 23054.3i 0.487282 0.843998i −0.512611 0.858621i \(-0.671322\pi\)
0.999893 + 0.0146235i \(0.00465497\pi\)
\(908\) 0 0
\(909\) −50577.5 −1.84549
\(910\) 0 0
\(911\) 20283.3 0.737667 0.368833 0.929495i \(-0.379757\pi\)
0.368833 + 0.929495i \(0.379757\pi\)
\(912\) 0 0
\(913\) 2465.17 4269.79i 0.0893594 0.154775i
\(914\) 0 0
\(915\) 25270.1 + 43769.1i 0.913009 + 1.58138i
\(916\) 0 0
\(917\) 15399.2 1204.28i 0.554554 0.0433683i
\(918\) 0 0
\(919\) −46.1317 79.9025i −0.00165587 0.00286805i 0.865196 0.501433i \(-0.167194\pi\)
−0.866852 + 0.498565i \(0.833860\pi\)
\(920\) 0 0
\(921\) 21042.1 36446.0i 0.752835 1.30395i
\(922\) 0 0
\(923\) 8557.22 0.305162
\(924\) 0 0
\(925\) 3631.49 0.129084
\(926\) 0 0
\(927\) −16894.7 + 29262.4i −0.598591 + 1.03679i
\(928\) 0 0
\(929\) −9683.70 16772.7i −0.341994 0.592350i 0.642809 0.766026i \(-0.277769\pi\)
−0.984803 + 0.173676i \(0.944435\pi\)
\(930\) 0 0
\(931\) −15362.4 + 39902.3i −0.540796 + 1.40467i
\(932\) 0 0
\(933\) −21619.5 37446.0i −0.758616 1.31396i
\(934\) 0 0
\(935\) −4073.86 + 7056.13i −0.142491 + 0.246802i
\(936\) 0 0
\(937\) 14299.1 0.498540 0.249270 0.968434i \(-0.419809\pi\)
0.249270 + 0.968434i \(0.419809\pi\)
\(938\) 0 0
\(939\) −91752.0 −3.18873
\(940\) 0 0
\(941\) 8937.95 15481.0i 0.309637 0.536308i −0.668646 0.743581i \(-0.733126\pi\)
0.978283 + 0.207274i \(0.0664590\pi\)
\(942\) 0 0
\(943\) −14398.0 24938.0i −0.497203 0.861181i
\(944\) 0 0
\(945\) −48479.3 + 3791.27i −1.66882 + 0.130508i
\(946\) 0 0
\(947\) 23712.9 + 41072.0i 0.813692 + 1.40936i 0.910263 + 0.414030i \(0.135879\pi\)
−0.0965710 + 0.995326i \(0.530787\pi\)
\(948\) 0 0
\(949\) −6288.68 + 10892.3i −0.215110 + 0.372581i
\(950\) 0 0
\(951\) −26743.9 −0.911913
\(952\) 0 0
\(953\) −22421.7 −0.762132 −0.381066 0.924548i \(-0.624443\pi\)
−0.381066 + 0.924548i \(0.624443\pi\)
\(954\) 0 0
\(955\) −13244.6 + 22940.2i −0.448779 + 0.777308i
\(956\) 0 0
\(957\) −3992.44 6915.11i −0.134856 0.233578i
\(958\) 0 0
\(959\) 31481.0 + 45853.8i 1.06004 + 1.54400i
\(960\) 0 0
\(961\) −10439.2 18081.2i −0.350413 0.606933i
\(962\) 0 0
\(963\) 13288.5 23016.4i 0.444669 0.770189i
\(964\) 0 0
\(965\) −21291.0 −0.710240
\(966\) 0 0
\(967\) 44665.0 1.48535 0.742674 0.669653i \(-0.233557\pi\)
0.742674 + 0.669653i \(0.233557\pi\)
\(968\) 0 0
\(969\) 42404.8 73447.3i 1.40582 2.43495i
\(970\) 0 0
\(971\) −2530.86 4383.57i −0.0836447 0.144877i 0.821168 0.570686i \(-0.193323\pi\)
−0.904813 + 0.425809i \(0.859989\pi\)
\(972\) 0 0
\(973\) 10606.8 22209.3i 0.349474 0.731755i
\(974\) 0 0
\(975\) 1904.05 + 3297.91i 0.0625419 + 0.108326i
\(976\) 0 0
\(977\) −2787.18 + 4827.54i −0.0912691 + 0.158083i −0.908045 0.418872i \(-0.862426\pi\)
0.816776 + 0.576955i \(0.195759\pi\)
\(978\) 0 0
\(979\) 13614.0 0.444437
\(980\) 0 0
\(981\) 6984.66 0.227322
\(982\) 0 0
\(983\) 27493.5 47620.1i 0.892072 1.54511i 0.0546840 0.998504i \(-0.482585\pi\)
0.837388 0.546610i \(-0.184082\pi\)
\(984\) 0 0
\(985\) 25293.4 + 43809.5i 0.818188 + 1.41714i
\(986\) 0 0
\(987\) 11135.1 23315.5i 0.359102 0.751915i
\(988\) 0 0
\(989\) −30145.3 52213.2i −0.969226 1.67875i
\(990\) 0 0
\(991\) −1970.81 + 3413.53i −0.0631733 + 0.109419i −0.895882 0.444292i \(-0.853455\pi\)
0.832709 + 0.553711i \(0.186789\pi\)
\(992\) 0 0
\(993\) 63319.7 2.02356
\(994\) 0 0
\(995\) 3791.13 0.120791
\(996\) 0 0
\(997\) 29680.0 51407.4i 0.942805 1.63299i 0.182717 0.983165i \(-0.441511\pi\)
0.760088 0.649821i \(-0.225156\pi\)
\(998\) 0 0
\(999\) −18085.6 31325.1i −0.572774 0.992074i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.4.i.a.221.10 yes 20
7.2 even 3 inner 308.4.i.a.177.10 20
7.3 odd 6 2156.4.a.j.1.10 10
7.4 even 3 2156.4.a.m.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.i.a.177.10 20 7.2 even 3 inner
308.4.i.a.221.10 yes 20 1.1 even 1 trivial
2156.4.a.j.1.10 10 7.3 odd 6
2156.4.a.m.1.1 10 7.4 even 3