Properties

Label 308.4.w.a.13.14
Level $308$
Weight $4$
Character 308.13
Analytic conductor $18.173$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,4,Mod(13,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.13");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 308.w (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1725882818\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 13.14
Character \(\chi\) \(=\) 308.13
Dual form 308.4.w.a.237.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.468867 + 0.645340i) q^{3} +(-18.3612 + 5.96593i) q^{5} +(-5.38402 + 17.7204i) q^{7} +(8.14683 - 25.0734i) q^{9} +(-14.5801 - 33.4428i) q^{11} +(-10.5017 + 32.3210i) q^{13} +(-12.4590 - 9.05201i) q^{15} +(-2.05129 - 6.31322i) q^{17} +(55.3638 - 40.2242i) q^{19} +(-13.9601 + 4.83398i) q^{21} +94.7185 q^{23} +(200.415 - 145.610i) q^{25} +(40.4840 - 13.1540i) q^{27} +(24.4042 - 33.5895i) q^{29} +(240.685 + 78.2034i) q^{31} +(14.7458 - 25.0893i) q^{33} +(-6.86141 - 357.489i) q^{35} +(-18.3996 - 13.3681i) q^{37} +(-25.7820 + 8.37706i) q^{39} +(-81.3985 + 59.1395i) q^{41} -530.645i q^{43} +508.981i q^{45} +(-159.397 - 219.391i) q^{47} +(-285.025 - 190.814i) q^{49} +(3.11239 - 4.28384i) q^{51} +(82.7565 - 254.698i) q^{53} +(467.226 + 527.067i) q^{55} +(51.9165 + 16.8687i) q^{57} +(-421.914 + 580.715i) q^{59} +(-168.728 - 519.292i) q^{61} +(400.447 + 279.360i) q^{63} -656.106i q^{65} +604.494 q^{67} +(44.4103 + 61.1256i) q^{69} +(-8.78097 - 27.0250i) q^{71} +(806.789 + 586.166i) q^{73} +(187.936 + 61.0642i) q^{75} +(671.119 - 78.3089i) q^{77} +(-293.262 - 95.2866i) q^{79} +(-548.404 - 398.439i) q^{81} +(-401.923 - 1236.99i) q^{83} +(75.3285 + 103.681i) q^{85} +33.1190 q^{87} -1130.18i q^{89} +(-516.200 - 360.112i) q^{91} +(62.3816 + 191.991i) q^{93} +(-776.574 + 1068.86i) q^{95} +(930.592 + 302.368i) q^{97} +(-957.305 + 93.1199i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 10 q^{7} + 168 q^{9} + 60 q^{11} - 192 q^{15} - 112 q^{23} + 548 q^{25} - 700 q^{29} - 940 q^{35} + 288 q^{37} + 460 q^{39} + 90 q^{49} - 1420 q^{51} - 2240 q^{53} + 560 q^{57} + 320 q^{63} + 4272 q^{67}+ \cdots - 10212 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.468867 + 0.645340i 0.0902334 + 0.124196i 0.851747 0.523953i \(-0.175543\pi\)
−0.761514 + 0.648149i \(0.775543\pi\)
\(4\) 0 0
\(5\) −18.3612 + 5.96593i −1.64228 + 0.533609i −0.977046 0.213028i \(-0.931668\pi\)
−0.665232 + 0.746636i \(0.731668\pi\)
\(6\) 0 0
\(7\) −5.38402 + 17.7204i −0.290709 + 0.956811i
\(8\) 0 0
\(9\) 8.14683 25.0734i 0.301735 0.928643i
\(10\) 0 0
\(11\) −14.5801 33.4428i −0.399643 0.916671i
\(12\) 0 0
\(13\) −10.5017 + 32.3210i −0.224051 + 0.689557i 0.774336 + 0.632775i \(0.218084\pi\)
−0.998387 + 0.0567821i \(0.981916\pi\)
\(14\) 0 0
\(15\) −12.4590 9.05201i −0.214460 0.155815i
\(16\) 0 0
\(17\) −2.05129 6.31322i −0.0292654 0.0900695i 0.935357 0.353705i \(-0.115078\pi\)
−0.964622 + 0.263636i \(0.915078\pi\)
\(18\) 0 0
\(19\) 55.3638 40.2242i 0.668491 0.485687i −0.201029 0.979585i \(-0.564428\pi\)
0.869520 + 0.493898i \(0.164428\pi\)
\(20\) 0 0
\(21\) −13.9601 + 4.83398i −0.145064 + 0.0502315i
\(22\) 0 0
\(23\) 94.7185 0.858703 0.429351 0.903137i \(-0.358742\pi\)
0.429351 + 0.903137i \(0.358742\pi\)
\(24\) 0 0
\(25\) 200.415 145.610i 1.60332 1.16488i
\(26\) 0 0
\(27\) 40.4840 13.1540i 0.288561 0.0937591i
\(28\) 0 0
\(29\) 24.4042 33.5895i 0.156267 0.215083i −0.723704 0.690111i \(-0.757562\pi\)
0.879971 + 0.475027i \(0.157562\pi\)
\(30\) 0 0
\(31\) 240.685 + 78.2034i 1.39446 + 0.453089i 0.907396 0.420276i \(-0.138067\pi\)
0.487067 + 0.873365i \(0.338067\pi\)
\(32\) 0 0
\(33\) 14.7458 25.0893i 0.0777854 0.132348i
\(34\) 0 0
\(35\) −6.86141 357.489i −0.0331368 1.72648i
\(36\) 0 0
\(37\) −18.3996 13.3681i −0.0817535 0.0593974i 0.546158 0.837682i \(-0.316090\pi\)
−0.627911 + 0.778285i \(0.716090\pi\)
\(38\) 0 0
\(39\) −25.7820 + 8.37706i −0.105857 + 0.0343950i
\(40\) 0 0
\(41\) −81.3985 + 59.1395i −0.310056 + 0.225269i −0.731921 0.681390i \(-0.761376\pi\)
0.421864 + 0.906659i \(0.361376\pi\)
\(42\) 0 0
\(43\) 530.645i 1.88192i −0.338514 0.940961i \(-0.609924\pi\)
0.338514 0.940961i \(-0.390076\pi\)
\(44\) 0 0
\(45\) 508.981i 1.68610i
\(46\) 0 0
\(47\) −159.397 219.391i −0.494690 0.680882i 0.486555 0.873650i \(-0.338253\pi\)
−0.981244 + 0.192768i \(0.938253\pi\)
\(48\) 0 0
\(49\) −285.025 190.814i −0.830976 0.556308i
\(50\) 0 0
\(51\) 3.11239 4.28384i 0.00854553 0.0117619i
\(52\) 0 0
\(53\) 82.7565 254.698i 0.214481 0.660104i −0.784709 0.619864i \(-0.787188\pi\)
0.999190 0.0402398i \(-0.0128122\pi\)
\(54\) 0 0
\(55\) 467.226 + 527.067i 1.14547 + 1.29218i
\(56\) 0 0
\(57\) 51.9165 + 16.8687i 0.120641 + 0.0391985i
\(58\) 0 0
\(59\) −421.914 + 580.715i −0.930992 + 1.28140i 0.0284796 + 0.999594i \(0.490933\pi\)
−0.959471 + 0.281806i \(0.909067\pi\)
\(60\) 0 0
\(61\) −168.728 519.292i −0.354155 1.08998i −0.956498 0.291739i \(-0.905766\pi\)
0.602343 0.798237i \(-0.294234\pi\)
\(62\) 0 0
\(63\) 400.447 + 279.360i 0.800819 + 0.558668i
\(64\) 0 0
\(65\) 656.106i 1.25200i
\(66\) 0 0
\(67\) 604.494 1.10225 0.551124 0.834423i \(-0.314199\pi\)
0.551124 + 0.834423i \(0.314199\pi\)
\(68\) 0 0
\(69\) 44.4103 + 61.1256i 0.0774837 + 0.106647i
\(70\) 0 0
\(71\) −8.78097 27.0250i −0.0146776 0.0451730i 0.943449 0.331516i \(-0.107560\pi\)
−0.958127 + 0.286343i \(0.907560\pi\)
\(72\) 0 0
\(73\) 806.789 + 586.166i 1.29353 + 0.939803i 0.999870 0.0161082i \(-0.00512761\pi\)
0.293657 + 0.955911i \(0.405128\pi\)
\(74\) 0 0
\(75\) 187.936 + 61.0642i 0.289347 + 0.0940145i
\(76\) 0 0
\(77\) 671.119 78.3089i 0.993261 0.115898i
\(78\) 0 0
\(79\) −293.262 95.2866i −0.417652 0.135704i 0.0926495 0.995699i \(-0.470466\pi\)
−0.510302 + 0.859995i \(0.670466\pi\)
\(80\) 0 0
\(81\) −548.404 398.439i −0.752269 0.546555i
\(82\) 0 0
\(83\) −401.923 1236.99i −0.531527 1.63587i −0.751035 0.660262i \(-0.770445\pi\)
0.219508 0.975611i \(-0.429555\pi\)
\(84\) 0 0
\(85\) 75.3285 + 103.681i 0.0961237 + 0.132303i
\(86\) 0 0
\(87\) 33.1190 0.0408130
\(88\) 0 0
\(89\) 1130.18i 1.34606i −0.739616 0.673029i \(-0.764993\pi\)
0.739616 0.673029i \(-0.235007\pi\)
\(90\) 0 0
\(91\) −516.200 360.112i −0.594642 0.414835i
\(92\) 0 0
\(93\) 62.3816 + 191.991i 0.0695556 + 0.214070i
\(94\) 0 0
\(95\) −776.574 + 1068.86i −0.838682 + 1.15435i
\(96\) 0 0
\(97\) 930.592 + 302.368i 0.974096 + 0.316503i 0.752468 0.658629i \(-0.228863\pi\)
0.221627 + 0.975131i \(0.428863\pi\)
\(98\) 0 0
\(99\) −957.305 + 93.1199i −0.971846 + 0.0945343i
\(100\) 0 0
\(101\) 252.863 778.231i 0.249116 0.766702i −0.745816 0.666152i \(-0.767940\pi\)
0.994932 0.100549i \(-0.0320600\pi\)
\(102\) 0 0
\(103\) −573.839 + 789.821i −0.548952 + 0.755567i −0.989869 0.141980i \(-0.954653\pi\)
0.440918 + 0.897547i \(0.354653\pi\)
\(104\) 0 0
\(105\) 227.485 172.043i 0.211431 0.159901i
\(106\) 0 0
\(107\) 102.709 + 141.367i 0.0927967 + 0.127724i 0.852891 0.522089i \(-0.174847\pi\)
−0.760094 + 0.649813i \(0.774847\pi\)
\(108\) 0 0
\(109\) 1892.28i 1.66283i 0.555656 + 0.831413i \(0.312467\pi\)
−0.555656 + 0.831413i \(0.687533\pi\)
\(110\) 0 0
\(111\) 18.1419i 0.0155131i
\(112\) 0 0
\(113\) 1590.42 1155.51i 1.32402 0.961955i 0.324144 0.946008i \(-0.394924\pi\)
0.999873 0.0159469i \(-0.00507629\pi\)
\(114\) 0 0
\(115\) −1739.15 + 565.083i −1.41023 + 0.458211i
\(116\) 0 0
\(117\) 724.841 + 526.628i 0.572748 + 0.416126i
\(118\) 0 0
\(119\) 122.917 2.35919i 0.0946872 0.00181736i
\(120\) 0 0
\(121\) −905.840 + 975.200i −0.680571 + 0.732682i
\(122\) 0 0
\(123\) −76.3301 24.8012i −0.0559549 0.0181809i
\(124\) 0 0
\(125\) −1392.69 + 1916.87i −0.996529 + 1.37160i
\(126\) 0 0
\(127\) −1488.68 + 483.701i −1.04015 + 0.337964i −0.778795 0.627279i \(-0.784169\pi\)
−0.261353 + 0.965243i \(0.584169\pi\)
\(128\) 0 0
\(129\) 342.447 248.802i 0.233727 0.169812i
\(130\) 0 0
\(131\) −1636.62 −1.09154 −0.545772 0.837934i \(-0.683764\pi\)
−0.545772 + 0.837934i \(0.683764\pi\)
\(132\) 0 0
\(133\) 414.709 + 1197.64i 0.270374 + 0.780814i
\(134\) 0 0
\(135\) −664.859 + 483.049i −0.423867 + 0.307957i
\(136\) 0 0
\(137\) 399.102 + 1228.31i 0.248887 + 0.765996i 0.994973 + 0.100146i \(0.0319310\pi\)
−0.746086 + 0.665850i \(0.768069\pi\)
\(138\) 0 0
\(139\) −723.947 525.978i −0.441758 0.320956i 0.344575 0.938759i \(-0.388023\pi\)
−0.786333 + 0.617803i \(0.788023\pi\)
\(140\) 0 0
\(141\) 66.8458 205.730i 0.0399250 0.122877i
\(142\) 0 0
\(143\) 1234.02 120.037i 0.721637 0.0701957i
\(144\) 0 0
\(145\) −247.699 + 762.339i −0.141864 + 0.436612i
\(146\) 0 0
\(147\) −10.4989 273.404i −0.00589074 0.153401i
\(148\) 0 0
\(149\) 1554.36 505.041i 0.854617 0.277682i 0.151238 0.988497i \(-0.451674\pi\)
0.703378 + 0.710816i \(0.251674\pi\)
\(150\) 0 0
\(151\) 1029.18 + 1416.55i 0.554659 + 0.763423i 0.990635 0.136535i \(-0.0435967\pi\)
−0.435976 + 0.899958i \(0.643597\pi\)
\(152\) 0 0
\(153\) −175.005 −0.0924728
\(154\) 0 0
\(155\) −4885.83 −2.53187
\(156\) 0 0
\(157\) −1663.91 2290.18i −0.845826 1.16418i −0.984767 0.173879i \(-0.944370\pi\)
0.138941 0.990301i \(-0.455630\pi\)
\(158\) 0 0
\(159\) 203.169 66.0135i 0.101335 0.0329259i
\(160\) 0 0
\(161\) −509.966 + 1678.45i −0.249633 + 0.821617i
\(162\) 0 0
\(163\) 136.769 420.931i 0.0657212 0.202269i −0.912803 0.408399i \(-0.866087\pi\)
0.978525 + 0.206130i \(0.0660871\pi\)
\(164\) 0 0
\(165\) −121.070 + 548.644i −0.0571232 + 0.258860i
\(166\) 0 0
\(167\) 568.500 1749.66i 0.263424 0.810737i −0.728628 0.684910i \(-0.759842\pi\)
0.992052 0.125827i \(-0.0401585\pi\)
\(168\) 0 0
\(169\) 843.048 + 612.511i 0.383727 + 0.278794i
\(170\) 0 0
\(171\) −557.516 1715.86i −0.249323 0.767338i
\(172\) 0 0
\(173\) 865.198 628.603i 0.380230 0.276253i −0.381210 0.924488i \(-0.624493\pi\)
0.761440 + 0.648235i \(0.224493\pi\)
\(174\) 0 0
\(175\) 1501.23 + 4335.41i 0.648472 + 1.87272i
\(176\) 0 0
\(177\) −572.580 −0.243151
\(178\) 0 0
\(179\) −1691.63 + 1229.04i −0.706359 + 0.513200i −0.881997 0.471255i \(-0.843801\pi\)
0.175638 + 0.984455i \(0.443801\pi\)
\(180\) 0 0
\(181\) 1407.03 457.173i 0.577812 0.187743i −0.00550791 0.999985i \(-0.501753\pi\)
0.583320 + 0.812242i \(0.301753\pi\)
\(182\) 0 0
\(183\) 256.009 352.366i 0.103414 0.142337i
\(184\) 0 0
\(185\) 417.593 + 135.684i 0.165957 + 0.0539227i
\(186\) 0 0
\(187\) −181.224 + 160.648i −0.0708684 + 0.0628223i
\(188\) 0 0
\(189\) 15.1284 + 788.213i 0.00582240 + 0.303355i
\(190\) 0 0
\(191\) −41.0945 29.8569i −0.0155680 0.0113108i 0.579974 0.814635i \(-0.303063\pi\)
−0.595542 + 0.803324i \(0.703063\pi\)
\(192\) 0 0
\(193\) 4379.13 1422.86i 1.63325 0.530674i 0.658231 0.752816i \(-0.271305\pi\)
0.975014 + 0.222142i \(0.0713048\pi\)
\(194\) 0 0
\(195\) 423.411 307.626i 0.155493 0.112972i
\(196\) 0 0
\(197\) 3571.77i 1.29177i −0.763436 0.645883i \(-0.776489\pi\)
0.763436 0.645883i \(-0.223511\pi\)
\(198\) 0 0
\(199\) 4050.42i 1.44285i −0.692494 0.721424i \(-0.743488\pi\)
0.692494 0.721424i \(-0.256512\pi\)
\(200\) 0 0
\(201\) 283.427 + 390.104i 0.0994597 + 0.136895i
\(202\) 0 0
\(203\) 463.827 + 613.299i 0.160366 + 0.212045i
\(204\) 0 0
\(205\) 1141.76 1571.49i 0.388993 0.535403i
\(206\) 0 0
\(207\) 771.655 2374.91i 0.259100 0.797429i
\(208\) 0 0
\(209\) −2152.42 1265.05i −0.712373 0.418685i
\(210\) 0 0
\(211\) −27.5628 8.95570i −0.00899291 0.00292197i 0.304517 0.952507i \(-0.401505\pi\)
−0.313510 + 0.949585i \(0.601505\pi\)
\(212\) 0 0
\(213\) 13.3232 18.3379i 0.00428588 0.00589901i
\(214\) 0 0
\(215\) 3165.79 + 9743.30i 1.00421 + 3.09064i
\(216\) 0 0
\(217\) −2681.65 + 3843.99i −0.838904 + 1.20252i
\(218\) 0 0
\(219\) 795.487i 0.245452i
\(220\) 0 0
\(221\) 225.592 0.0686650
\(222\) 0 0
\(223\) 18.8081 + 25.8871i 0.00564791 + 0.00777368i 0.811832 0.583892i \(-0.198471\pi\)
−0.806184 + 0.591665i \(0.798471\pi\)
\(224\) 0 0
\(225\) −2018.19 6211.35i −0.597983 1.84040i
\(226\) 0 0
\(227\) −434.390 315.603i −0.127011 0.0922788i 0.522466 0.852660i \(-0.325012\pi\)
−0.649477 + 0.760381i \(0.725012\pi\)
\(228\) 0 0
\(229\) −1097.91 356.732i −0.316820 0.102941i 0.146290 0.989242i \(-0.453267\pi\)
−0.463110 + 0.886301i \(0.653267\pi\)
\(230\) 0 0
\(231\) 365.201 + 396.383i 0.104019 + 0.112901i
\(232\) 0 0
\(233\) −3136.67 1019.16i −0.881931 0.286557i −0.167172 0.985928i \(-0.553464\pi\)
−0.714759 + 0.699371i \(0.753464\pi\)
\(234\) 0 0
\(235\) 4235.59 + 3077.34i 1.17574 + 0.854227i
\(236\) 0 0
\(237\) −76.0086 233.930i −0.0208324 0.0641156i
\(238\) 0 0
\(239\) −2416.19 3325.60i −0.653934 0.900063i 0.345328 0.938482i \(-0.387768\pi\)
−0.999262 + 0.0384195i \(0.987768\pi\)
\(240\) 0 0
\(241\) −4058.30 −1.08472 −0.542361 0.840145i \(-0.682470\pi\)
−0.542361 + 0.840145i \(0.682470\pi\)
\(242\) 0 0
\(243\) 1690.04i 0.446157i
\(244\) 0 0
\(245\) 6371.79 + 1803.14i 1.66154 + 0.470197i
\(246\) 0 0
\(247\) 718.670 + 2211.84i 0.185133 + 0.569781i
\(248\) 0 0
\(249\) 609.831 839.361i 0.155207 0.213624i
\(250\) 0 0
\(251\) −39.2178 12.7426i −0.00986216 0.00320441i 0.304082 0.952646i \(-0.401650\pi\)
−0.313944 + 0.949442i \(0.601650\pi\)
\(252\) 0 0
\(253\) −1381.01 3167.65i −0.343174 0.787148i
\(254\) 0 0
\(255\) −31.5903 + 97.2249i −0.00775788 + 0.0238763i
\(256\) 0 0
\(257\) 2172.20 2989.77i 0.527229 0.725668i −0.459476 0.888190i \(-0.651963\pi\)
0.986705 + 0.162522i \(0.0519628\pi\)
\(258\) 0 0
\(259\) 335.952 254.075i 0.0805986 0.0609553i
\(260\) 0 0
\(261\) −643.386 885.544i −0.152585 0.210015i
\(262\) 0 0
\(263\) 1424.23i 0.333922i 0.985963 + 0.166961i \(0.0533954\pi\)
−0.985963 + 0.166961i \(0.946605\pi\)
\(264\) 0 0
\(265\) 5170.29i 1.19852i
\(266\) 0 0
\(267\) 729.352 529.905i 0.167175 0.121460i
\(268\) 0 0
\(269\) 6288.93 2043.40i 1.42544 0.463153i 0.508113 0.861290i \(-0.330343\pi\)
0.917326 + 0.398137i \(0.130343\pi\)
\(270\) 0 0
\(271\) −2836.39 2060.76i −0.635788 0.461927i 0.222612 0.974907i \(-0.428542\pi\)
−0.858401 + 0.512980i \(0.828542\pi\)
\(272\) 0 0
\(273\) −9.63446 501.969i −0.00213591 0.111284i
\(274\) 0 0
\(275\) −7791.70 4579.44i −1.70857 1.00418i
\(276\) 0 0
\(277\) −1823.79 592.584i −0.395598 0.128538i 0.104461 0.994529i \(-0.466688\pi\)
−0.500059 + 0.865991i \(0.666688\pi\)
\(278\) 0 0
\(279\) 3921.65 5397.68i 0.841515 1.15825i
\(280\) 0 0
\(281\) 1832.92 595.551i 0.389120 0.126433i −0.107922 0.994159i \(-0.534420\pi\)
0.497042 + 0.867727i \(0.334420\pi\)
\(282\) 0 0
\(283\) −1389.92 + 1009.83i −0.291950 + 0.212114i −0.724113 0.689681i \(-0.757751\pi\)
0.432163 + 0.901796i \(0.357751\pi\)
\(284\) 0 0
\(285\) −1053.89 −0.219042
\(286\) 0 0
\(287\) −609.724 1760.82i −0.125404 0.362153i
\(288\) 0 0
\(289\) 3939.05 2861.89i 0.801761 0.582513i
\(290\) 0 0
\(291\) 241.194 + 742.318i 0.0485877 + 0.149538i
\(292\) 0 0
\(293\) −623.201 452.782i −0.124259 0.0902792i 0.523920 0.851767i \(-0.324469\pi\)
−0.648179 + 0.761488i \(0.724469\pi\)
\(294\) 0 0
\(295\) 4282.36 13179.7i 0.845182 2.60120i
\(296\) 0 0
\(297\) −1030.17 1162.11i −0.201267 0.227045i
\(298\) 0 0
\(299\) −994.708 + 3061.40i −0.192393 + 0.592124i
\(300\) 0 0
\(301\) 9403.25 + 2857.00i 1.80064 + 0.547093i
\(302\) 0 0
\(303\) 620.782 201.704i 0.117700 0.0382429i
\(304\) 0 0
\(305\) 6196.12 + 8528.22i 1.16324 + 1.60106i
\(306\) 0 0
\(307\) 8618.72 1.60227 0.801134 0.598485i \(-0.204230\pi\)
0.801134 + 0.598485i \(0.204230\pi\)
\(308\) 0 0
\(309\) −778.757 −0.143372
\(310\) 0 0
\(311\) 4594.02 + 6323.12i 0.837629 + 1.15290i 0.986455 + 0.164035i \(0.0524509\pi\)
−0.148825 + 0.988864i \(0.547549\pi\)
\(312\) 0 0
\(313\) 9437.86 3066.55i 1.70434 0.553775i 0.714968 0.699158i \(-0.246441\pi\)
0.989375 + 0.145383i \(0.0464415\pi\)
\(314\) 0 0
\(315\) −9019.35 2740.36i −1.61328 0.490165i
\(316\) 0 0
\(317\) 2289.05 7044.99i 0.405571 1.24822i −0.514846 0.857283i \(-0.672151\pi\)
0.920417 0.390938i \(-0.127849\pi\)
\(318\) 0 0
\(319\) −1479.14 326.406i −0.259612 0.0572891i
\(320\) 0 0
\(321\) −43.0727 + 132.564i −0.00748936 + 0.0230499i
\(322\) 0 0
\(323\) −367.511 267.013i −0.0633092 0.0459969i
\(324\) 0 0
\(325\) 2601.56 + 8006.79i 0.444027 + 1.36658i
\(326\) 0 0
\(327\) −1221.17 + 887.229i −0.206516 + 0.150042i
\(328\) 0 0
\(329\) 4745.89 1643.37i 0.795287 0.275386i
\(330\) 0 0
\(331\) 3635.94 0.603775 0.301887 0.953344i \(-0.402383\pi\)
0.301887 + 0.953344i \(0.402383\pi\)
\(332\) 0 0
\(333\) −485.082 + 352.433i −0.0798269 + 0.0579976i
\(334\) 0 0
\(335\) −11099.3 + 3606.37i −1.81020 + 0.588170i
\(336\) 0 0
\(337\) −4491.76 + 6182.38i −0.726059 + 0.999334i 0.273242 + 0.961945i \(0.411904\pi\)
−0.999301 + 0.0373887i \(0.988096\pi\)
\(338\) 0 0
\(339\) 1491.39 + 484.581i 0.238941 + 0.0776367i
\(340\) 0 0
\(341\) −893.880 9189.40i −0.141954 1.45934i
\(342\) 0 0
\(343\) 4915.87 4023.41i 0.773855 0.633363i
\(344\) 0 0
\(345\) −1180.10 857.392i −0.184158 0.133798i
\(346\) 0 0
\(347\) −2994.38 + 972.934i −0.463247 + 0.150518i −0.531336 0.847161i \(-0.678310\pi\)
0.0680888 + 0.997679i \(0.478310\pi\)
\(348\) 0 0
\(349\) −9263.27 + 6730.16i −1.42078 + 1.03226i −0.429136 + 0.903240i \(0.641182\pi\)
−0.991643 + 0.129016i \(0.958818\pi\)
\(350\) 0 0
\(351\) 1446.62i 0.219986i
\(352\) 0 0
\(353\) 2304.55i 0.347475i 0.984792 + 0.173737i \(0.0555844\pi\)
−0.984792 + 0.173737i \(0.944416\pi\)
\(354\) 0 0
\(355\) 322.459 + 443.827i 0.0482094 + 0.0663545i
\(356\) 0 0
\(357\) 59.1542 + 78.2171i 0.00876967 + 0.0115958i
\(358\) 0 0
\(359\) 2959.37 4073.22i 0.435068 0.598819i −0.534039 0.845460i \(-0.679327\pi\)
0.969107 + 0.246640i \(0.0793266\pi\)
\(360\) 0 0
\(361\) −672.379 + 2069.37i −0.0980287 + 0.301701i
\(362\) 0 0
\(363\) −1054.05 127.336i −0.152406 0.0184116i
\(364\) 0 0
\(365\) −18310.7 5949.50i −2.62582 0.853180i
\(366\) 0 0
\(367\) −5103.95 + 7024.99i −0.725951 + 0.999186i 0.273354 + 0.961914i \(0.411867\pi\)
−0.999305 + 0.0372726i \(0.988133\pi\)
\(368\) 0 0
\(369\) 819.686 + 2522.73i 0.115640 + 0.355903i
\(370\) 0 0
\(371\) 4067.79 + 2837.78i 0.569243 + 0.397116i
\(372\) 0 0
\(373\) 4798.65i 0.666125i 0.942905 + 0.333062i \(0.108082\pi\)
−0.942905 + 0.333062i \(0.891918\pi\)
\(374\) 0 0
\(375\) −1890.02 −0.260268
\(376\) 0 0
\(377\) 829.361 + 1141.52i 0.113300 + 0.155945i
\(378\) 0 0
\(379\) −2246.27 6913.30i −0.304441 0.936972i −0.979885 0.199561i \(-0.936048\pi\)
0.675445 0.737411i \(-0.263952\pi\)
\(380\) 0 0
\(381\) −1010.14 733.912i −0.135830 0.0986862i
\(382\) 0 0
\(383\) −10901.5 3542.12i −1.45442 0.472569i −0.528058 0.849208i \(-0.677080\pi\)
−0.926360 + 0.376639i \(0.877080\pi\)
\(384\) 0 0
\(385\) −11855.4 + 5441.69i −1.56937 + 0.720349i
\(386\) 0 0
\(387\) −13305.1 4323.08i −1.74763 0.567841i
\(388\) 0 0
\(389\) 8702.77 + 6322.93i 1.13431 + 0.824127i 0.986317 0.164861i \(-0.0527177\pi\)
0.147996 + 0.988988i \(0.452718\pi\)
\(390\) 0 0
\(391\) −194.295 597.979i −0.0251302 0.0773429i
\(392\) 0 0
\(393\) −767.357 1056.18i −0.0984938 0.135565i
\(394\) 0 0
\(395\) 5953.12 0.758314
\(396\) 0 0
\(397\) 8334.52i 1.05365i −0.849975 0.526823i \(-0.823383\pi\)
0.849975 0.526823i \(-0.176617\pi\)
\(398\) 0 0
\(399\) −578.439 + 829.160i −0.0725769 + 0.104035i
\(400\) 0 0
\(401\) −121.133 372.810i −0.0150851 0.0464271i 0.943231 0.332138i \(-0.107770\pi\)
−0.958316 + 0.285711i \(0.907770\pi\)
\(402\) 0 0
\(403\) −5055.23 + 6957.92i −0.624861 + 0.860047i
\(404\) 0 0
\(405\) 12446.4 + 4044.09i 1.52708 + 0.496179i
\(406\) 0 0
\(407\) −178.798 + 810.244i −0.0217757 + 0.0986788i
\(408\) 0 0
\(409\) −1264.73 + 3892.43i −0.152902 + 0.470583i −0.997942 0.0641194i \(-0.979576\pi\)
0.845041 + 0.534702i \(0.179576\pi\)
\(410\) 0 0
\(411\) −605.551 + 833.469i −0.0726755 + 0.100029i
\(412\) 0 0
\(413\) −8018.90 10603.1i −0.955410 1.26330i
\(414\) 0 0
\(415\) 14759.6 + 20314.8i 1.74583 + 2.40293i
\(416\) 0 0
\(417\) 713.806i 0.0838255i
\(418\) 0 0
\(419\) 2531.21i 0.295126i −0.989053 0.147563i \(-0.952857\pi\)
0.989053 0.147563i \(-0.0471429\pi\)
\(420\) 0 0
\(421\) −2815.60 + 2045.66i −0.325948 + 0.236815i −0.738709 0.674024i \(-0.764564\pi\)
0.412761 + 0.910839i \(0.364564\pi\)
\(422\) 0 0
\(423\) −6799.45 + 2209.27i −0.781561 + 0.253945i
\(424\) 0 0
\(425\) −1330.38 966.578i −0.151842 0.110320i
\(426\) 0 0
\(427\) 10110.5 194.054i 1.14586 0.0219928i
\(428\) 0 0
\(429\) 656.056 + 740.082i 0.0738338 + 0.0832902i
\(430\) 0 0
\(431\) 7530.41 + 2446.78i 0.841594 + 0.273450i 0.697921 0.716175i \(-0.254109\pi\)
0.143673 + 0.989625i \(0.454109\pi\)
\(432\) 0 0
\(433\) 3358.43 4622.48i 0.372739 0.513031i −0.580904 0.813972i \(-0.697301\pi\)
0.953643 + 0.300941i \(0.0973008\pi\)
\(434\) 0 0
\(435\) −608.105 + 197.585i −0.0670263 + 0.0217781i
\(436\) 0 0
\(437\) 5243.98 3809.97i 0.574035 0.417061i
\(438\) 0 0
\(439\) −6957.85 −0.756446 −0.378223 0.925714i \(-0.623465\pi\)
−0.378223 + 0.925714i \(0.623465\pi\)
\(440\) 0 0
\(441\) −7106.39 + 5592.00i −0.767346 + 0.603823i
\(442\) 0 0
\(443\) −5124.98 + 3723.52i −0.549651 + 0.399345i −0.827657 0.561235i \(-0.810327\pi\)
0.278006 + 0.960579i \(0.410327\pi\)
\(444\) 0 0
\(445\) 6742.59 + 20751.6i 0.718269 + 2.21060i
\(446\) 0 0
\(447\) 1054.71 + 766.291i 0.111602 + 0.0810835i
\(448\) 0 0
\(449\) 4270.28 13142.6i 0.448835 1.38137i −0.429387 0.903120i \(-0.641270\pi\)
0.878222 0.478252i \(-0.158730\pi\)
\(450\) 0 0
\(451\) 3164.59 + 1859.93i 0.330409 + 0.194192i
\(452\) 0 0
\(453\) −431.605 + 1328.34i −0.0447650 + 0.137773i
\(454\) 0 0
\(455\) 11626.5 + 3532.49i 1.19793 + 0.363968i
\(456\) 0 0
\(457\) 5398.38 1754.04i 0.552572 0.179542i −0.0194042 0.999812i \(-0.506177\pi\)
0.571976 + 0.820270i \(0.306177\pi\)
\(458\) 0 0
\(459\) −166.089 228.602i −0.0168897 0.0232466i
\(460\) 0 0
\(461\) −11380.7 −1.14979 −0.574895 0.818227i \(-0.694957\pi\)
−0.574895 + 0.818227i \(0.694957\pi\)
\(462\) 0 0
\(463\) 164.572 0.0165190 0.00825950 0.999966i \(-0.497371\pi\)
0.00825950 + 0.999966i \(0.497371\pi\)
\(464\) 0 0
\(465\) −2290.81 3153.02i −0.228459 0.314447i
\(466\) 0 0
\(467\) 4752.26 1544.10i 0.470896 0.153003i −0.0639496 0.997953i \(-0.520370\pi\)
0.534846 + 0.844950i \(0.320370\pi\)
\(468\) 0 0
\(469\) −3254.60 + 10711.9i −0.320434 + 1.05464i
\(470\) 0 0
\(471\) 697.791 2147.58i 0.0682643 0.210096i
\(472\) 0 0
\(473\) −17746.3 + 7736.87i −1.72510 + 0.752097i
\(474\) 0 0
\(475\) 5238.71 16123.1i 0.506039 1.55743i
\(476\) 0 0
\(477\) −5711.94 4149.97i −0.548285 0.398352i
\(478\) 0 0
\(479\) −1000.61 3079.57i −0.0954472 0.293756i 0.891923 0.452188i \(-0.149356\pi\)
−0.987370 + 0.158432i \(0.949356\pi\)
\(480\) 0 0
\(481\) 625.299 454.306i 0.0592748 0.0430657i
\(482\) 0 0
\(483\) −1322.28 + 457.868i −0.124567 + 0.0431340i
\(484\) 0 0
\(485\) −18890.7 −1.76863
\(486\) 0 0
\(487\) 16816.3 12217.7i 1.56472 1.13683i 0.632715 0.774385i \(-0.281940\pi\)
0.932003 0.362450i \(-0.118060\pi\)
\(488\) 0 0
\(489\) 335.770 109.098i 0.0310512 0.0100891i
\(490\) 0 0
\(491\) −6484.27 + 8924.83i −0.595990 + 0.820310i −0.995334 0.0964914i \(-0.969238\pi\)
0.399344 + 0.916801i \(0.369238\pi\)
\(492\) 0 0
\(493\) −262.118 85.1674i −0.0239457 0.00778042i
\(494\) 0 0
\(495\) 17021.8 7421.01i 1.54560 0.673837i
\(496\) 0 0
\(497\) 526.171 10.0990i 0.0474890 0.000911472i
\(498\) 0 0
\(499\) −4330.11 3146.01i −0.388461 0.282234i 0.376363 0.926472i \(-0.377174\pi\)
−0.764825 + 0.644238i \(0.777174\pi\)
\(500\) 0 0
\(501\) 1395.68 453.484i 0.124460 0.0404394i
\(502\) 0 0
\(503\) −9006.52 + 6543.62i −0.798372 + 0.580051i −0.910436 0.413650i \(-0.864254\pi\)
0.112064 + 0.993701i \(0.464254\pi\)
\(504\) 0 0
\(505\) 15797.8i 1.39207i
\(506\) 0 0
\(507\) 831.239i 0.0728138i
\(508\) 0 0
\(509\) −4731.11 6511.81i −0.411990 0.567055i 0.551713 0.834034i \(-0.313974\pi\)
−0.963702 + 0.266979i \(0.913974\pi\)
\(510\) 0 0
\(511\) −14730.9 + 11140.7i −1.27525 + 0.964452i
\(512\) 0 0
\(513\) 1712.24 2356.69i 0.147363 0.202827i
\(514\) 0 0
\(515\) 5824.37 17925.6i 0.498354 1.53378i
\(516\) 0 0
\(517\) −5013.02 + 8529.42i −0.426446 + 0.725577i
\(518\) 0 0
\(519\) 811.325 + 263.615i 0.0686189 + 0.0222956i
\(520\) 0 0
\(521\) −5048.63 + 6948.84i −0.424538 + 0.584327i −0.966689 0.255954i \(-0.917610\pi\)
0.542150 + 0.840281i \(0.317610\pi\)
\(522\) 0 0
\(523\) 7020.42 + 21606.6i 0.586963 + 1.80649i 0.591240 + 0.806496i \(0.298639\pi\)
−0.00427704 + 0.999991i \(0.501361\pi\)
\(524\) 0 0
\(525\) −2093.93 + 3001.53i −0.174070 + 0.249519i
\(526\) 0 0
\(527\) 1679.92i 0.138858i
\(528\) 0 0
\(529\) −3195.41 −0.262629
\(530\) 0 0
\(531\) 11123.2 + 15309.8i 0.909051 + 1.25120i
\(532\) 0 0
\(533\) −1056.62 3251.95i −0.0858675 0.264273i
\(534\) 0 0
\(535\) −2729.24 1982.91i −0.220552 0.160241i
\(536\) 0 0
\(537\) −1586.30 515.419i −0.127474 0.0414189i
\(538\) 0 0
\(539\) −2225.65 + 12314.1i −0.177858 + 0.984056i
\(540\) 0 0
\(541\) −8832.49 2869.85i −0.701919 0.228067i −0.0637526 0.997966i \(-0.520307\pi\)
−0.638167 + 0.769898i \(0.720307\pi\)
\(542\) 0 0
\(543\) 954.744 + 693.662i 0.0754548 + 0.0548211i
\(544\) 0 0
\(545\) −11289.2 34744.7i −0.887298 2.73082i
\(546\) 0 0
\(547\) −2552.79 3513.62i −0.199542 0.274646i 0.697506 0.716579i \(-0.254293\pi\)
−0.897048 + 0.441933i \(0.854293\pi\)
\(548\) 0 0
\(549\) −14395.0 −1.11906
\(550\) 0 0
\(551\) 2841.28i 0.219678i
\(552\) 0 0
\(553\) 3267.44 4683.69i 0.251258 0.360164i
\(554\) 0 0
\(555\) 108.233 + 333.107i 0.00827791 + 0.0254768i
\(556\) 0 0
\(557\) 3170.16 4363.36i 0.241156 0.331923i −0.671233 0.741246i \(-0.734235\pi\)
0.912390 + 0.409323i \(0.134235\pi\)
\(558\) 0 0
\(559\) 17151.0 + 5572.70i 1.29769 + 0.421646i
\(560\) 0 0
\(561\) −188.643 41.6282i −0.0141970 0.00313288i
\(562\) 0 0
\(563\) 2753.19 8473.45i 0.206098 0.634305i −0.793568 0.608481i \(-0.791779\pi\)
0.999667 0.0258237i \(-0.00822084\pi\)
\(564\) 0 0
\(565\) −22308.4 + 30704.8i −1.66110 + 2.28630i
\(566\) 0 0
\(567\) 10013.1 7572.73i 0.741642 0.560891i
\(568\) 0 0
\(569\) 7187.86 + 9893.25i 0.529580 + 0.728904i 0.987066 0.160312i \(-0.0512502\pi\)
−0.457486 + 0.889217i \(0.651250\pi\)
\(570\) 0 0
\(571\) 9819.89i 0.719701i 0.933010 + 0.359851i \(0.117172\pi\)
−0.933010 + 0.359851i \(0.882828\pi\)
\(572\) 0 0
\(573\) 40.5188i 0.00295410i
\(574\) 0 0
\(575\) 18983.0 13792.0i 1.37678 1.00029i
\(576\) 0 0
\(577\) 9744.77 3166.27i 0.703085 0.228446i 0.0644110 0.997923i \(-0.479483\pi\)
0.638674 + 0.769477i \(0.279483\pi\)
\(578\) 0 0
\(579\) 2971.46 + 2158.89i 0.213281 + 0.154958i
\(580\) 0 0
\(581\) 24083.9 462.251i 1.71974 0.0330076i
\(582\) 0 0
\(583\) −9724.42 + 945.922i −0.690814 + 0.0671974i
\(584\) 0 0
\(585\) −16450.8 5345.19i −1.16266 0.377771i
\(586\) 0 0
\(587\) −5759.30 + 7926.99i −0.404960 + 0.557380i −0.961980 0.273119i \(-0.911945\pi\)
0.557020 + 0.830499i \(0.311945\pi\)
\(588\) 0 0
\(589\) 16470.9 5351.73i 1.15225 0.374387i
\(590\) 0 0
\(591\) 2305.00 1674.68i 0.160432 0.116561i
\(592\) 0 0
\(593\) −16537.1 −1.14519 −0.572595 0.819838i \(-0.694063\pi\)
−0.572595 + 0.819838i \(0.694063\pi\)
\(594\) 0 0
\(595\) −2242.83 + 776.631i −0.154533 + 0.0535106i
\(596\) 0 0
\(597\) 2613.90 1899.11i 0.179196 0.130193i
\(598\) 0 0
\(599\) −7302.36 22474.3i −0.498107 1.53302i −0.812058 0.583577i \(-0.801653\pi\)
0.313951 0.949439i \(-0.398347\pi\)
\(600\) 0 0
\(601\) 7724.98 + 5612.53i 0.524307 + 0.380931i 0.818224 0.574900i \(-0.194959\pi\)
−0.293917 + 0.955831i \(0.594959\pi\)
\(602\) 0 0
\(603\) 4924.71 15156.7i 0.332587 1.02360i
\(604\) 0 0
\(605\) 10814.4 23310.0i 0.726722 1.56643i
\(606\) 0 0
\(607\) 897.436 2762.03i 0.0600096 0.184691i −0.916558 0.399902i \(-0.869044\pi\)
0.976567 + 0.215212i \(0.0690441\pi\)
\(608\) 0 0
\(609\) −178.313 + 586.881i −0.0118647 + 0.0390503i
\(610\) 0 0
\(611\) 8764.88 2847.88i 0.580342 0.188565i
\(612\) 0 0
\(613\) 7403.26 + 10189.7i 0.487789 + 0.671384i 0.979978 0.199104i \(-0.0638031\pi\)
−0.492189 + 0.870488i \(0.663803\pi\)
\(614\) 0 0
\(615\) 1549.48 0.101595
\(616\) 0 0
\(617\) −13684.1 −0.892873 −0.446437 0.894815i \(-0.647307\pi\)
−0.446437 + 0.894815i \(0.647307\pi\)
\(618\) 0 0
\(619\) −15497.9 21331.0i −1.00632 1.38508i −0.921365 0.388699i \(-0.872925\pi\)
−0.0849571 0.996385i \(-0.527075\pi\)
\(620\) 0 0
\(621\) 3834.58 1245.93i 0.247788 0.0805112i
\(622\) 0 0
\(623\) 20027.3 + 6084.93i 1.28792 + 0.391312i
\(624\) 0 0
\(625\) 4566.60 14054.6i 0.292263 0.899492i
\(626\) 0 0
\(627\) −192.812 1982.18i −0.0122810 0.126253i
\(628\) 0 0
\(629\) −46.6529 + 143.583i −0.00295735 + 0.00910179i
\(630\) 0 0
\(631\) 10798.9 + 7845.84i 0.681294 + 0.494989i 0.873787 0.486309i \(-0.161657\pi\)
−0.192493 + 0.981298i \(0.561657\pi\)
\(632\) 0 0
\(633\) −7.14382 21.9864i −0.000448565 0.00138054i
\(634\) 0 0
\(635\) 24448.2 17762.7i 1.52787 1.11006i
\(636\) 0 0
\(637\) 9160.55 7208.42i 0.569787 0.448364i
\(638\) 0 0
\(639\) −749.146 −0.0463783
\(640\) 0 0
\(641\) −14093.3 + 10239.4i −0.868410 + 0.630937i −0.930160 0.367155i \(-0.880332\pi\)
0.0617497 + 0.998092i \(0.480332\pi\)
\(642\) 0 0
\(643\) −9629.38 + 3128.77i −0.590584 + 0.191892i −0.589037 0.808106i \(-0.700493\pi\)
−0.00154753 + 0.999999i \(0.500493\pi\)
\(644\) 0 0
\(645\) −4803.41 + 6611.32i −0.293231 + 0.403598i
\(646\) 0 0
\(647\) 2385.76 + 775.179i 0.144967 + 0.0471027i 0.380602 0.924739i \(-0.375717\pi\)
−0.235635 + 0.971842i \(0.575717\pi\)
\(648\) 0 0
\(649\) 25572.3 + 5643.09i 1.54669 + 0.341311i
\(650\) 0 0
\(651\) −3738.02 + 71.7450i −0.225045 + 0.00431937i
\(652\) 0 0
\(653\) 5623.15 + 4085.46i 0.336984 + 0.244833i 0.743388 0.668860i \(-0.233217\pi\)
−0.406404 + 0.913693i \(0.633217\pi\)
\(654\) 0 0
\(655\) 30050.4 9763.96i 1.79262 0.582457i
\(656\) 0 0
\(657\) 21269.9 15453.5i 1.26304 0.917655i
\(658\) 0 0
\(659\) 16336.2i 0.965658i −0.875715 0.482829i \(-0.839609\pi\)
0.875715 0.482829i \(-0.160391\pi\)
\(660\) 0 0
\(661\) 20076.9i 1.18139i −0.806895 0.590695i \(-0.798853\pi\)
0.806895 0.590695i \(-0.201147\pi\)
\(662\) 0 0
\(663\) 105.773 + 145.583i 0.00619588 + 0.00852789i
\(664\) 0 0
\(665\) −14759.6 19516.0i −0.860679 1.13804i
\(666\) 0 0
\(667\) 2311.53 3181.55i 0.134187 0.184693i
\(668\) 0 0
\(669\) −7.88750 + 24.2752i −0.000455827 + 0.00140289i
\(670\) 0 0
\(671\) −14906.5 + 13214.1i −0.857614 + 0.760244i
\(672\) 0 0
\(673\) 7610.59 + 2472.83i 0.435909 + 0.141635i 0.518747 0.854928i \(-0.326398\pi\)
−0.0828383 + 0.996563i \(0.526398\pi\)
\(674\) 0 0
\(675\) 6198.25 8531.16i 0.353438 0.486466i
\(676\) 0 0
\(677\) 10346.5 + 31843.4i 0.587371 + 1.80774i 0.589534 + 0.807743i \(0.299311\pi\)
−0.00216379 + 0.999998i \(0.500689\pi\)
\(678\) 0 0
\(679\) −10368.4 + 14862.5i −0.586012 + 0.840015i
\(680\) 0 0
\(681\) 428.305i 0.0241008i
\(682\) 0 0
\(683\) −784.541 −0.0439526 −0.0219763 0.999758i \(-0.506996\pi\)
−0.0219763 + 0.999758i \(0.506996\pi\)
\(684\) 0 0
\(685\) −14656.0 20172.2i −0.817484 1.12517i
\(686\) 0 0
\(687\) −284.559 875.783i −0.0158029 0.0486364i
\(688\) 0 0
\(689\) 7363.02 + 5349.55i 0.407124 + 0.295793i
\(690\) 0 0
\(691\) −21954.6 7133.50i −1.20867 0.392722i −0.365729 0.930721i \(-0.619180\pi\)
−0.842945 + 0.537999i \(0.819180\pi\)
\(692\) 0 0
\(693\) 3504.03 17465.2i 0.192073 0.957356i
\(694\) 0 0
\(695\) 16430.5 + 5338.60i 0.896755 + 0.291373i
\(696\) 0 0
\(697\) 540.333 + 392.575i 0.0293638 + 0.0213340i
\(698\) 0 0
\(699\) −812.971 2502.07i −0.0439906 0.135389i
\(700\) 0 0
\(701\) 10815.2 + 14885.9i 0.582719 + 0.802044i 0.993990 0.109469i \(-0.0349150\pi\)
−0.411271 + 0.911513i \(0.634915\pi\)
\(702\) 0 0
\(703\) −1556.40 −0.0835001
\(704\) 0 0
\(705\) 4176.26i 0.223102i
\(706\) 0 0
\(707\) 12429.1 + 8670.83i 0.661168 + 0.461245i
\(708\) 0 0
\(709\) −3958.78 12183.9i −0.209697 0.645380i −0.999488 0.0320041i \(-0.989811\pi\)
0.789791 0.613376i \(-0.210189\pi\)
\(710\) 0 0
\(711\) −4778.31 + 6576.78i −0.252040 + 0.346904i
\(712\) 0 0
\(713\) 22797.3 + 7407.31i 1.19743 + 0.389068i
\(714\) 0 0
\(715\) −21942.0 + 9566.11i −1.14767 + 0.500353i
\(716\) 0 0
\(717\) 1013.27 3118.52i 0.0527772 0.162432i
\(718\) 0 0
\(719\) −15122.5 + 20814.3i −0.784387 + 1.07962i 0.210398 + 0.977616i \(0.432524\pi\)
−0.994784 + 0.102000i \(0.967476\pi\)
\(720\) 0 0
\(721\) −10906.4 14421.1i −0.563350 0.744894i
\(722\) 0 0
\(723\) −1902.80 2618.98i −0.0978783 0.134718i
\(724\) 0 0
\(725\) 10285.4i 0.526881i
\(726\) 0 0
\(727\) 13303.0i 0.678652i 0.940669 + 0.339326i \(0.110199\pi\)
−0.940669 + 0.339326i \(0.889801\pi\)
\(728\) 0 0
\(729\) −13716.3 + 9965.44i −0.696858 + 0.506297i
\(730\) 0 0
\(731\) −3350.08 + 1088.51i −0.169504 + 0.0550751i
\(732\) 0 0
\(733\) −376.183 273.313i −0.0189558 0.0137722i 0.578267 0.815848i \(-0.303729\pi\)
−0.597223 + 0.802075i \(0.703729\pi\)
\(734\) 0 0
\(735\) 1823.88 + 4957.40i 0.0915305 + 0.248784i
\(736\) 0 0
\(737\) −8813.59 20216.0i −0.440506 1.01040i
\(738\) 0 0
\(739\) −22338.5 7258.22i −1.11196 0.361296i −0.305263 0.952268i \(-0.598744\pi\)
−0.806692 + 0.590972i \(0.798744\pi\)
\(740\) 0 0
\(741\) −1090.43 + 1500.84i −0.0540592 + 0.0744060i
\(742\) 0 0
\(743\) −3208.99 + 1042.66i −0.158447 + 0.0514827i −0.387167 0.922010i \(-0.626546\pi\)
0.228719 + 0.973492i \(0.426546\pi\)
\(744\) 0 0
\(745\) −25526.9 + 18546.4i −1.25535 + 0.912062i
\(746\) 0 0
\(747\) −34289.9 −1.67952
\(748\) 0 0
\(749\) −3058.06 + 1058.92i −0.149184 + 0.0516584i
\(750\) 0 0
\(751\) 29361.4 21332.3i 1.42665 1.03652i 0.436022 0.899936i \(-0.356387\pi\)
0.990628 0.136586i \(-0.0436129\pi\)
\(752\) 0 0
\(753\) −10.1646 31.2834i −0.000491923 0.00151398i
\(754\) 0 0
\(755\) −27348.0 19869.5i −1.31827 0.957782i
\(756\) 0 0
\(757\) −5411.44 + 16654.7i −0.259818 + 0.799637i 0.733024 + 0.680203i \(0.238108\pi\)
−0.992842 + 0.119435i \(0.961892\pi\)
\(758\) 0 0
\(759\) 1396.70 2376.42i 0.0667946 0.113648i
\(760\) 0 0
\(761\) −7225.25 + 22237.0i −0.344172 + 1.05925i 0.617853 + 0.786294i \(0.288003\pi\)
−0.962025 + 0.272960i \(0.911997\pi\)
\(762\) 0 0
\(763\) −33532.0 10188.1i −1.59101 0.483399i
\(764\) 0 0
\(765\) 3213.31 1044.07i 0.151866 0.0493443i
\(766\) 0 0
\(767\) −14338.5 19735.2i −0.675009 0.929070i
\(768\) 0 0
\(769\) 37698.1 1.76779 0.883893 0.467689i \(-0.154913\pi\)
0.883893 + 0.467689i \(0.154913\pi\)
\(770\) 0 0
\(771\) 2947.89 0.137699
\(772\) 0 0
\(773\) 24131.7 + 33214.5i 1.12284 + 1.54546i 0.800996 + 0.598669i \(0.204304\pi\)
0.321847 + 0.946792i \(0.395696\pi\)
\(774\) 0 0
\(775\) 59624.3 19373.1i 2.76357 0.897939i
\(776\) 0 0
\(777\) 321.481 + 97.6761i 0.0148431 + 0.00450980i
\(778\) 0 0
\(779\) −2127.70 + 6548.37i −0.0978596 + 0.301181i
\(780\) 0 0
\(781\) −775.765 + 687.688i −0.0355430 + 0.0315076i
\(782\) 0 0
\(783\) 546.142 1680.85i 0.0249266 0.0767161i
\(784\) 0 0
\(785\) 44214.5 + 32123.7i 2.01030 + 1.46057i
\(786\) 0 0
\(787\) 7027.21 + 21627.5i 0.318289 + 0.979592i 0.974380 + 0.224910i \(0.0722087\pi\)
−0.656091 + 0.754682i \(0.727791\pi\)
\(788\) 0 0
\(789\) −919.109 + 667.772i −0.0414717 + 0.0301309i
\(790\) 0 0
\(791\) 11913.2 + 34404.1i 0.535505 + 1.54648i
\(792\) 0 0
\(793\) 18556.0 0.830949
\(794\) 0 0
\(795\) −3336.60 + 2424.18i −0.148851 + 0.108147i
\(796\) 0 0
\(797\) −23214.4 + 7542.83i −1.03174 + 0.335233i −0.775478 0.631374i \(-0.782491\pi\)
−0.256262 + 0.966607i \(0.582491\pi\)
\(798\) 0 0
\(799\) −1058.09 + 1456.34i −0.0468494 + 0.0644827i
\(800\) 0 0
\(801\) −28337.5 9207.41i −1.25001 0.406152i
\(802\) 0 0
\(803\) 7839.97 35527.6i 0.344541 1.56132i
\(804\) 0 0
\(805\) −649.902 33860.8i −0.0284547 1.48253i
\(806\) 0 0
\(807\) 4267.36 + 3100.42i 0.186144 + 0.135241i
\(808\) 0 0
\(809\) −6715.45 + 2181.98i −0.291845 + 0.0948263i −0.451281 0.892382i \(-0.649033\pi\)
0.159435 + 0.987208i \(0.449033\pi\)
\(810\) 0 0
\(811\) −5475.04 + 3977.85i −0.237059 + 0.172233i −0.699972 0.714170i \(-0.746804\pi\)
0.462913 + 0.886404i \(0.346804\pi\)
\(812\) 0 0
\(813\) 2796.66i 0.120643i
\(814\) 0 0
\(815\) 8544.76i 0.367251i
\(816\) 0 0
\(817\) −21344.8 29378.6i −0.914026 1.25805i
\(818\) 0 0
\(819\) −13234.6 + 10009.1i −0.564658 + 0.427040i
\(820\) 0 0
\(821\) −20889.8 + 28752.3i −0.888014 + 1.22225i 0.0861228 + 0.996285i \(0.472552\pi\)
−0.974136 + 0.225961i \(0.927448\pi\)
\(822\) 0 0
\(823\) 7444.70 22912.4i 0.315317 0.970446i −0.660307 0.750996i \(-0.729574\pi\)
0.975624 0.219450i \(-0.0704262\pi\)
\(824\) 0 0
\(825\) −697.976 7175.44i −0.0294550 0.302808i
\(826\) 0 0
\(827\) −5970.46 1939.92i −0.251044 0.0815691i 0.180792 0.983521i \(-0.442134\pi\)
−0.431836 + 0.901952i \(0.642134\pi\)
\(828\) 0 0
\(829\) 2929.76 4032.47i 0.122744 0.168943i −0.743223 0.669044i \(-0.766704\pi\)
0.865967 + 0.500101i \(0.166704\pi\)
\(830\) 0 0
\(831\) −472.694 1454.80i −0.0197324 0.0607300i
\(832\) 0 0
\(833\) −619.981 + 2190.84i −0.0257876 + 0.0911262i
\(834\) 0 0
\(835\) 35517.6i 1.47202i
\(836\) 0 0
\(837\) 10772.6 0.444869
\(838\) 0 0
\(839\) 21540.5 + 29648.0i 0.886366 + 1.21998i 0.974617 + 0.223880i \(0.0718723\pi\)
−0.0882509 + 0.996098i \(0.528128\pi\)
\(840\) 0 0
\(841\) 7003.93 + 21555.9i 0.287176 + 0.883836i
\(842\) 0 0
\(843\) 1243.73 + 903.620i 0.0508140 + 0.0369185i
\(844\) 0 0
\(845\) −19133.6 6216.88i −0.778954 0.253097i
\(846\) 0 0
\(847\) −12403.9 21302.3i −0.503190 0.864176i
\(848\) 0 0
\(849\) −1303.37 423.491i −0.0526874 0.0171192i
\(850\) 0 0
\(851\) −1742.78 1266.21i −0.0702020 0.0510047i
\(852\) 0 0
\(853\) 1645.26 + 5063.58i 0.0660404 + 0.203252i 0.978632 0.205622i \(-0.0659217\pi\)
−0.912591 + 0.408874i \(0.865922\pi\)
\(854\) 0 0
\(855\) 20473.4 + 28179.2i 0.818917 + 1.12714i
\(856\) 0 0
\(857\) 17099.3 0.681567 0.340783 0.940142i \(-0.389308\pi\)
0.340783 + 0.940142i \(0.389308\pi\)
\(858\) 0 0
\(859\) 35881.4i 1.42521i −0.701563 0.712607i \(-0.747514\pi\)
0.701563 0.712607i \(-0.252486\pi\)
\(860\) 0 0
\(861\) 850.449 1219.07i 0.0336623 0.0482529i
\(862\) 0 0
\(863\) 14881.3 + 45799.9i 0.586981 + 1.80654i 0.591165 + 0.806550i \(0.298668\pi\)
−0.00418458 + 0.999991i \(0.501332\pi\)
\(864\) 0 0
\(865\) −12135.9 + 16703.6i −0.477032 + 0.656578i
\(866\) 0 0
\(867\) 3693.78 + 1200.18i 0.144691 + 0.0470131i
\(868\) 0 0
\(869\) 1089.14 + 11196.8i 0.0425163 + 0.437083i
\(870\) 0 0
\(871\) −6348.23 + 19537.9i −0.246960 + 0.760063i
\(872\) 0 0
\(873\) 15162.7 20869.7i 0.587837 0.809088i
\(874\) 0 0
\(875\) −26469.5 34999.5i −1.02267 1.35223i
\(876\) 0 0
\(877\) −7545.53 10385.5i −0.290529 0.399880i 0.638657 0.769492i \(-0.279490\pi\)
−0.929186 + 0.369612i \(0.879490\pi\)
\(878\) 0 0
\(879\) 614.471i 0.0235786i
\(880\) 0 0
\(881\) 18.2726i 0.000698775i −1.00000 0.000349387i \(-0.999889\pi\)
1.00000 0.000349387i \(-0.000111213\pi\)
\(882\) 0 0
\(883\) 6600.21 4795.33i 0.251546 0.182759i −0.454866 0.890560i \(-0.650313\pi\)
0.706412 + 0.707801i \(0.250313\pi\)
\(884\) 0 0
\(885\) 10513.3 3415.97i 0.399322 0.129747i
\(886\) 0 0
\(887\) −5831.39 4236.75i −0.220743 0.160379i 0.471918 0.881642i \(-0.343562\pi\)
−0.692661 + 0.721263i \(0.743562\pi\)
\(888\) 0 0
\(889\) −556.304 28984.2i −0.0209874 1.09347i
\(890\) 0 0
\(891\) −5329.11 + 24149.4i −0.200373 + 0.908010i
\(892\) 0 0
\(893\) −17649.6 5734.71i −0.661391 0.214899i
\(894\) 0 0
\(895\) 23728.0 32658.8i 0.886190 1.21974i
\(896\) 0 0
\(897\) −2442.03 + 793.463i −0.0908996 + 0.0295351i
\(898\) 0 0
\(899\) 8500.55 6176.01i 0.315361 0.229123i
\(900\) 0 0
\(901\) −1777.72 −0.0657321
\(902\) 0 0
\(903\) 2565.13 + 7407.84i 0.0945318 + 0.272998i
\(904\) 0 0
\(905\) −23107.4 + 16788.5i −0.848748 + 0.616651i
\(906\) 0 0
\(907\) −10133.7 31188.4i −0.370987 1.14178i −0.946147 0.323739i \(-0.895060\pi\)
0.575160 0.818041i \(-0.304940\pi\)
\(908\) 0 0
\(909\) −17452.8 12680.2i −0.636825 0.462681i
\(910\) 0 0
\(911\) −13935.3 + 42888.3i −0.506801 + 1.55977i 0.290921 + 0.956747i \(0.406038\pi\)
−0.797722 + 0.603025i \(0.793962\pi\)
\(912\) 0 0
\(913\) −35508.4 + 31476.9i −1.28714 + 1.14100i
\(914\) 0 0
\(915\) −2598.45 + 7997.20i −0.0938820 + 0.288939i
\(916\) 0 0
\(917\) 8811.59 29001.6i 0.317322 1.04440i
\(918\) 0 0
\(919\) −40347.8 + 13109.8i −1.44826 + 0.470568i −0.924462 0.381275i \(-0.875485\pi\)
−0.523798 + 0.851843i \(0.675485\pi\)
\(920\) 0 0
\(921\) 4041.03 + 5562.00i 0.144578 + 0.198995i
\(922\) 0 0
\(923\) 965.692 0.0344379
\(924\) 0 0
\(925\) −5634.11 −0.200268
\(926\) 0 0
\(927\) 15128.5 + 20822.6i 0.536015 + 0.737761i
\(928\) 0 0
\(929\) −20902.1 + 6791.50i −0.738186 + 0.239851i −0.653890 0.756589i \(-0.726864\pi\)
−0.0842962 + 0.996441i \(0.526864\pi\)
\(930\) 0 0
\(931\) −23455.4 + 900.706i −0.825692 + 0.0317073i
\(932\) 0 0
\(933\) −1926.58 + 5929.40i −0.0676028 + 0.208060i
\(934\) 0 0
\(935\) 2369.08 4030.87i 0.0828631 0.140988i
\(936\) 0 0
\(937\) 3094.66 9524.38i 0.107895 0.332068i −0.882504 0.470306i \(-0.844144\pi\)
0.990399 + 0.138237i \(0.0441437\pi\)
\(938\) 0 0
\(939\) 6404.06 + 4652.82i 0.222565 + 0.161703i
\(940\) 0 0
\(941\) 13407.8 + 41265.0i 0.464487 + 1.42954i 0.859627 + 0.510923i \(0.170696\pi\)
−0.395140 + 0.918621i \(0.629304\pi\)
\(942\) 0 0
\(943\) −7709.94 + 5601.60i −0.266246 + 0.193439i
\(944\) 0 0
\(945\) −4980.20 14382.3i −0.171435 0.495086i
\(946\) 0 0
\(947\) −32701.1 −1.12211 −0.561057 0.827777i \(-0.689605\pi\)
−0.561057 + 0.827777i \(0.689605\pi\)
\(948\) 0 0
\(949\) −27418.2 + 19920.5i −0.937863 + 0.681397i
\(950\) 0 0
\(951\) 5619.67 1825.94i 0.191620 0.0622610i
\(952\) 0 0
\(953\) 28773.9 39603.8i 0.978045 1.34616i 0.0401685 0.999193i \(-0.487211\pi\)
0.937876 0.346970i \(-0.112789\pi\)
\(954\) 0 0
\(955\) 932.670 + 303.043i 0.0316026 + 0.0102683i
\(956\) 0 0
\(957\) −482.879 1107.59i −0.0163106 0.0374121i
\(958\) 0 0
\(959\) −23914.9 + 459.006i −0.805268 + 0.0154558i
\(960\) 0 0
\(961\) 27712.2 + 20134.1i 0.930221 + 0.675845i
\(962\) 0 0
\(963\) 4381.29 1423.57i 0.146610 0.0476364i
\(964\) 0 0
\(965\) −71917.5 + 52251.1i −2.39907 + 1.74303i
\(966\) 0 0
\(967\) 10448.0i 0.347451i 0.984794 + 0.173725i \(0.0555805\pi\)
−0.984794 + 0.173725i \(0.944420\pi\)
\(968\) 0 0
\(969\) 362.363i 0.0120132i
\(970\) 0 0
\(971\) −8958.15 12329.8i −0.296067 0.407501i 0.634906 0.772589i \(-0.281039\pi\)
−0.930973 + 0.365088i \(0.881039\pi\)
\(972\) 0 0
\(973\) 13218.3 9996.75i 0.435518 0.329374i
\(974\) 0 0
\(975\) −3947.31 + 5433.01i −0.129657 + 0.178457i
\(976\) 0 0
\(977\) 10919.1 33605.7i 0.357558 1.10045i −0.596953 0.802276i \(-0.703622\pi\)
0.954511 0.298175i \(-0.0963778\pi\)
\(978\) 0 0
\(979\) −37796.5 + 16478.2i −1.23389 + 0.537943i
\(980\) 0 0
\(981\) 47445.9 + 15416.1i 1.54417 + 0.501732i
\(982\) 0 0
\(983\) 6975.16 9600.48i 0.226320 0.311503i −0.680723 0.732541i \(-0.738334\pi\)
0.907043 + 0.421038i \(0.138334\pi\)
\(984\) 0 0
\(985\) 21308.9 + 65582.1i 0.689298 + 2.12144i
\(986\) 0 0
\(987\) 3285.72 + 2292.19i 0.105963 + 0.0739221i
\(988\) 0 0
\(989\) 50261.9i 1.61601i
\(990\) 0 0
\(991\) 10399.1 0.333338 0.166669 0.986013i \(-0.446699\pi\)
0.166669 + 0.986013i \(0.446699\pi\)
\(992\) 0 0
\(993\) 1704.77 + 2346.42i 0.0544807 + 0.0749862i
\(994\) 0 0
\(995\) 24164.5 + 74370.7i 0.769916 + 2.36956i
\(996\) 0 0
\(997\) −18668.2 13563.2i −0.593005 0.430844i 0.250384 0.968147i \(-0.419443\pi\)
−0.843389 + 0.537303i \(0.819443\pi\)
\(998\) 0 0
\(999\) −920.735 299.165i −0.0291599 0.00947463i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.4.w.a.13.14 yes 96
7.6 odd 2 inner 308.4.w.a.13.11 96
11.6 odd 10 inner 308.4.w.a.237.11 yes 96
77.6 even 10 inner 308.4.w.a.237.14 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.w.a.13.11 96 7.6 odd 2 inner
308.4.w.a.13.14 yes 96 1.1 even 1 trivial
308.4.w.a.237.11 yes 96 11.6 odd 10 inner
308.4.w.a.237.14 yes 96 77.6 even 10 inner