Properties

Label 308.4.w.a.13.18
Level $308$
Weight $4$
Character 308.13
Analytic conductor $18.173$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,4,Mod(13,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.13");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 308.w (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1725882818\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 13.18
Character \(\chi\) \(=\) 308.13
Dual form 308.4.w.a.237.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.54235 + 3.49924i) q^{3} +(-2.06273 + 0.670222i) q^{5} +(17.6363 + 5.65332i) q^{7} +(2.56231 - 7.88597i) q^{9} +(7.01068 - 35.8029i) q^{11} +(26.3234 - 81.0150i) q^{13} +(-7.58944 - 5.51405i) q^{15} +(20.9350 + 64.4312i) q^{17} +(-13.6956 + 9.95044i) q^{19} +(25.0553 + 76.0864i) q^{21} +124.597 q^{23} +(-97.3215 + 70.7082i) q^{25} +(145.176 - 47.1707i) q^{27} +(2.95126 - 4.06207i) q^{29} +(130.639 + 42.4472i) q^{31} +(143.107 - 66.4914i) q^{33} +(-40.1680 + 0.158975i) q^{35} +(-209.449 - 152.173i) q^{37} +(350.414 - 113.856i) q^{39} +(210.999 - 153.300i) q^{41} +483.453i q^{43} +17.9839i q^{45} +(-9.51981 - 13.1029i) q^{47} +(279.080 + 199.408i) q^{49} +(-172.236 + 237.063i) q^{51} +(-91.4270 + 281.383i) q^{53} +(9.53477 + 78.5505i) q^{55} +(-69.6379 - 22.6267i) q^{57} +(324.522 - 446.666i) q^{59} +(58.1075 + 178.836i) q^{61} +(89.7716 - 124.594i) q^{63} +184.755i q^{65} -229.918 q^{67} +(316.769 + 435.995i) q^{69} +(-330.773 - 1018.02i) q^{71} +(3.14162 + 2.28252i) q^{73} +(-494.850 - 160.786i) q^{75} +(326.048 - 591.799i) q^{77} +(812.063 + 263.855i) q^{79} +(353.029 + 256.490i) q^{81} +(78.3604 + 241.169i) q^{83} +(-86.3663 - 118.873i) q^{85} +21.7173 q^{87} +221.079i q^{89} +(922.251 - 1279.99i) q^{91} +(183.597 + 565.052i) q^{93} +(21.5813 - 29.7042i) q^{95} +(382.486 + 124.277i) q^{97} +(-264.377 - 147.024i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 10 q^{7} + 168 q^{9} + 60 q^{11} - 192 q^{15} - 112 q^{23} + 548 q^{25} - 700 q^{29} - 940 q^{35} + 288 q^{37} + 460 q^{39} + 90 q^{49} - 1420 q^{51} - 2240 q^{53} + 560 q^{57} + 320 q^{63} + 4272 q^{67}+ \cdots - 10212 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.54235 + 3.49924i 0.489275 + 0.673429i 0.980254 0.197742i \(-0.0633609\pi\)
−0.490979 + 0.871171i \(0.663361\pi\)
\(4\) 0 0
\(5\) −2.06273 + 0.670222i −0.184496 + 0.0599465i −0.399808 0.916599i \(-0.630923\pi\)
0.215312 + 0.976545i \(0.430923\pi\)
\(6\) 0 0
\(7\) 17.6363 + 5.65332i 0.952272 + 0.305251i
\(8\) 0 0
\(9\) 2.56231 7.88597i 0.0949002 0.292073i
\(10\) 0 0
\(11\) 7.01068 35.8029i 0.192164 0.981363i
\(12\) 0 0
\(13\) 26.3234 81.0150i 0.561599 1.72842i −0.116248 0.993220i \(-0.537087\pi\)
0.677847 0.735203i \(-0.262913\pi\)
\(14\) 0 0
\(15\) −7.58944 5.51405i −0.130639 0.0949148i
\(16\) 0 0
\(17\) 20.9350 + 64.4312i 0.298675 + 0.919227i 0.981962 + 0.189077i \(0.0605496\pi\)
−0.683287 + 0.730149i \(0.739450\pi\)
\(18\) 0 0
\(19\) −13.6956 + 9.95044i −0.165368 + 0.120147i −0.667391 0.744707i \(-0.732589\pi\)
0.502023 + 0.864854i \(0.332589\pi\)
\(20\) 0 0
\(21\) 25.0553 + 76.0864i 0.260358 + 0.790639i
\(22\) 0 0
\(23\) 124.597 1.12958 0.564789 0.825235i \(-0.308957\pi\)
0.564789 + 0.825235i \(0.308957\pi\)
\(24\) 0 0
\(25\) −97.3215 + 70.7082i −0.778572 + 0.565665i
\(26\) 0 0
\(27\) 145.176 47.1707i 1.03479 0.336222i
\(28\) 0 0
\(29\) 2.95126 4.06207i 0.0188978 0.0260106i −0.799464 0.600715i \(-0.794883\pi\)
0.818361 + 0.574704i \(0.194883\pi\)
\(30\) 0 0
\(31\) 130.639 + 42.4472i 0.756885 + 0.245927i 0.661941 0.749556i \(-0.269733\pi\)
0.0949439 + 0.995483i \(0.469733\pi\)
\(32\) 0 0
\(33\) 143.107 66.4914i 0.754899 0.350748i
\(34\) 0 0
\(35\) −40.1680 + 0.158975i −0.193989 + 0.000767761i
\(36\) 0 0
\(37\) −209.449 152.173i −0.930625 0.676139i 0.0155205 0.999880i \(-0.495059\pi\)
−0.946146 + 0.323741i \(0.895059\pi\)
\(38\) 0 0
\(39\) 350.414 113.856i 1.43875 0.467477i
\(40\) 0 0
\(41\) 210.999 153.300i 0.803721 0.583938i −0.108282 0.994120i \(-0.534535\pi\)
0.912003 + 0.410183i \(0.134535\pi\)
\(42\) 0 0
\(43\) 483.453i 1.71456i 0.514854 + 0.857278i \(0.327846\pi\)
−0.514854 + 0.857278i \(0.672154\pi\)
\(44\) 0 0
\(45\) 17.9839i 0.0595753i
\(46\) 0 0
\(47\) −9.51981 13.1029i −0.0295448 0.0406650i 0.793989 0.607932i \(-0.208001\pi\)
−0.823534 + 0.567267i \(0.808001\pi\)
\(48\) 0 0
\(49\) 279.080 + 199.408i 0.813644 + 0.581363i
\(50\) 0 0
\(51\) −172.236 + 237.063i −0.472900 + 0.650891i
\(52\) 0 0
\(53\) −91.4270 + 281.383i −0.236952 + 0.729264i 0.759904 + 0.650035i \(0.225246\pi\)
−0.996856 + 0.0792287i \(0.974754\pi\)
\(54\) 0 0
\(55\) 9.53477 + 78.5505i 0.0233758 + 0.192577i
\(56\) 0 0
\(57\) −69.6379 22.6267i −0.161821 0.0525787i
\(58\) 0 0
\(59\) 324.522 446.666i 0.716087 0.985610i −0.283557 0.958955i \(-0.591515\pi\)
0.999645 0.0266545i \(-0.00848541\pi\)
\(60\) 0 0
\(61\) 58.1075 + 178.836i 0.121966 + 0.375371i 0.993336 0.115254i \(-0.0367683\pi\)
−0.871370 + 0.490626i \(0.836768\pi\)
\(62\) 0 0
\(63\) 89.7716 124.594i 0.179526 0.249165i
\(64\) 0 0
\(65\) 184.755i 0.352554i
\(66\) 0 0
\(67\) −229.918 −0.419238 −0.209619 0.977783i \(-0.567222\pi\)
−0.209619 + 0.977783i \(0.567222\pi\)
\(68\) 0 0
\(69\) 316.769 + 435.995i 0.552674 + 0.760691i
\(70\) 0 0
\(71\) −330.773 1018.02i −0.552896 1.70164i −0.701437 0.712732i \(-0.747458\pi\)
0.148541 0.988906i \(-0.452542\pi\)
\(72\) 0 0
\(73\) 3.14162 + 2.28252i 0.00503697 + 0.00365958i 0.590301 0.807183i \(-0.299009\pi\)
−0.585264 + 0.810843i \(0.699009\pi\)
\(74\) 0 0
\(75\) −494.850 160.786i −0.761871 0.247547i
\(76\) 0 0
\(77\) 326.048 591.799i 0.482554 0.875866i
\(78\) 0 0
\(79\) 812.063 + 263.855i 1.15651 + 0.375772i 0.823591 0.567184i \(-0.191967\pi\)
0.332917 + 0.942956i \(0.391967\pi\)
\(80\) 0 0
\(81\) 353.029 + 256.490i 0.484264 + 0.351839i
\(82\) 0 0
\(83\) 78.3604 + 241.169i 0.103629 + 0.318936i 0.989406 0.145174i \(-0.0463742\pi\)
−0.885778 + 0.464110i \(0.846374\pi\)
\(84\) 0 0
\(85\) −86.3663 118.873i −0.110209 0.151689i
\(86\) 0 0
\(87\) 21.7173 0.0267625
\(88\) 0 0
\(89\) 221.079i 0.263306i 0.991296 + 0.131653i \(0.0420285\pi\)
−0.991296 + 0.131653i \(0.957971\pi\)
\(90\) 0 0
\(91\) 922.251 1279.99i 1.06240 1.47450i
\(92\) 0 0
\(93\) 183.597 + 565.052i 0.204711 + 0.630034i
\(94\) 0 0
\(95\) 21.5813 29.7042i 0.0233074 0.0320798i
\(96\) 0 0
\(97\) 382.486 + 124.277i 0.400366 + 0.130087i 0.502277 0.864707i \(-0.332496\pi\)
−0.101911 + 0.994794i \(0.532496\pi\)
\(98\) 0 0
\(99\) −264.377 147.024i −0.268393 0.149257i
\(100\) 0 0
\(101\) −172.467 + 530.798i −0.169912 + 0.522934i −0.999365 0.0356424i \(-0.988652\pi\)
0.829453 + 0.558576i \(0.188652\pi\)
\(102\) 0 0
\(103\) −1178.98 + 1622.72i −1.12784 + 1.55234i −0.335745 + 0.941953i \(0.608988\pi\)
−0.792099 + 0.610392i \(0.791012\pi\)
\(104\) 0 0
\(105\) −102.677 140.153i −0.0954311 0.130262i
\(106\) 0 0
\(107\) −1050.58 1446.00i −0.949188 1.30645i −0.951887 0.306449i \(-0.900859\pi\)
0.00269901 0.999996i \(-0.499141\pi\)
\(108\) 0 0
\(109\) 868.338i 0.763043i −0.924360 0.381522i \(-0.875400\pi\)
0.924360 0.381522i \(-0.124600\pi\)
\(110\) 0 0
\(111\) 1119.79i 0.957528i
\(112\) 0 0
\(113\) 354.548 257.595i 0.295160 0.214447i −0.430343 0.902666i \(-0.641607\pi\)
0.725503 + 0.688219i \(0.241607\pi\)
\(114\) 0 0
\(115\) −257.011 + 83.5078i −0.208403 + 0.0677143i
\(116\) 0 0
\(117\) −571.433 415.170i −0.451530 0.328056i
\(118\) 0 0
\(119\) 4.96571 + 1254.68i 0.00382526 + 0.966524i
\(120\) 0 0
\(121\) −1232.70 502.006i −0.926146 0.377164i
\(122\) 0 0
\(123\) 1072.87 + 348.596i 0.786481 + 0.255543i
\(124\) 0 0
\(125\) 312.713 430.412i 0.223759 0.307978i
\(126\) 0 0
\(127\) −1496.33 + 486.186i −1.04549 + 0.339701i −0.780897 0.624659i \(-0.785238\pi\)
−0.264594 + 0.964360i \(0.585238\pi\)
\(128\) 0 0
\(129\) −1691.72 + 1229.11i −1.15463 + 0.838889i
\(130\) 0 0
\(131\) −2048.23 −1.36607 −0.683034 0.730386i \(-0.739340\pi\)
−0.683034 + 0.730386i \(0.739340\pi\)
\(132\) 0 0
\(133\) −297.793 + 98.0635i −0.194150 + 0.0639337i
\(134\) 0 0
\(135\) −267.845 + 194.601i −0.170759 + 0.124064i
\(136\) 0 0
\(137\) 664.498 + 2045.11i 0.414393 + 1.27537i 0.912792 + 0.408424i \(0.133921\pi\)
−0.498399 + 0.866948i \(0.666079\pi\)
\(138\) 0 0
\(139\) −1513.84 1099.87i −0.923755 0.671147i 0.0207010 0.999786i \(-0.493410\pi\)
−0.944456 + 0.328639i \(0.893410\pi\)
\(140\) 0 0
\(141\) 21.6475 66.6242i 0.0129294 0.0397927i
\(142\) 0 0
\(143\) −2716.03 1510.42i −1.58829 0.883272i
\(144\) 0 0
\(145\) −3.36518 + 10.3570i −0.00192733 + 0.00593171i
\(146\) 0 0
\(147\) 11.7431 + 1483.53i 0.00658879 + 0.832378i
\(148\) 0 0
\(149\) 207.675 67.4778i 0.114184 0.0371006i −0.251368 0.967892i \(-0.580880\pi\)
0.365552 + 0.930791i \(0.380880\pi\)
\(150\) 0 0
\(151\) −87.6604 120.654i −0.0472430 0.0650245i 0.784742 0.619823i \(-0.212795\pi\)
−0.831985 + 0.554798i \(0.812795\pi\)
\(152\) 0 0
\(153\) 561.744 0.296825
\(154\) 0 0
\(155\) −297.922 −0.154385
\(156\) 0 0
\(157\) 1461.44 + 2011.49i 0.742899 + 1.02251i 0.998447 + 0.0557168i \(0.0177444\pi\)
−0.255547 + 0.966797i \(0.582256\pi\)
\(158\) 0 0
\(159\) −1217.07 + 395.449i −0.607042 + 0.197240i
\(160\) 0 0
\(161\) 2197.44 + 704.388i 1.07567 + 0.344805i
\(162\) 0 0
\(163\) 284.295 874.970i 0.136612 0.420448i −0.859225 0.511597i \(-0.829054\pi\)
0.995837 + 0.0911494i \(0.0290541\pi\)
\(164\) 0 0
\(165\) −250.626 + 233.067i −0.118250 + 0.109965i
\(166\) 0 0
\(167\) 461.592 1420.64i 0.213887 0.658276i −0.785344 0.619060i \(-0.787514\pi\)
0.999231 0.0392162i \(-0.0124861\pi\)
\(168\) 0 0
\(169\) −4093.09 2973.81i −1.86304 1.35358i
\(170\) 0 0
\(171\) 43.3765 + 133.499i 0.0193982 + 0.0597014i
\(172\) 0 0
\(173\) −103.246 + 75.0123i −0.0453735 + 0.0329658i −0.610241 0.792216i \(-0.708927\pi\)
0.564867 + 0.825182i \(0.308927\pi\)
\(174\) 0 0
\(175\) −2116.13 + 696.843i −0.914082 + 0.301008i
\(176\) 0 0
\(177\) 2388.04 1.01410
\(178\) 0 0
\(179\) 2653.80 1928.10i 1.10813 0.805100i 0.125758 0.992061i \(-0.459864\pi\)
0.982367 + 0.186960i \(0.0598636\pi\)
\(180\) 0 0
\(181\) −2509.53 + 815.394i −1.03056 + 0.334850i −0.775012 0.631946i \(-0.782256\pi\)
−0.255549 + 0.966796i \(0.582256\pi\)
\(182\) 0 0
\(183\) −478.062 + 657.996i −0.193111 + 0.265795i
\(184\) 0 0
\(185\) 534.026 + 173.516i 0.212229 + 0.0689574i
\(186\) 0 0
\(187\) 2453.59 297.827i 0.959489 0.116466i
\(188\) 0 0
\(189\) 2827.05 11.1888i 1.08803 0.00430615i
\(190\) 0 0
\(191\) −1185.43 861.265i −0.449082 0.326277i 0.340151 0.940371i \(-0.389522\pi\)
−0.789233 + 0.614094i \(0.789522\pi\)
\(192\) 0 0
\(193\) −1425.60 + 463.206i −0.531694 + 0.172758i −0.562546 0.826766i \(-0.690178\pi\)
0.0308517 + 0.999524i \(0.490178\pi\)
\(194\) 0 0
\(195\) −646.500 + 469.710i −0.237420 + 0.172496i
\(196\) 0 0
\(197\) 1517.28i 0.548738i 0.961624 + 0.274369i \(0.0884690\pi\)
−0.961624 + 0.274369i \(0.911531\pi\)
\(198\) 0 0
\(199\) 1180.14i 0.420390i 0.977660 + 0.210195i \(0.0674099\pi\)
−0.977660 + 0.210195i \(0.932590\pi\)
\(200\) 0 0
\(201\) −584.531 804.538i −0.205123 0.282327i
\(202\) 0 0
\(203\) 75.0136 54.9555i 0.0259356 0.0190006i
\(204\) 0 0
\(205\) −332.490 + 457.633i −0.113279 + 0.155915i
\(206\) 0 0
\(207\) 319.256 982.570i 0.107197 0.329919i
\(208\) 0 0
\(209\) 260.239 + 560.102i 0.0861298 + 0.185374i
\(210\) 0 0
\(211\) −3222.97 1047.21i −1.05156 0.341671i −0.268277 0.963342i \(-0.586454\pi\)
−0.783279 + 0.621670i \(0.786454\pi\)
\(212\) 0 0
\(213\) 2721.34 3745.61i 0.875414 1.20490i
\(214\) 0 0
\(215\) −324.021 997.234i −0.102782 0.316329i
\(216\) 0 0
\(217\) 2064.02 + 1487.16i 0.645691 + 0.465229i
\(218\) 0 0
\(219\) 16.7962i 0.00518258i
\(220\) 0 0
\(221\) 5770.97 1.75655
\(222\) 0 0
\(223\) 1921.34 + 2644.50i 0.576962 + 0.794120i 0.993358 0.115063i \(-0.0367070\pi\)
−0.416396 + 0.909183i \(0.636707\pi\)
\(224\) 0 0
\(225\) 308.235 + 948.650i 0.0913289 + 0.281081i
\(226\) 0 0
\(227\) −4366.05 3172.12i −1.27658 0.927493i −0.277140 0.960829i \(-0.589387\pi\)
−0.999444 + 0.0333365i \(0.989387\pi\)
\(228\) 0 0
\(229\) 6294.14 + 2045.09i 1.81628 + 0.590145i 0.999921 + 0.0126016i \(0.00401132\pi\)
0.816360 + 0.577544i \(0.195989\pi\)
\(230\) 0 0
\(231\) 2899.77 363.637i 0.825935 0.103574i
\(232\) 0 0
\(233\) −5031.98 1634.99i −1.41483 0.459707i −0.500877 0.865519i \(-0.666989\pi\)
−0.913957 + 0.405811i \(0.866989\pi\)
\(234\) 0 0
\(235\) 28.4187 + 20.6474i 0.00788863 + 0.00573143i
\(236\) 0 0
\(237\) 1141.25 + 3512.41i 0.312794 + 0.962682i
\(238\) 0 0
\(239\) −3269.97 4500.72i −0.885006 1.21811i −0.975009 0.222165i \(-0.928688\pi\)
0.0900026 0.995942i \(-0.471312\pi\)
\(240\) 0 0
\(241\) 3234.87 0.864632 0.432316 0.901722i \(-0.357697\pi\)
0.432316 + 0.901722i \(0.357697\pi\)
\(242\) 0 0
\(243\) 2234.06i 0.589775i
\(244\) 0 0
\(245\) −709.314 224.279i −0.184965 0.0584842i
\(246\) 0 0
\(247\) 445.620 + 1371.48i 0.114794 + 0.353300i
\(248\) 0 0
\(249\) −644.688 + 887.336i −0.164078 + 0.225834i
\(250\) 0 0
\(251\) 3675.20 + 1194.15i 0.924211 + 0.300294i 0.732193 0.681097i \(-0.238497\pi\)
0.192018 + 0.981391i \(0.438497\pi\)
\(252\) 0 0
\(253\) 873.511 4460.95i 0.217064 1.10853i
\(254\) 0 0
\(255\) 196.392 604.433i 0.0482296 0.148436i
\(256\) 0 0
\(257\) −2054.76 + 2828.13i −0.498725 + 0.686435i −0.981967 0.189051i \(-0.939459\pi\)
0.483243 + 0.875486i \(0.339459\pi\)
\(258\) 0 0
\(259\) −2833.62 3867.86i −0.679817 0.927942i
\(260\) 0 0
\(261\) −24.4713 33.6818i −0.00580358 0.00798794i
\(262\) 0 0
\(263\) 6583.01i 1.54344i 0.635961 + 0.771722i \(0.280604\pi\)
−0.635961 + 0.771722i \(0.719396\pi\)
\(264\) 0 0
\(265\) 641.694i 0.148751i
\(266\) 0 0
\(267\) −773.607 + 562.058i −0.177318 + 0.128829i
\(268\) 0 0
\(269\) 8046.67 2614.52i 1.82384 0.592603i 0.824191 0.566313i \(-0.191630\pi\)
0.999654 0.0262906i \(-0.00836951\pi\)
\(270\) 0 0
\(271\) 4160.64 + 3022.88i 0.932624 + 0.677591i 0.946634 0.322311i \(-0.104460\pi\)
−0.0140099 + 0.999902i \(0.504460\pi\)
\(272\) 0 0
\(273\) 6823.68 27.0064i 1.51278 0.00598719i
\(274\) 0 0
\(275\) 1849.27 + 3980.11i 0.405510 + 0.872762i
\(276\) 0 0
\(277\) 8445.79 + 2744.20i 1.83198 + 0.595246i 0.999128 + 0.0417477i \(0.0132926\pi\)
0.832850 + 0.553498i \(0.186707\pi\)
\(278\) 0 0
\(279\) 669.474 921.452i 0.143657 0.197727i
\(280\) 0 0
\(281\) −4940.84 + 1605.38i −1.04892 + 0.340814i −0.782243 0.622973i \(-0.785925\pi\)
−0.266674 + 0.963787i \(0.585925\pi\)
\(282\) 0 0
\(283\) −4603.73 + 3344.80i −0.967008 + 0.702572i −0.954768 0.297353i \(-0.903896\pi\)
−0.0122400 + 0.999925i \(0.503896\pi\)
\(284\) 0 0
\(285\) 158.809 0.0330072
\(286\) 0 0
\(287\) 4587.91 1510.80i 0.943608 0.310731i
\(288\) 0 0
\(289\) 261.599 190.063i 0.0532463 0.0386857i
\(290\) 0 0
\(291\) 537.536 + 1654.36i 0.108285 + 0.333267i
\(292\) 0 0
\(293\) −3192.82 2319.72i −0.636610 0.462524i 0.222074 0.975030i \(-0.428717\pi\)
−0.858684 + 0.512506i \(0.828717\pi\)
\(294\) 0 0
\(295\) −370.036 + 1138.85i −0.0730316 + 0.224768i
\(296\) 0 0
\(297\) −671.063 5528.44i −0.131108 1.08011i
\(298\) 0 0
\(299\) 3279.82 10094.2i 0.634370 1.95239i
\(300\) 0 0
\(301\) −2733.11 + 8526.33i −0.523369 + 1.63272i
\(302\) 0 0
\(303\) −2295.86 + 745.970i −0.435292 + 0.141435i
\(304\) 0 0
\(305\) −239.720 329.946i −0.0450044 0.0619432i
\(306\) 0 0
\(307\) −3020.41 −0.561511 −0.280755 0.959779i \(-0.590585\pi\)
−0.280755 + 0.959779i \(0.590585\pi\)
\(308\) 0 0
\(309\) −8675.66 −1.59722
\(310\) 0 0
\(311\) 3859.46 + 5312.09i 0.703698 + 0.968557i 0.999910 + 0.0134347i \(0.00427652\pi\)
−0.296212 + 0.955122i \(0.595723\pi\)
\(312\) 0 0
\(313\) 56.2863 18.2885i 0.0101645 0.00330265i −0.303930 0.952694i \(-0.598299\pi\)
0.314095 + 0.949392i \(0.398299\pi\)
\(314\) 0 0
\(315\) −101.669 + 317.171i −0.0181854 + 0.0567319i
\(316\) 0 0
\(317\) −1824.02 + 5613.75i −0.323177 + 0.994636i 0.649080 + 0.760720i \(0.275154\pi\)
−0.972257 + 0.233916i \(0.924846\pi\)
\(318\) 0 0
\(319\) −124.744 134.142i −0.0218944 0.0235439i
\(320\) 0 0
\(321\) 2388.95 7352.44i 0.415384 1.27842i
\(322\) 0 0
\(323\) −927.835 674.112i −0.159833 0.116126i
\(324\) 0 0
\(325\) 3166.59 + 9745.77i 0.540464 + 1.66338i
\(326\) 0 0
\(327\) 3038.52 2207.62i 0.513855 0.373338i
\(328\) 0 0
\(329\) −93.8197 284.906i −0.0157217 0.0477427i
\(330\) 0 0
\(331\) −5222.07 −0.867164 −0.433582 0.901114i \(-0.642750\pi\)
−0.433582 + 0.901114i \(0.642750\pi\)
\(332\) 0 0
\(333\) −1736.71 + 1261.79i −0.285798 + 0.207645i
\(334\) 0 0
\(335\) 474.259 154.096i 0.0773478 0.0251318i
\(336\) 0 0
\(337\) −2954.43 + 4066.42i −0.477561 + 0.657306i −0.978034 0.208446i \(-0.933159\pi\)
0.500473 + 0.865752i \(0.333159\pi\)
\(338\) 0 0
\(339\) 1802.77 + 585.756i 0.288829 + 0.0938462i
\(340\) 0 0
\(341\) 2435.60 4379.67i 0.386789 0.695521i
\(342\) 0 0
\(343\) 3794.63 + 5094.54i 0.597349 + 0.801981i
\(344\) 0 0
\(345\) −945.623 687.036i −0.147567 0.107214i
\(346\) 0 0
\(347\) 6031.02 1959.60i 0.933032 0.303160i 0.197230 0.980357i \(-0.436805\pi\)
0.735802 + 0.677197i \(0.236805\pi\)
\(348\) 0 0
\(349\) −8006.65 + 5817.17i −1.22804 + 0.892224i −0.996742 0.0806592i \(-0.974297\pi\)
−0.231299 + 0.972883i \(0.574297\pi\)
\(350\) 0 0
\(351\) 13003.2i 1.97737i
\(352\) 0 0
\(353\) 6820.71i 1.02841i −0.857667 0.514206i \(-0.828087\pi\)
0.857667 0.514206i \(-0.171913\pi\)
\(354\) 0 0
\(355\) 1364.59 + 1878.20i 0.204014 + 0.280802i
\(356\) 0 0
\(357\) −4377.80 + 3207.21i −0.649014 + 0.475472i
\(358\) 0 0
\(359\) 6402.67 8812.51i 0.941281 1.29556i −0.0140125 0.999902i \(-0.504460\pi\)
0.955293 0.295660i \(-0.0955395\pi\)
\(360\) 0 0
\(361\) −2030.99 + 6250.74i −0.296106 + 0.911320i
\(362\) 0 0
\(363\) −1377.31 5589.79i −0.199147 0.808231i
\(364\) 0 0
\(365\) −8.01012 2.60264i −0.00114868 0.000373229i
\(366\) 0 0
\(367\) −2182.38 + 3003.78i −0.310406 + 0.427238i −0.935508 0.353306i \(-0.885058\pi\)
0.625102 + 0.780543i \(0.285058\pi\)
\(368\) 0 0
\(369\) −668.274 2056.74i −0.0942790 0.290161i
\(370\) 0 0
\(371\) −3203.19 + 4445.70i −0.448251 + 0.622128i
\(372\) 0 0
\(373\) 3889.73i 0.539954i −0.962867 0.269977i \(-0.912984\pi\)
0.962867 0.269977i \(-0.0870160\pi\)
\(374\) 0 0
\(375\) 2301.14 0.316881
\(376\) 0 0
\(377\) −251.401 346.024i −0.0343443 0.0472709i
\(378\) 0 0
\(379\) −1272.60 3916.67i −0.172478 0.530833i 0.827031 0.562156i \(-0.190028\pi\)
−0.999509 + 0.0313228i \(0.990028\pi\)
\(380\) 0 0
\(381\) −5505.46 3999.95i −0.740297 0.537857i
\(382\) 0 0
\(383\) 6994.20 + 2272.55i 0.933125 + 0.303191i 0.735840 0.677155i \(-0.236787\pi\)
0.197285 + 0.980346i \(0.436787\pi\)
\(384\) 0 0
\(385\) −275.913 + 1439.25i −0.0365242 + 0.190521i
\(386\) 0 0
\(387\) 3812.50 + 1238.75i 0.500775 + 0.162712i
\(388\) 0 0
\(389\) 5962.16 + 4331.77i 0.777105 + 0.564600i 0.904109 0.427303i \(-0.140536\pi\)
−0.127004 + 0.991902i \(0.540536\pi\)
\(390\) 0 0
\(391\) 2608.44 + 8027.94i 0.337377 + 1.03834i
\(392\) 0 0
\(393\) −5207.32 7167.26i −0.668383 0.919950i
\(394\) 0 0
\(395\) −1851.91 −0.235898
\(396\) 0 0
\(397\) 3795.43i 0.479817i −0.970796 0.239908i \(-0.922883\pi\)
0.970796 0.239908i \(-0.0771174\pi\)
\(398\) 0 0
\(399\) −1100.24 792.738i −0.138047 0.0994650i
\(400\) 0 0
\(401\) −2265.97 6973.95i −0.282188 0.868485i −0.987227 0.159317i \(-0.949071\pi\)
0.705039 0.709168i \(-0.250929\pi\)
\(402\) 0 0
\(403\) 6877.71 9466.35i 0.850132 1.17011i
\(404\) 0 0
\(405\) −900.109 292.463i −0.110436 0.0358830i
\(406\) 0 0
\(407\) −6916.63 + 6432.04i −0.842370 + 0.783352i
\(408\) 0 0
\(409\) −1858.03 + 5718.43i −0.224630 + 0.691340i 0.773699 + 0.633553i \(0.218404\pi\)
−0.998329 + 0.0577864i \(0.981596\pi\)
\(410\) 0 0
\(411\) −5466.96 + 7524.63i −0.656120 + 0.903072i
\(412\) 0 0
\(413\) 8248.52 6042.92i 0.982768 0.719983i
\(414\) 0 0
\(415\) −323.273 444.947i −0.0382382 0.0526304i
\(416\) 0 0
\(417\) 8093.52i 0.950459i
\(418\) 0 0
\(419\) 3195.23i 0.372547i 0.982498 + 0.186274i \(0.0596411\pi\)
−0.982498 + 0.186274i \(0.940359\pi\)
\(420\) 0 0
\(421\) −7268.80 + 5281.09i −0.841471 + 0.611365i −0.922781 0.385324i \(-0.874090\pi\)
0.0813099 + 0.996689i \(0.474090\pi\)
\(422\) 0 0
\(423\) −127.722 + 41.4993i −0.0146810 + 0.00477013i
\(424\) 0 0
\(425\) −6593.23 4790.26i −0.752514 0.546734i
\(426\) 0 0
\(427\) 13.7829 + 3482.52i 0.00156207 + 0.394686i
\(428\) 0 0
\(429\) −1619.75 13344.1i −0.182290 1.50176i
\(430\) 0 0
\(431\) −7729.78 2511.56i −0.863876 0.280690i −0.156629 0.987657i \(-0.550063\pi\)
−0.707246 + 0.706967i \(0.750063\pi\)
\(432\) 0 0
\(433\) −4084.30 + 5621.55i −0.453300 + 0.623914i −0.973102 0.230373i \(-0.926005\pi\)
0.519803 + 0.854286i \(0.326005\pi\)
\(434\) 0 0
\(435\) −44.7969 + 14.5554i −0.00493758 + 0.00160432i
\(436\) 0 0
\(437\) −1706.43 + 1239.80i −0.186796 + 0.135715i
\(438\) 0 0
\(439\) −7039.84 −0.765360 −0.382680 0.923881i \(-0.624999\pi\)
−0.382680 + 0.923881i \(0.624999\pi\)
\(440\) 0 0
\(441\) 2287.61 1689.87i 0.247015 0.182472i
\(442\) 0 0
\(443\) −2277.04 + 1654.36i −0.244210 + 0.177429i −0.703157 0.711035i \(-0.748227\pi\)
0.458947 + 0.888464i \(0.348227\pi\)
\(444\) 0 0
\(445\) −148.172 456.026i −0.0157843 0.0485791i
\(446\) 0 0
\(447\) 764.103 + 555.153i 0.0808520 + 0.0587424i
\(448\) 0 0
\(449\) −337.312 + 1038.14i −0.0354538 + 0.109116i −0.967217 0.253950i \(-0.918270\pi\)
0.931763 + 0.363066i \(0.118270\pi\)
\(450\) 0 0
\(451\) −4009.34 8629.13i −0.418609 0.900954i
\(452\) 0 0
\(453\) 199.335 613.489i 0.0206745 0.0636297i
\(454\) 0 0
\(455\) −1044.48 + 3258.39i −0.107617 + 0.335727i
\(456\) 0 0
\(457\) −3357.00 + 1090.76i −0.343619 + 0.111649i −0.475742 0.879585i \(-0.657821\pi\)
0.132123 + 0.991233i \(0.457821\pi\)
\(458\) 0 0
\(459\) 6078.52 + 8366.37i 0.618129 + 0.850781i
\(460\) 0 0
\(461\) −14201.4 −1.43476 −0.717380 0.696682i \(-0.754659\pi\)
−0.717380 + 0.696682i \(0.754659\pi\)
\(462\) 0 0
\(463\) −5449.54 −0.547001 −0.273501 0.961872i \(-0.588182\pi\)
−0.273501 + 0.961872i \(0.588182\pi\)
\(464\) 0 0
\(465\) −757.421 1042.50i −0.0755366 0.103967i
\(466\) 0 0
\(467\) −1002.43 + 325.708i −0.0993293 + 0.0322740i −0.358260 0.933622i \(-0.616630\pi\)
0.258931 + 0.965896i \(0.416630\pi\)
\(468\) 0 0
\(469\) −4054.91 1299.80i −0.399229 0.127973i
\(470\) 0 0
\(471\) −3323.22 + 10227.8i −0.325108 + 1.00058i
\(472\) 0 0
\(473\) 17309.0 + 3389.33i 1.68260 + 0.329475i
\(474\) 0 0
\(475\) 629.299 1936.78i 0.0607878 0.187086i
\(476\) 0 0
\(477\) 1984.72 + 1441.98i 0.190511 + 0.138415i
\(478\) 0 0
\(479\) 3528.95 + 10861.0i 0.336622 + 1.03602i 0.965917 + 0.258850i \(0.0833437\pi\)
−0.629295 + 0.777166i \(0.716656\pi\)
\(480\) 0 0
\(481\) −17841.7 + 12962.8i −1.69129 + 1.22880i
\(482\) 0 0
\(483\) 3121.82 + 9480.16i 0.294095 + 0.893089i
\(484\) 0 0
\(485\) −872.259 −0.0816644
\(486\) 0 0
\(487\) −12518.3 + 9095.08i −1.16480 + 0.846278i −0.990377 0.138393i \(-0.955806\pi\)
−0.174424 + 0.984671i \(0.555806\pi\)
\(488\) 0 0
\(489\) 3784.51 1229.66i 0.349982 0.113716i
\(490\) 0 0
\(491\) 4293.55 5909.56i 0.394634 0.543167i −0.564753 0.825260i \(-0.691029\pi\)
0.959387 + 0.282093i \(0.0910287\pi\)
\(492\) 0 0
\(493\) 323.508 + 105.114i 0.0295539 + 0.00960265i
\(494\) 0 0
\(495\) 643.878 + 126.080i 0.0584650 + 0.0114482i
\(496\) 0 0
\(497\) −78.4586 19824.0i −0.00708118 1.78919i
\(498\) 0 0
\(499\) −5745.20 4174.13i −0.515412 0.374468i 0.299461 0.954109i \(-0.403193\pi\)
−0.814873 + 0.579640i \(0.803193\pi\)
\(500\) 0 0
\(501\) 6144.67 1996.52i 0.547951 0.178040i
\(502\) 0 0
\(503\) −6281.72 + 4563.93i −0.556835 + 0.404564i −0.830299 0.557318i \(-0.811830\pi\)
0.273464 + 0.961882i \(0.411830\pi\)
\(504\) 0 0
\(505\) 1210.48i 0.106665i
\(506\) 0 0
\(507\) 21883.2i 1.91689i
\(508\) 0 0
\(509\) −4975.79 6848.59i −0.433297 0.596382i 0.535409 0.844593i \(-0.320157\pi\)
−0.968706 + 0.248211i \(0.920157\pi\)
\(510\) 0 0
\(511\) 42.5028 + 58.0159i 0.00367948 + 0.00502245i
\(512\) 0 0
\(513\) −1518.91 + 2090.60i −0.130724 + 0.179926i
\(514\) 0 0
\(515\) 1344.33 4137.41i 0.115026 0.354012i
\(516\) 0 0
\(517\) −535.863 + 248.977i −0.0455845 + 0.0211799i
\(518\) 0 0
\(519\) −524.972 170.574i −0.0444002 0.0144265i
\(520\) 0 0
\(521\) −9444.88 + 12999.8i −0.794218 + 1.09315i 0.199352 + 0.979928i \(0.436116\pi\)
−0.993570 + 0.113220i \(0.963884\pi\)
\(522\) 0 0
\(523\) 4330.75 + 13328.7i 0.362085 + 1.11438i 0.951786 + 0.306762i \(0.0992457\pi\)
−0.589701 + 0.807622i \(0.700754\pi\)
\(524\) 0 0
\(525\) −7818.35 5633.23i −0.649945 0.468294i
\(526\) 0 0
\(527\) 9305.84i 0.769201i
\(528\) 0 0
\(529\) 3357.46 0.275948
\(530\) 0 0
\(531\) −2690.87 3703.67i −0.219913 0.302684i
\(532\) 0 0
\(533\) −6865.38 21129.5i −0.557923 1.71711i
\(534\) 0 0
\(535\) 3136.20 + 2278.58i 0.253438 + 0.184134i
\(536\) 0 0
\(537\) 13493.8 + 4384.39i 1.08436 + 0.352329i
\(538\) 0 0
\(539\) 9095.92 8593.90i 0.726881 0.686763i
\(540\) 0 0
\(541\) 5510.19 + 1790.37i 0.437896 + 0.142281i 0.519664 0.854370i \(-0.326057\pi\)
−0.0817689 + 0.996651i \(0.526057\pi\)
\(542\) 0 0
\(543\) −9233.34 6708.42i −0.729725 0.530176i
\(544\) 0 0
\(545\) 581.979 + 1791.15i 0.0457417 + 0.140779i
\(546\) 0 0
\(547\) −3365.57 4632.31i −0.263074 0.362090i 0.656963 0.753923i \(-0.271841\pi\)
−0.920036 + 0.391833i \(0.871841\pi\)
\(548\) 0 0
\(549\) 1559.19 0.121210
\(550\) 0 0
\(551\) 84.9988i 0.00657182i
\(552\) 0 0
\(553\) 12830.1 + 9244.29i 0.986606 + 0.710863i
\(554\) 0 0
\(555\) 750.507 + 2309.82i 0.0574004 + 0.176660i
\(556\) 0 0
\(557\) −9239.10 + 12716.5i −0.702825 + 0.967355i 0.297097 + 0.954847i \(0.403982\pi\)
−0.999922 + 0.0125079i \(0.996018\pi\)
\(558\) 0 0
\(559\) 39166.9 + 12726.1i 2.96348 + 0.962892i
\(560\) 0 0
\(561\) 7280.05 + 7828.53i 0.547886 + 0.589164i
\(562\) 0 0
\(563\) 5391.61 16593.7i 0.403604 1.24217i −0.518450 0.855108i \(-0.673491\pi\)
0.922055 0.387059i \(-0.126509\pi\)
\(564\) 0 0
\(565\) −558.693 + 768.974i −0.0416007 + 0.0572584i
\(566\) 0 0
\(567\) 4776.11 + 6519.33i 0.353753 + 0.482868i
\(568\) 0 0
\(569\) 9781.85 + 13463.6i 0.720697 + 0.991954i 0.999500 + 0.0316059i \(0.0100622\pi\)
−0.278804 + 0.960348i \(0.589938\pi\)
\(570\) 0 0
\(571\) 5862.19i 0.429641i −0.976654 0.214821i \(-0.931083\pi\)
0.976654 0.214821i \(-0.0689167\pi\)
\(572\) 0 0
\(573\) 6337.73i 0.462064i
\(574\) 0 0
\(575\) −12126.0 + 8810.04i −0.879458 + 0.638964i
\(576\) 0 0
\(577\) −11118.6 + 3612.65i −0.802206 + 0.260652i −0.681293 0.732011i \(-0.738582\pi\)
−0.120913 + 0.992663i \(0.538582\pi\)
\(578\) 0 0
\(579\) −5245.24 3810.89i −0.376485 0.273532i
\(580\) 0 0
\(581\) 18.5869 + 4696.33i 0.00132722 + 0.335347i
\(582\) 0 0
\(583\) 9433.38 + 5246.04i 0.670139 + 0.372674i
\(584\) 0 0
\(585\) 1456.97 + 473.398i 0.102971 + 0.0334574i
\(586\) 0 0
\(587\) 8270.16 11382.9i 0.581510 0.800379i −0.412350 0.911025i \(-0.635292\pi\)
0.993860 + 0.110646i \(0.0352920\pi\)
\(588\) 0 0
\(589\) −2211.55 + 718.575i −0.154712 + 0.0502689i
\(590\) 0 0
\(591\) −5309.31 + 3857.44i −0.369536 + 0.268484i
\(592\) 0 0
\(593\) −9343.00 −0.647000 −0.323500 0.946228i \(-0.604860\pi\)
−0.323500 + 0.946228i \(0.604860\pi\)
\(594\) 0 0
\(595\) −851.158 2584.74i −0.0586455 0.178091i
\(596\) 0 0
\(597\) −4129.58 + 3000.31i −0.283103 + 0.205686i
\(598\) 0 0
\(599\) −943.793 2904.70i −0.0643779 0.198135i 0.913694 0.406403i \(-0.133217\pi\)
−0.978072 + 0.208269i \(0.933217\pi\)
\(600\) 0 0
\(601\) −14334.8 10414.9i −0.972927 0.706873i −0.0168104 0.999859i \(-0.505351\pi\)
−0.956117 + 0.292986i \(0.905351\pi\)
\(602\) 0 0
\(603\) −589.120 + 1813.13i −0.0397858 + 0.122448i
\(604\) 0 0
\(605\) 2879.19 + 209.320i 0.193480 + 0.0140662i
\(606\) 0 0
\(607\) 1287.44 3962.35i 0.0860886 0.264953i −0.898740 0.438481i \(-0.855517\pi\)
0.984829 + 0.173528i \(0.0555166\pi\)
\(608\) 0 0
\(609\) 383.013 + 122.775i 0.0254852 + 0.00816927i
\(610\) 0 0
\(611\) −1312.12 + 426.335i −0.0868787 + 0.0282286i
\(612\) 0 0
\(613\) −3292.96 4532.38i −0.216968 0.298631i 0.686634 0.727003i \(-0.259087\pi\)
−0.903603 + 0.428372i \(0.859087\pi\)
\(614\) 0 0
\(615\) −2446.67 −0.160422
\(616\) 0 0
\(617\) 29244.2 1.90814 0.954072 0.299577i \(-0.0968454\pi\)
0.954072 + 0.299577i \(0.0968454\pi\)
\(618\) 0 0
\(619\) 9753.62 + 13424.7i 0.633330 + 0.871704i 0.998238 0.0593398i \(-0.0188996\pi\)
−0.364908 + 0.931044i \(0.618900\pi\)
\(620\) 0 0
\(621\) 18088.6 5877.34i 1.16887 0.379790i
\(622\) 0 0
\(623\) −1249.83 + 3899.01i −0.0803745 + 0.250739i
\(624\) 0 0
\(625\) 4290.12 13203.6i 0.274567 0.845032i
\(626\) 0 0
\(627\) −1298.31 + 2334.61i −0.0826948 + 0.148701i
\(628\) 0 0
\(629\) 5419.91 16680.8i 0.343570 1.05740i
\(630\) 0 0
\(631\) 1430.84 + 1039.57i 0.0902707 + 0.0655855i 0.632005 0.774964i \(-0.282232\pi\)
−0.541734 + 0.840550i \(0.682232\pi\)
\(632\) 0 0
\(633\) −4529.48 13940.3i −0.284409 0.875320i
\(634\) 0 0
\(635\) 2760.66 2005.74i 0.172525 0.125347i
\(636\) 0 0
\(637\) 23501.3 17360.6i 1.46178 1.07983i
\(638\) 0 0
\(639\) −8875.59 −0.549472
\(640\) 0 0
\(641\) 4421.79 3212.62i 0.272465 0.197958i −0.443159 0.896443i \(-0.646142\pi\)
0.715624 + 0.698485i \(0.246142\pi\)
\(642\) 0 0
\(643\) 28711.9 9329.05i 1.76094 0.572165i 0.763644 0.645637i \(-0.223408\pi\)
0.997297 + 0.0734725i \(0.0234081\pi\)
\(644\) 0 0
\(645\) 2665.79 3669.14i 0.162737 0.223988i
\(646\) 0 0
\(647\) 25427.0 + 8261.74i 1.54504 + 0.502013i 0.952761 0.303722i \(-0.0982294\pi\)
0.592276 + 0.805735i \(0.298229\pi\)
\(648\) 0 0
\(649\) −13716.8 14750.3i −0.829635 0.892140i
\(650\) 0 0
\(651\) 43.5486 + 11003.4i 0.00262182 + 0.662452i
\(652\) 0 0
\(653\) −12216.4 8875.70i −0.732103 0.531904i 0.158125 0.987419i \(-0.449455\pi\)
−0.890228 + 0.455515i \(0.849455\pi\)
\(654\) 0 0
\(655\) 4224.96 1372.77i 0.252035 0.0818910i
\(656\) 0 0
\(657\) 26.0497 18.9262i 0.00154687 0.00112387i
\(658\) 0 0
\(659\) 1580.96i 0.0934527i −0.998908 0.0467264i \(-0.985121\pi\)
0.998908 0.0467264i \(-0.0148789\pi\)
\(660\) 0 0
\(661\) 5397.05i 0.317581i 0.987312 + 0.158790i \(0.0507594\pi\)
−0.987312 + 0.158790i \(0.949241\pi\)
\(662\) 0 0
\(663\) 14671.8 + 20194.0i 0.859435 + 1.18291i
\(664\) 0 0
\(665\) 548.543 401.866i 0.0319873 0.0234341i
\(666\) 0 0
\(667\) 367.719 506.122i 0.0213465 0.0293810i
\(668\) 0 0
\(669\) −4369.02 + 13446.5i −0.252491 + 0.777086i
\(670\) 0 0
\(671\) 6810.24 826.653i 0.391813 0.0475597i
\(672\) 0 0
\(673\) −6014.75 1954.31i −0.344505 0.111936i 0.131654 0.991296i \(-0.457971\pi\)
−0.476159 + 0.879359i \(0.657971\pi\)
\(674\) 0 0
\(675\) −10793.4 + 14855.9i −0.615466 + 0.847116i
\(676\) 0 0
\(677\) 3827.34 + 11779.3i 0.217277 + 0.668710i 0.998984 + 0.0450643i \(0.0143493\pi\)
−0.781707 + 0.623646i \(0.785651\pi\)
\(678\) 0 0
\(679\) 6043.07 + 4354.11i 0.341549 + 0.246090i
\(680\) 0 0
\(681\) 23342.5i 1.31349i
\(682\) 0 0
\(683\) −9477.48 −0.530960 −0.265480 0.964116i \(-0.585530\pi\)
−0.265480 + 0.964116i \(0.585530\pi\)
\(684\) 0 0
\(685\) −2741.36 3773.16i −0.152908 0.210460i
\(686\) 0 0
\(687\) 8845.62 + 27224.0i 0.491239 + 1.51188i
\(688\) 0 0
\(689\) 20389.6 + 14813.9i 1.12740 + 0.819107i
\(690\) 0 0
\(691\) −12997.6 4223.16i −0.715557 0.232499i −0.0714614 0.997443i \(-0.522766\pi\)
−0.644096 + 0.764945i \(0.722766\pi\)
\(692\) 0 0
\(693\) −3831.47 4087.57i −0.210022 0.224061i
\(694\) 0 0
\(695\) 3859.79 + 1254.12i 0.210662 + 0.0684483i
\(696\) 0 0
\(697\) 14294.6 + 10385.6i 0.776822 + 0.564394i
\(698\) 0 0
\(699\) −7071.82 21764.8i −0.382662 1.17771i
\(700\) 0 0
\(701\) 10719.0 + 14753.5i 0.577534 + 0.794908i 0.993422 0.114508i \(-0.0365292\pi\)
−0.415888 + 0.909416i \(0.636529\pi\)
\(702\) 0 0
\(703\) 4382.72 0.235131
\(704\) 0 0
\(705\) 151.936i 0.00811668i
\(706\) 0 0
\(707\) −6042.45 + 8386.31i −0.321428 + 0.446110i
\(708\) 0 0
\(709\) 1122.74 + 3455.45i 0.0594719 + 0.183036i 0.976379 0.216065i \(-0.0693224\pi\)
−0.916907 + 0.399101i \(0.869322\pi\)
\(710\) 0 0
\(711\) 4161.51 5727.82i 0.219506 0.302124i
\(712\) 0 0
\(713\) 16277.2 + 5288.80i 0.854961 + 0.277794i
\(714\) 0 0
\(715\) 6614.76 + 1295.26i 0.345983 + 0.0677480i
\(716\) 0 0
\(717\) 7435.72 22884.8i 0.387297 1.19198i
\(718\) 0 0
\(719\) 5800.70 7983.97i 0.300875 0.414120i −0.631633 0.775267i \(-0.717615\pi\)
0.932509 + 0.361148i \(0.117615\pi\)
\(720\) 0 0
\(721\) −29966.6 + 21953.7i −1.54787 + 1.13398i
\(722\) 0 0
\(723\) 8224.16 + 11319.6i 0.423042 + 0.582268i
\(724\) 0 0
\(725\) 604.005i 0.0309409i
\(726\) 0 0
\(727\) 22482.0i 1.14692i 0.819234 + 0.573460i \(0.194399\pi\)
−0.819234 + 0.573460i \(0.805601\pi\)
\(728\) 0 0
\(729\) 17349.3 12605.0i 0.881436 0.640401i
\(730\) 0 0
\(731\) −31149.4 + 10121.1i −1.57607 + 0.512095i
\(732\) 0 0
\(733\) −3981.72 2892.89i −0.200639 0.145773i 0.482929 0.875659i \(-0.339573\pi\)
−0.683568 + 0.729887i \(0.739573\pi\)
\(734\) 0 0
\(735\) −1018.52 3052.25i −0.0511137 0.153176i
\(736\) 0 0
\(737\) −1611.88 + 8231.74i −0.0805623 + 0.411425i
\(738\) 0 0
\(739\) 3427.38 + 1113.62i 0.170607 + 0.0554335i 0.393075 0.919507i \(-0.371411\pi\)
−0.222468 + 0.974940i \(0.571411\pi\)
\(740\) 0 0
\(741\) −3666.21 + 5046.10i −0.181756 + 0.250166i
\(742\) 0 0
\(743\) −1844.17 + 599.207i −0.0910579 + 0.0295865i −0.354192 0.935173i \(-0.615244\pi\)
0.263134 + 0.964759i \(0.415244\pi\)
\(744\) 0 0
\(745\) −383.153 + 278.377i −0.0188425 + 0.0136899i
\(746\) 0 0
\(747\) 2102.63 0.102987
\(748\) 0 0
\(749\) −10353.6 31441.3i −0.505092 1.53383i
\(750\) 0 0
\(751\) 1159.09 842.129i 0.0563194 0.0409184i −0.559269 0.828986i \(-0.688918\pi\)
0.615589 + 0.788068i \(0.288918\pi\)
\(752\) 0 0
\(753\) 5165.04 + 15896.4i 0.249966 + 0.769317i
\(754\) 0 0
\(755\) 261.685 + 190.125i 0.0126142 + 0.00916472i
\(756\) 0 0
\(757\) −5911.62 + 18194.1i −0.283833 + 0.873548i 0.702913 + 0.711276i \(0.251882\pi\)
−0.986746 + 0.162272i \(0.948118\pi\)
\(758\) 0 0
\(759\) 17830.7 8284.64i 0.852718 0.396197i
\(760\) 0 0
\(761\) −3767.84 + 11596.2i −0.179480 + 0.552383i −0.999810 0.0195083i \(-0.993790\pi\)
0.820330 + 0.571891i \(0.193790\pi\)
\(762\) 0 0
\(763\) 4908.99 15314.3i 0.232919 0.726625i
\(764\) 0 0
\(765\) −1158.73 + 376.493i −0.0547632 + 0.0177936i
\(766\) 0 0
\(767\) −27644.1 38048.9i −1.30140 1.79122i
\(768\) 0 0
\(769\) −8589.57 −0.402793 −0.201396 0.979510i \(-0.564548\pi\)
−0.201396 + 0.979510i \(0.564548\pi\)
\(770\) 0 0
\(771\) −15120.2 −0.706279
\(772\) 0 0
\(773\) −16076.8 22127.9i −0.748052 1.02960i −0.998115 0.0613752i \(-0.980451\pi\)
0.250063 0.968230i \(-0.419549\pi\)
\(774\) 0 0
\(775\) −15715.3 + 5106.22i −0.728402 + 0.236672i
\(776\) 0 0
\(777\) 6330.52 19748.9i 0.292286 0.911827i
\(778\) 0 0
\(779\) −1364.36 + 4199.07i −0.0627514 + 0.193129i
\(780\) 0 0
\(781\) −38766.9 + 4705.68i −1.77617 + 0.215598i
\(782\) 0 0
\(783\) 236.844 728.930i 0.0108098 0.0332692i
\(784\) 0 0
\(785\) −4362.69 3169.68i −0.198358 0.144116i
\(786\) 0 0
\(787\) −10526.1 32396.1i −0.476768 1.46734i −0.843558 0.537038i \(-0.819543\pi\)
0.366790 0.930304i \(-0.380457\pi\)
\(788\) 0 0
\(789\) −23035.5 + 16736.3i −1.03940 + 0.755168i
\(790\) 0 0
\(791\) 7709.20 2538.65i 0.346533 0.114114i
\(792\) 0 0
\(793\) 16018.0 0.717296
\(794\) 0 0
\(795\) 2245.44 1631.41i 0.100173 0.0727800i
\(796\) 0 0
\(797\) −5157.39 + 1675.74i −0.229215 + 0.0744764i −0.421372 0.906888i \(-0.638451\pi\)
0.192158 + 0.981364i \(0.438451\pi\)
\(798\) 0 0
\(799\) 644.938 887.681i 0.0285560 0.0393040i
\(800\) 0 0
\(801\) 1743.42 + 566.471i 0.0769047 + 0.0249878i
\(802\) 0 0
\(803\) 103.746 96.4773i 0.00455929 0.00423986i
\(804\) 0 0
\(805\) −5004.82 + 19.8078i −0.219126 + 0.000867247i
\(806\) 0 0
\(807\) 29606.3 + 21510.2i 1.29144 + 0.938284i
\(808\) 0 0
\(809\) −31702.9 + 10300.9i −1.37777 + 0.447664i −0.901935 0.431872i \(-0.857853\pi\)
−0.475833 + 0.879536i \(0.657853\pi\)
\(810\) 0 0
\(811\) −8681.41 + 6307.42i −0.375889 + 0.273099i −0.759649 0.650334i \(-0.774629\pi\)
0.383760 + 0.923433i \(0.374629\pi\)
\(812\) 0 0
\(813\) 22244.3i 0.959584i
\(814\) 0 0
\(815\) 1995.37i 0.0857604i
\(816\) 0 0
\(817\) −4810.57 6621.18i −0.205998 0.283532i
\(818\) 0 0
\(819\) −7730.89 10552.6i −0.329840 0.450228i
\(820\) 0 0
\(821\) 10677.6 14696.4i 0.453898 0.624737i −0.519331 0.854573i \(-0.673819\pi\)
0.973229 + 0.229836i \(0.0738189\pi\)
\(822\) 0 0
\(823\) 5159.92 15880.6i 0.218546 0.672617i −0.780336 0.625360i \(-0.784952\pi\)
0.998883 0.0472566i \(-0.0150479\pi\)
\(824\) 0 0
\(825\) −9225.86 + 16589.9i −0.389337 + 0.700102i
\(826\) 0 0
\(827\) 39376.3 + 12794.1i 1.65568 + 0.537964i 0.979960 0.199193i \(-0.0638320\pi\)
0.675722 + 0.737157i \(0.263832\pi\)
\(828\) 0 0
\(829\) −21780.6 + 29978.4i −0.912511 + 1.25596i 0.0537912 + 0.998552i \(0.482869\pi\)
−0.966302 + 0.257411i \(0.917131\pi\)
\(830\) 0 0
\(831\) 11869.5 + 36530.5i 0.495485 + 1.52495i
\(832\) 0 0
\(833\) −7005.53 + 22156.0i −0.291389 + 0.921562i
\(834\) 0 0
\(835\) 3239.76i 0.134271i
\(836\) 0 0
\(837\) 20968.0 0.865900
\(838\) 0 0
\(839\) 3005.33 + 4136.48i 0.123666 + 0.170211i 0.866361 0.499418i \(-0.166453\pi\)
−0.742695 + 0.669630i \(0.766453\pi\)
\(840\) 0 0
\(841\) 7528.83 + 23171.3i 0.308698 + 0.950073i
\(842\) 0 0
\(843\) −18178.9 13207.8i −0.742723 0.539620i
\(844\) 0 0
\(845\) 10436.1 + 3390.88i 0.424866 + 0.138047i
\(846\) 0 0
\(847\) −18902.3 15822.4i −0.766814 0.641870i
\(848\) 0 0
\(849\) −23408.5 7605.90i −0.946265 0.307460i
\(850\) 0 0
\(851\) −26096.7 18960.4i −1.05121 0.763752i
\(852\) 0 0
\(853\) 6632.22 + 20411.9i 0.266217 + 0.819330i 0.991411 + 0.130786i \(0.0417500\pi\)
−0.725194 + 0.688545i \(0.758250\pi\)
\(854\) 0 0
\(855\) −178.948 246.301i −0.00715777 0.00985183i
\(856\) 0 0
\(857\) 28415.0 1.13260 0.566299 0.824200i \(-0.308375\pi\)
0.566299 + 0.824200i \(0.308375\pi\)
\(858\) 0 0
\(859\) 30321.9i 1.20439i −0.798350 0.602194i \(-0.794293\pi\)
0.798350 0.602194i \(-0.205707\pi\)
\(860\) 0 0
\(861\) 16950.7 + 12213.2i 0.670939 + 0.483420i
\(862\) 0 0
\(863\) −222.861 685.895i −0.00879058 0.0270546i 0.946565 0.322513i \(-0.104528\pi\)
−0.955356 + 0.295458i \(0.904528\pi\)
\(864\) 0 0
\(865\) 162.693 223.928i 0.00639506 0.00880205i
\(866\) 0 0
\(867\) 1330.15 + 432.192i 0.0521041 + 0.0169296i
\(868\) 0 0
\(869\) 15139.9 27224.4i 0.591008 1.06274i
\(870\) 0 0
\(871\) −6052.21 + 18626.8i −0.235444 + 0.724621i
\(872\) 0 0
\(873\) 1960.09 2697.83i 0.0759897 0.104591i
\(874\) 0 0
\(875\) 7948.36 5823.02i 0.307090 0.224976i
\(876\) 0 0
\(877\) −26480.8 36447.7i −1.01960 1.40336i −0.912482 0.409118i \(-0.865837\pi\)
−0.107122 0.994246i \(-0.534163\pi\)
\(878\) 0 0
\(879\) 17070.0i 0.655013i
\(880\) 0 0
\(881\) 26797.1i 1.02476i 0.858758 + 0.512382i \(0.171237\pi\)
−0.858758 + 0.512382i \(0.828763\pi\)
\(882\) 0 0
\(883\) 24522.7 17816.8i 0.934602 0.679028i −0.0125130 0.999922i \(-0.503983\pi\)
0.947115 + 0.320893i \(0.103983\pi\)
\(884\) 0 0
\(885\) −4925.88 + 1600.52i −0.187098 + 0.0607918i
\(886\) 0 0
\(887\) −31530.2 22908.1i −1.19355 0.867167i −0.199918 0.979813i \(-0.564067\pi\)
−0.993635 + 0.112646i \(0.964067\pi\)
\(888\) 0 0
\(889\) −29138.2 + 115.322i −1.09929 + 0.00435070i
\(890\) 0 0
\(891\) 11658.1 10841.3i 0.438339 0.407629i
\(892\) 0 0
\(893\) 260.759 + 84.7258i 0.00977153 + 0.00317496i
\(894\) 0 0
\(895\) −4181.83 + 5755.79i −0.156182 + 0.214966i
\(896\) 0 0
\(897\) 43660.6 14186.2i 1.62518 0.528052i
\(898\) 0 0
\(899\) 557.973 405.391i 0.0207002 0.0150395i
\(900\) 0 0
\(901\) −20043.9 −0.741130
\(902\) 0 0
\(903\) −36784.2 + 12113.1i −1.35559 + 0.446399i
\(904\) 0 0
\(905\) 4629.98 3363.88i 0.170062 0.123557i
\(906\) 0 0
\(907\) −6945.77 21376.9i −0.254278 0.782588i −0.993971 0.109643i \(-0.965029\pi\)
0.739693 0.672945i \(-0.234971\pi\)
\(908\) 0 0
\(909\) 3743.94 + 2720.13i 0.136610 + 0.0992531i
\(910\) 0 0
\(911\) 10984.7 33807.6i 0.399496 1.22952i −0.525909 0.850541i \(-0.676275\pi\)
0.925405 0.378981i \(-0.123725\pi\)
\(912\) 0 0
\(913\) 9183.91 1114.78i 0.332906 0.0404094i
\(914\) 0 0
\(915\) 545.110 1677.68i 0.0196948 0.0606145i
\(916\) 0 0
\(917\) −36123.3 11579.3i −1.30087 0.416993i
\(918\) 0 0
\(919\) 10415.9 3384.32i 0.373872 0.121478i −0.116053 0.993243i \(-0.537024\pi\)
0.489925 + 0.871765i \(0.337024\pi\)
\(920\) 0 0
\(921\) −7678.92 10569.1i −0.274733 0.378138i
\(922\) 0 0
\(923\) −91181.6 −3.25166
\(924\) 0 0
\(925\) 31143.7 1.10703
\(926\) 0 0
\(927\) 9775.83 + 13455.3i 0.346365 + 0.476731i
\(928\) 0 0
\(929\) 48445.4 15740.9i 1.71092 0.555911i 0.720432 0.693526i \(-0.243944\pi\)
0.990486 + 0.137615i \(0.0439436\pi\)
\(930\) 0 0
\(931\) −5806.36 + 45.9610i −0.204399 + 0.00161795i
\(932\) 0 0
\(933\) −8776.20 + 27010.4i −0.307953 + 0.947781i
\(934\) 0 0
\(935\) −4861.49 + 2258.79i −0.170040 + 0.0790056i
\(936\) 0 0
\(937\) 15213.2 46821.5i 0.530411 1.63244i −0.222951 0.974830i \(-0.571569\pi\)
0.753362 0.657606i \(-0.228431\pi\)
\(938\) 0 0
\(939\) 207.095 + 150.463i 0.00719733 + 0.00522917i
\(940\) 0 0
\(941\) −8624.13 26542.3i −0.298766 0.919507i −0.981930 0.189242i \(-0.939397\pi\)
0.683165 0.730264i \(-0.260603\pi\)
\(942\) 0 0
\(943\) 26289.9 19100.8i 0.907866 0.659603i
\(944\) 0 0
\(945\) −5823.94 + 1917.83i −0.200479 + 0.0660180i
\(946\) 0 0
\(947\) 14301.3 0.490739 0.245370 0.969430i \(-0.421091\pi\)
0.245370 + 0.969430i \(0.421091\pi\)
\(948\) 0 0
\(949\) 267.616 194.435i 0.00915405 0.00665081i
\(950\) 0 0
\(951\) −24281.2 + 7889.42i −0.827939 + 0.269014i
\(952\) 0 0
\(953\) −22757.6 + 31323.2i −0.773548 + 1.06470i 0.222417 + 0.974952i \(0.428605\pi\)
−0.995965 + 0.0897459i \(0.971395\pi\)
\(954\) 0 0
\(955\) 3022.46 + 982.057i 0.102413 + 0.0332760i
\(956\) 0 0
\(957\) 152.253 777.542i 0.00514278 0.0262637i
\(958\) 0 0
\(959\) 157.617 + 39824.9i 0.00530732 + 1.34099i
\(960\) 0 0
\(961\) −8836.66 6420.21i −0.296622 0.215508i
\(962\) 0 0
\(963\) −14095.0 + 4579.73i −0.471655 + 0.153250i
\(964\) 0 0
\(965\) 2630.18 1910.94i 0.0877394 0.0637464i
\(966\) 0 0
\(967\) 27481.7i 0.913911i 0.889489 + 0.456956i \(0.151060\pi\)
−0.889489 + 0.456956i \(0.848940\pi\)
\(968\) 0 0
\(969\) 4960.54i 0.164454i
\(970\) 0 0
\(971\) 5456.06 + 7509.62i 0.180323 + 0.248193i 0.889604 0.456733i \(-0.150980\pi\)
−0.709281 + 0.704926i \(0.750980\pi\)
\(972\) 0 0
\(973\) −20480.6 27955.8i −0.674798 0.921091i
\(974\) 0 0
\(975\) −26052.2 + 35857.8i −0.855732 + 1.17781i
\(976\) 0 0
\(977\) 4289.99 13203.2i 0.140480 0.432352i −0.855922 0.517105i \(-0.827010\pi\)
0.996402 + 0.0847521i \(0.0270098\pi\)
\(978\) 0 0
\(979\) 7915.26 + 1549.91i 0.258399 + 0.0505979i
\(980\) 0 0
\(981\) −6847.69 2224.95i −0.222864 0.0724130i
\(982\) 0 0
\(983\) −28342.4 + 39009.9i −0.919614 + 1.26574i 0.0441612 + 0.999024i \(0.485938\pi\)
−0.963775 + 0.266716i \(0.914062\pi\)
\(984\) 0 0
\(985\) −1016.91 3129.73i −0.0328949 0.101240i
\(986\) 0 0
\(987\) 758.431 1052.63i 0.0244591 0.0339468i
\(988\) 0 0
\(989\) 60236.9i 1.93673i
\(990\) 0 0
\(991\) 5388.09 0.172713 0.0863564 0.996264i \(-0.472478\pi\)
0.0863564 + 0.996264i \(0.472478\pi\)
\(992\) 0 0
\(993\) −13276.3 18273.3i −0.424281 0.583973i
\(994\) 0 0
\(995\) −790.953 2434.30i −0.0252009 0.0775603i
\(996\) 0 0
\(997\) 35919.6 + 26097.1i 1.14101 + 0.828991i 0.987259 0.159119i \(-0.0508652\pi\)
0.153749 + 0.988110i \(0.450865\pi\)
\(998\) 0 0
\(999\) −37585.1 12212.1i −1.19033 0.386762i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.4.w.a.13.18 yes 96
7.6 odd 2 inner 308.4.w.a.13.7 96
11.6 odd 10 inner 308.4.w.a.237.7 yes 96
77.6 even 10 inner 308.4.w.a.237.18 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.4.w.a.13.7 96 7.6 odd 2 inner
308.4.w.a.13.18 yes 96 1.1 even 1 trivial
308.4.w.a.237.7 yes 96 11.6 odd 10 inner
308.4.w.a.237.18 yes 96 77.6 even 10 inner