Properties

Label 312.2.h.a.155.8
Level $312$
Weight $2$
Character 312.155
Analytic conductor $2.491$
Analytic rank $0$
Dimension $8$
CM discriminant -39
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,2,Mod(155,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.155");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.151613669376.21
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 155.8
Root \(1.19709 + 0.752986i\) of defining polynomial
Character \(\chi\) \(=\) 312.155
Dual form 312.2.h.a.155.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19709 + 0.752986i) q^{2} -1.73205 q^{3} +(0.866025 + 1.80278i) q^{4} -4.11439i q^{5} +(-2.07341 - 1.30421i) q^{6} +(-0.320758 + 2.81018i) q^{8} +3.00000 q^{9} +(3.09808 - 4.92527i) q^{10} +6.54099 q^{11} +(-1.50000 - 3.12250i) q^{12} -3.60555i q^{13} +7.12633i q^{15} +(-2.50000 + 3.12250i) q^{16} +(3.59126 + 2.25896i) q^{18} +(7.41732 - 3.56317i) q^{20} +(7.83013 + 4.92527i) q^{22} +(0.555569 - 4.86738i) q^{24} -11.9282 q^{25} +(2.71493 - 4.31615i) q^{26} -5.19615 q^{27} +(-5.36603 + 8.53083i) q^{30} +(-5.34391 + 1.85543i) q^{32} -11.3293 q^{33} +(2.59808 + 5.40833i) q^{36} +6.24500i q^{39} +(11.5622 + 1.31972i) q^{40} +7.82403 q^{41} -4.00000 q^{43} +(5.66467 + 11.7919i) q^{44} -12.3432i q^{45} +9.33123i q^{47} +(4.33013 - 5.40833i) q^{48} -7.00000 q^{49} +(-14.2791 - 8.98177i) q^{50} +(6.50000 - 3.12250i) q^{52} +(-6.22024 - 3.91263i) q^{54} -26.9122i q^{55} +0.469622 q^{59} +(-12.8472 + 6.17158i) q^{60} +7.21110i q^{61} +(-7.79423 - 1.80278i) q^{64} -14.8346 q^{65} +(-13.5622 - 8.53083i) q^{66} -4.92144i q^{71} +(-0.962274 + 8.43054i) q^{72} +20.6603 q^{75} +(-4.70239 + 7.47579i) q^{78} +14.4222i q^{79} +(12.8472 + 10.2860i) q^{80} +9.00000 q^{81} +(9.36603 + 5.89138i) q^{82} -12.6124 q^{83} +(-4.78834 - 3.01194i) q^{86} +(-2.09808 + 18.3814i) q^{88} +4.31872 q^{89} +(9.29423 - 14.7758i) q^{90} +(-7.02628 + 11.1703i) q^{94} +(9.25592 - 3.21370i) q^{96} +(-8.37960 - 5.27090i) q^{98} +19.6230 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{9} + 4 q^{10} - 12 q^{12} - 20 q^{16} + 28 q^{22} - 40 q^{25} - 36 q^{30} + 44 q^{40} - 32 q^{43} - 56 q^{49} + 52 q^{52} - 60 q^{66} + 96 q^{75} + 72 q^{81} + 68 q^{82} + 4 q^{88} + 12 q^{90}+ \cdots + 20 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19709 + 0.752986i 0.846467 + 0.532441i
\(3\) −1.73205 −1.00000
\(4\) 0.866025 + 1.80278i 0.433013 + 0.901388i
\(5\) 4.11439i 1.84001i −0.391905 0.920006i \(-0.628184\pi\)
0.391905 0.920006i \(-0.371816\pi\)
\(6\) −2.07341 1.30421i −0.846467 0.532441i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −0.320758 + 2.81018i −0.113405 + 0.993549i
\(9\) 3.00000 1.00000
\(10\) 3.09808 4.92527i 0.979698 1.55751i
\(11\) 6.54099 1.97218 0.986092 0.166200i \(-0.0531498\pi\)
0.986092 + 0.166200i \(0.0531498\pi\)
\(12\) −1.50000 3.12250i −0.433013 0.901388i
\(13\) 3.60555i 1.00000i
\(14\) 0 0
\(15\) 7.12633i 1.84001i
\(16\) −2.50000 + 3.12250i −0.625000 + 0.780625i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 3.59126 + 2.25896i 0.846467 + 0.532441i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 7.41732 3.56317i 1.65856 0.796748i
\(21\) 0 0
\(22\) 7.83013 + 4.92527i 1.66939 + 1.05007i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0.555569 4.86738i 0.113405 0.993549i
\(25\) −11.9282 −2.38564
\(26\) 2.71493 4.31615i 0.532441 0.846467i
\(27\) −5.19615 −1.00000
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) −5.36603 + 8.53083i −0.979698 + 1.55751i
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −5.34391 + 1.85543i −0.944679 + 0.327997i
\(33\) −11.3293 −1.97218
\(34\) 0 0
\(35\) 0 0
\(36\) 2.59808 + 5.40833i 0.433013 + 0.901388i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 6.24500i 1.00000i
\(40\) 11.5622 + 1.31972i 1.82814 + 0.208667i
\(41\) 7.82403 1.22191 0.610954 0.791666i \(-0.290786\pi\)
0.610954 + 0.791666i \(0.290786\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 5.66467 + 11.7919i 0.853981 + 1.77770i
\(45\) 12.3432i 1.84001i
\(46\) 0 0
\(47\) 9.33123i 1.36110i 0.732702 + 0.680550i \(0.238259\pi\)
−0.732702 + 0.680550i \(0.761741\pi\)
\(48\) 4.33013 5.40833i 0.625000 0.780625i
\(49\) −7.00000 −1.00000
\(50\) −14.2791 8.98177i −2.01937 1.27021i
\(51\) 0 0
\(52\) 6.50000 3.12250i 0.901388 0.433013i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −6.22024 3.91263i −0.846467 0.532441i
\(55\) 26.9122i 3.62884i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.469622 0.0611396 0.0305698 0.999533i \(-0.490268\pi\)
0.0305698 + 0.999533i \(0.490268\pi\)
\(60\) −12.8472 + 6.17158i −1.65856 + 0.796748i
\(61\) 7.21110i 0.923287i 0.887066 + 0.461644i \(0.152740\pi\)
−0.887066 + 0.461644i \(0.847260\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −7.79423 1.80278i −0.974279 0.225347i
\(65\) −14.8346 −1.84001
\(66\) −13.5622 8.53083i −1.66939 1.05007i
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.92144i 0.584067i −0.956408 0.292034i \(-0.905668\pi\)
0.956408 0.292034i \(-0.0943319\pi\)
\(72\) −0.962274 + 8.43054i −0.113405 + 0.993549i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 20.6603 2.38564
\(76\) 0 0
\(77\) 0 0
\(78\) −4.70239 + 7.47579i −0.532441 + 0.846467i
\(79\) 14.4222i 1.62262i 0.584613 + 0.811312i \(0.301246\pi\)
−0.584613 + 0.811312i \(0.698754\pi\)
\(80\) 12.8472 + 10.2860i 1.43636 + 1.15001i
\(81\) 9.00000 1.00000
\(82\) 9.36603 + 5.89138i 1.03430 + 0.650594i
\(83\) −12.6124 −1.38439 −0.692194 0.721712i \(-0.743356\pi\)
−0.692194 + 0.721712i \(0.743356\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.78834 3.01194i −0.516340 0.324786i
\(87\) 0 0
\(88\) −2.09808 + 18.3814i −0.223656 + 1.95946i
\(89\) 4.31872 0.457783 0.228892 0.973452i \(-0.426490\pi\)
0.228892 + 0.973452i \(0.426490\pi\)
\(90\) 9.29423 14.7758i 0.979698 1.55751i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −7.02628 + 11.1703i −0.724705 + 1.15213i
\(95\) 0 0
\(96\) 9.25592 3.21370i 0.944679 0.327997i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −8.37960 5.27090i −0.846467 0.532441i
\(99\) 19.6230 1.97218
\(100\) −10.3301 21.5039i −1.03301 2.15039i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 12.4900i 1.23068i 0.788263 + 0.615338i \(0.210980\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 10.1322 + 1.15651i 0.993549 + 0.113405i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −4.50000 9.36750i −0.433013 0.901388i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 20.2645 32.2162i 1.93214 3.07169i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 10.8167i 1.00000i
\(118\) 0.562178 + 0.353619i 0.0517527 + 0.0325532i
\(119\) 0 0
\(120\) −20.0263 2.28583i −1.82814 0.208667i
\(121\) 31.7846 2.88951
\(122\) −5.42986 + 8.63230i −0.491596 + 0.781532i
\(123\) −13.5516 −1.22191
\(124\) 0 0
\(125\) 28.5053i 2.54959i
\(126\) 0 0
\(127\) 14.4222i 1.27976i 0.768473 + 0.639882i \(0.221017\pi\)
−0.768473 + 0.639882i \(0.778983\pi\)
\(128\) −7.97289 8.02702i −0.704711 0.709495i
\(129\) 6.92820 0.609994
\(130\) −17.7583 11.1703i −1.55751 0.979698i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) −9.81149 20.4242i −0.853981 1.77770i
\(133\) 0 0
\(134\) 0 0
\(135\) 21.3790i 1.84001i
\(136\) 0 0
\(137\) 18.3400 1.56689 0.783444 0.621463i \(-0.213461\pi\)
0.783444 + 0.621463i \(0.213461\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 0 0
\(141\) 16.1622i 1.36110i
\(142\) 3.70577 5.89138i 0.310981 0.494394i
\(143\) 23.5839i 1.97218i
\(144\) −7.50000 + 9.36750i −0.625000 + 0.780625i
\(145\) 0 0
\(146\) 0 0
\(147\) 12.1244 1.00000
\(148\) 0 0
\(149\) 0.295400i 0.0242001i −0.999927 0.0121001i \(-0.996148\pi\)
0.999927 0.0121001i \(-0.00385166\pi\)
\(150\) 24.7321 + 15.5569i 2.01937 + 1.27021i
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −11.2583 + 5.40833i −0.901388 + 0.433013i
\(157\) 24.9800i 1.99362i −0.0798087 0.996810i \(-0.525431\pi\)
0.0798087 0.996810i \(-0.474569\pi\)
\(158\) −10.8597 + 17.2646i −0.863952 + 1.37350i
\(159\) 0 0
\(160\) 7.63397 + 21.9869i 0.603519 + 1.73822i
\(161\) 0 0
\(162\) 10.7738 + 6.77687i 0.846467 + 0.532441i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 6.77581 + 14.1050i 0.529102 + 1.10141i
\(165\) 46.6133i 3.62884i
\(166\) −15.0981 9.49693i −1.17184 0.737105i
\(167\) 11.5361i 0.892692i −0.894860 0.446346i \(-0.852725\pi\)
0.894860 0.446346i \(-0.147275\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −3.46410 7.21110i −0.264135 0.549841i
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −16.3525 + 20.4242i −1.23262 + 1.53954i
\(177\) −0.813410 −0.0611396
\(178\) 5.16987 + 3.25193i 0.387498 + 0.243743i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 22.2520 10.6895i 1.65856 0.796748i
\(181\) 24.9800i 1.85675i 0.371647 + 0.928374i \(0.378793\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 12.4900i 0.923287i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −16.8221 + 8.08108i −1.22688 + 0.589373i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 13.5000 + 3.12250i 0.974279 + 0.225347i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 25.6944 1.84001
\(196\) −6.06218 12.6194i −0.433013 0.901388i
\(197\) 24.3909i 1.73778i −0.495003 0.868891i \(-0.664833\pi\)
0.495003 0.868891i \(-0.335167\pi\)
\(198\) 23.4904 + 14.7758i 1.66939 + 1.05007i
\(199\) 14.4222i 1.02236i −0.859473 0.511182i \(-0.829208\pi\)
0.859473 0.511182i \(-0.170792\pi\)
\(200\) 3.82607 33.5204i 0.270544 2.37025i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 32.1911i 2.24832i
\(206\) −9.40479 + 14.9516i −0.655263 + 1.04173i
\(207\) 0 0
\(208\) 11.2583 + 9.01388i 0.780625 + 0.625000i
\(209\) 0 0
\(210\) 0 0
\(211\) 3.46410 0.238479 0.119239 0.992866i \(-0.461954\pi\)
0.119239 + 0.992866i \(0.461954\pi\)
\(212\) 0 0
\(213\) 8.52418i 0.584067i
\(214\) 0 0
\(215\) 16.4576i 1.12240i
\(216\) 1.66671 14.6021i 0.113405 0.993549i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 48.5167 23.3066i 3.27099 1.57133i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −35.7846 −2.38564
\(226\) 0 0
\(227\) 5.60175 0.371801 0.185901 0.982569i \(-0.440480\pi\)
0.185901 + 0.982569i \(0.440480\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 8.14478 12.9485i 0.532441 0.846467i
\(235\) 38.3923 2.50444
\(236\) 0.406705 + 0.846624i 0.0264742 + 0.0551105i
\(237\) 24.9800i 1.62262i
\(238\) 0 0
\(239\) 25.7888i 1.66814i −0.551660 0.834069i \(-0.686005\pi\)
0.551660 0.834069i \(-0.313995\pi\)
\(240\) −22.2520 17.8158i −1.43636 1.15001i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 38.0489 + 23.9334i 2.44587 + 1.53849i
\(243\) −15.5885 −1.00000
\(244\) −13.0000 + 6.24500i −0.832240 + 0.399795i
\(245\) 28.8007i 1.84001i
\(246\) −16.2224 10.2042i −1.03430 0.650594i
\(247\) 0 0
\(248\) 0 0
\(249\) 21.8453 1.38439
\(250\) −21.4641 + 34.1233i −1.35751 + 2.15815i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −10.8597 + 17.2646i −0.681399 + 1.08328i
\(255\) 0 0
\(256\) −3.50000 15.6125i −0.218750 0.975781i
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 8.29365 + 5.21684i 0.516340 + 0.324786i
\(259\) 0 0
\(260\) −12.8472 26.7435i −0.796748 1.65856i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 3.63397 31.8375i 0.223656 1.95946i
\(265\) 0 0
\(266\) 0 0
\(267\) −7.48024 −0.457783
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) −16.0981 + 25.5925i −0.979698 + 1.55751i
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 21.9545 + 13.8097i 1.32632 + 0.834276i
\(275\) −78.0223 −4.70492
\(276\) 0 0
\(277\) 24.9800i 1.50090i 0.660926 + 0.750451i \(0.270164\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) −23.9417 15.0597i −1.43593 0.903221i
\(279\) 0 0
\(280\) 0 0
\(281\) −30.4827 −1.81845 −0.909223 0.416310i \(-0.863323\pi\)
−0.909223 + 0.416310i \(0.863323\pi\)
\(282\) 12.1699 19.3475i 0.724705 1.15213i
\(283\) −17.3205 −1.02960 −0.514799 0.857311i \(-0.672133\pi\)
−0.514799 + 0.857311i \(0.672133\pi\)
\(284\) 8.87225 4.26209i 0.526471 0.252908i
\(285\) 0 0
\(286\) 17.7583 28.2319i 1.05007 1.66939i
\(287\) 0 0
\(288\) −16.0317 + 5.56630i −0.944679 + 0.327997i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 32.6197i 1.90566i 0.303498 + 0.952832i \(0.401846\pi\)
−0.303498 + 0.952832i \(0.598154\pi\)
\(294\) 14.5139 + 9.12947i 0.846467 + 0.532441i
\(295\) 1.93221i 0.112498i
\(296\) 0 0
\(297\) −33.9880 −1.97218
\(298\) 0.222432 0.353619i 0.0128851 0.0204846i
\(299\) 0 0
\(300\) 17.8923 + 37.2458i 1.03301 + 2.15039i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 29.6693 1.69886
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 21.6333i 1.23068i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −17.5496 2.00313i −0.993549 0.113405i
\(313\) −34.6410 −1.95803 −0.979013 0.203798i \(-0.934671\pi\)
−0.979013 + 0.203798i \(0.934671\pi\)
\(314\) 18.8096 29.9032i 1.06149 1.68753i
\(315\) 0 0
\(316\) −26.0000 + 12.4900i −1.46261 + 0.702617i
\(317\) 16.7530i 0.940940i 0.882416 + 0.470470i \(0.155916\pi\)
−0.882416 + 0.470470i \(0.844084\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −7.41732 + 32.0685i −0.414641 + 1.79268i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 7.79423 + 16.2250i 0.433013 + 0.901388i
\(325\) 43.0077i 2.38564i
\(326\) 0 0
\(327\) 0 0
\(328\) −2.50962 + 21.9869i −0.138571 + 1.21402i
\(329\) 0 0
\(330\) −35.0991 + 55.8001i −1.93214 + 3.07169i
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −10.9226 22.7373i −0.599457 1.24787i
\(333\) 0 0
\(334\) 8.68653 13.8097i 0.475306 0.755634i
\(335\) 0 0
\(336\) 0 0
\(337\) 6.92820 0.377403 0.188702 0.982034i \(-0.439572\pi\)
0.188702 + 0.982034i \(0.439572\pi\)
\(338\) −15.5621 9.78881i −0.846467 0.532441i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 1.28303 11.2407i 0.0691764 0.606059i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 18.7350i 1.00000i
\(352\) −34.9545 + 12.1364i −1.86308 + 0.646871i
\(353\) 37.4933 1.99557 0.997784 0.0665386i \(-0.0211956\pi\)
0.997784 + 0.0665386i \(0.0211956\pi\)
\(354\) −0.973721 0.612486i −0.0517527 0.0325532i
\(355\) −20.2487 −1.07469
\(356\) 3.74012 + 7.78568i 0.198226 + 0.412640i
\(357\) 0 0
\(358\) 0 0
\(359\) 37.8366i 1.99694i −0.0553230 0.998469i \(-0.517619\pi\)
0.0553230 0.998469i \(-0.482381\pi\)
\(360\) 34.6865 + 3.95917i 1.82814 + 0.208667i
\(361\) 19.0000 1.00000
\(362\) −18.8096 + 29.9032i −0.988609 + 1.57168i
\(363\) −55.0526 −2.88951
\(364\) 0 0
\(365\) 0 0
\(366\) 9.40479 14.9516i 0.491596 0.781532i
\(367\) 37.4700i 1.95592i −0.208798 0.977959i \(-0.566955\pi\)
0.208798 0.977959i \(-0.433045\pi\)
\(368\) 0 0
\(369\) 23.4721 1.22191
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 36.0555i 1.86688i −0.358729 0.933442i \(-0.616790\pi\)
0.358729 0.933442i \(-0.383210\pi\)
\(374\) 0 0
\(375\) 49.3727i 2.54959i
\(376\) −26.2224 2.99307i −1.35232 0.154356i
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 24.9800i 1.27976i
\(382\) 0 0
\(383\) 16.9692i 0.867086i −0.901133 0.433543i \(-0.857263\pi\)
0.901133 0.433543i \(-0.142737\pi\)
\(384\) 13.8095 + 13.9032i 0.704711 + 0.709495i
\(385\) 0 0
\(386\) 0 0
\(387\) −12.0000 −0.609994
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 30.7583 + 19.3475i 1.55751 + 0.979698i
\(391\) 0 0
\(392\) 2.24531 19.6713i 0.113405 0.993549i
\(393\) 0 0
\(394\) 18.3660 29.1980i 0.925267 1.47098i
\(395\) 59.3386 2.98565
\(396\) 16.9940 + 35.3758i 0.853981 + 1.77770i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 10.8597 17.2646i 0.544348 0.865397i
\(399\) 0 0
\(400\) 29.8205 37.2458i 1.49103 1.86229i
\(401\) −25.3506 −1.26595 −0.632973 0.774173i \(-0.718166\pi\)
−0.632973 + 0.774173i \(0.718166\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 37.0295i 1.84001i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 24.2394 38.5355i 1.19710 1.90313i
\(411\) −31.7657 −1.56689
\(412\) −22.5167 + 10.8167i −1.10932 + 0.532898i
\(413\) 0 0
\(414\) 0 0
\(415\) 51.8922i 2.54729i
\(416\) 6.68986 + 19.2677i 0.327997 + 0.944679i
\(417\) 34.6410 1.69638
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 4.14682 + 2.60842i 0.201864 + 0.126976i
\(423\) 27.9937i 1.36110i
\(424\) 0 0
\(425\) 0 0
\(426\) −6.41858 + 10.2042i −0.310981 + 0.494394i
\(427\) 0 0
\(428\) 0 0
\(429\) 40.8485i 1.97218i
\(430\) −12.3923 + 19.7011i −0.597610 + 0.950071i
\(431\) 40.0415i 1.92873i 0.264578 + 0.964364i \(0.414767\pi\)
−0.264578 + 0.964364i \(0.585233\pi\)
\(432\) 12.9904 16.2250i 0.625000 0.780625i
\(433\) −20.7846 −0.998845 −0.499422 0.866359i \(-0.666454\pi\)
−0.499422 + 0.866359i \(0.666454\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 12.4900i 0.596115i −0.954548 0.298057i \(-0.903661\pi\)
0.954548 0.298057i \(-0.0963387\pi\)
\(440\) 75.6281 + 8.63230i 3.60543 + 0.411529i
\(441\) −21.0000 −1.00000
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 17.7689i 0.842326i
\(446\) 0 0
\(447\) 0.511648i 0.0242001i
\(448\) 0 0
\(449\) 40.9986 1.93484 0.967422 0.253168i \(-0.0814726\pi\)
0.967422 + 0.253168i \(0.0814726\pi\)
\(450\) −42.8372 26.9453i −2.01937 1.27021i
\(451\) 51.1769 2.40983
\(452\) 0 0
\(453\) 0 0
\(454\) 6.70577 + 4.21804i 0.314717 + 0.197962i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 24.9817i 1.16352i −0.813362 0.581758i \(-0.802365\pi\)
0.813362 0.581758i \(-0.197635\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 19.5000 9.36750i 0.901388 0.433013i
\(469\) 0 0
\(470\) 45.9589 + 28.9089i 2.11992 + 1.33347i
\(471\) 43.2666i 1.99362i
\(472\) −0.150635 + 1.31972i −0.00693354 + 0.0607452i
\(473\) −26.1640 −1.20302
\(474\) 18.8096 29.9032i 0.863952 1.37350i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 19.4186 30.8714i 0.888185 1.41202i
\(479\) 33.4268i 1.52731i 0.645626 + 0.763654i \(0.276597\pi\)
−0.645626 + 0.763654i \(0.723403\pi\)
\(480\) −13.2224 38.0825i −0.603519 1.73822i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 27.5263 + 57.3005i 1.25119 + 2.60457i
\(485\) 0 0
\(486\) −18.6607 11.7379i −0.846467 0.532441i
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) −20.2645 2.31302i −0.917331 0.104705i
\(489\) 0 0
\(490\) −21.6865 + 34.4769i −0.979698 + 1.55751i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) −11.7360 24.4305i −0.529102 1.10141i
\(493\) 0 0
\(494\) 0 0
\(495\) 80.7366i 3.62884i
\(496\) 0 0
\(497\) 0 0
\(498\) 26.1506 + 16.4492i 1.17184 + 0.737105i
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −51.3887 + 24.6863i −2.29817 + 1.10401i
\(501\) 19.9811i 0.892692i
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 22.5167 1.00000
\(508\) −26.0000 + 12.4900i −1.15356 + 0.554154i
\(509\) 11.7524i 0.520915i 0.965485 + 0.260457i \(0.0838733\pi\)
−0.965485 + 0.260457i \(0.916127\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 7.56619 21.3249i 0.334381 0.942438i
\(513\) 0 0
\(514\) 0 0
\(515\) 51.3887 2.26446
\(516\) 6.00000 + 12.4900i 0.264135 + 0.549841i
\(517\) 61.0355i 2.68434i
\(518\) 0 0
\(519\) 0 0
\(520\) 4.75833 41.6880i 0.208667 1.82814i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 44.0000 1.92399 0.961993 0.273075i \(-0.0880406\pi\)
0.961993 + 0.273075i \(0.0880406\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 28.3233 35.3758i 1.23262 1.53954i
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 1.40887 0.0611396
\(532\) 0 0
\(533\) 28.2099i 1.22191i
\(534\) −8.95448 5.63251i −0.387498 0.243743i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −45.7870 −1.97218
\(540\) −38.5415 + 18.5148i −1.65856 + 0.796748i
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 43.2666i 1.85675i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 15.8829 + 33.0628i 0.678482 + 1.41237i
\(549\) 21.6333i 0.923287i
\(550\) −93.3993 58.7497i −3.98256 2.50509i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −18.8096 + 29.9032i −0.799142 + 1.27046i
\(555\) 0 0
\(556\) −17.3205 36.0555i −0.734553 1.52909i
\(557\) 3.52359i 0.149299i −0.997210 0.0746496i \(-0.976216\pi\)
0.997210 0.0746496i \(-0.0237838\pi\)
\(558\) 0 0
\(559\) 14.4222i 0.609994i
\(560\) 0 0
\(561\) 0 0
\(562\) −36.4904 22.9530i −1.53925 0.968215i
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 29.1367 13.9968i 1.22688 0.589373i
\(565\) 0 0
\(566\) −20.7341 13.0421i −0.871520 0.548200i
\(567\) 0 0
\(568\) 13.8301 + 1.57859i 0.580299 + 0.0662362i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 38.1051 1.59465 0.797325 0.603550i \(-0.206248\pi\)
0.797325 + 0.603550i \(0.206248\pi\)
\(572\) 42.5165 20.4242i 1.77770 0.853981i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −23.3827 5.40833i −0.974279 0.225347i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 20.3504 + 12.8008i 0.846467 + 0.532441i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −44.5039 −1.84001
\(586\) −24.5622 + 39.0486i −1.01465 + 1.61308i
\(587\) 24.7551 1.02175 0.510876 0.859654i \(-0.329321\pi\)
0.510876 + 0.859654i \(0.329321\pi\)
\(588\) 10.5000 + 21.8575i 0.433013 + 0.901388i
\(589\) 0 0
\(590\) 1.45493 2.31302i 0.0598983 0.0952255i
\(591\) 42.2463i 1.73778i
\(592\) 0 0
\(593\) −28.8559 −1.18497 −0.592484 0.805582i \(-0.701853\pi\)
−0.592484 + 0.805582i \(0.701853\pi\)
\(594\) −40.6865 25.5925i −1.66939 1.05007i
\(595\) 0 0
\(596\) 0.532540 0.255824i 0.0218137 0.0104790i
\(597\) 24.9800i 1.02236i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) −6.62694 + 58.0590i −0.270544 + 2.37025i
\(601\) 48.4974 1.97825 0.989126 0.147074i \(-0.0469854\pi\)
0.989126 + 0.147074i \(0.0469854\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 130.774i 5.31673i
\(606\) 0 0
\(607\) 37.4700i 1.52086i 0.649420 + 0.760430i \(0.275012\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 35.5167 + 22.3405i 1.43803 + 0.904542i
\(611\) 33.6442 1.36110
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 55.7566i 2.24832i
\(616\) 0 0
\(617\) −16.4615 −0.662714 −0.331357 0.943506i \(-0.607506\pi\)
−0.331357 + 0.943506i \(0.607506\pi\)
\(618\) 16.2896 25.8969i 0.655263 1.04173i
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −19.5000 15.6125i −0.780625 0.625000i
\(625\) 57.6410 2.30564
\(626\) −41.4682 26.0842i −1.65740 1.04253i
\(627\) 0 0
\(628\) 45.0333 21.6333i 1.79703 0.863263i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) −40.5290 4.62604i −1.61216 0.184014i
\(633\) −6.00000 −0.238479
\(634\) −12.6147 + 20.0547i −0.500995 + 0.796475i
\(635\) 59.3386 2.35478
\(636\) 0 0
\(637\) 25.2389i 1.00000i
\(638\) 0 0
\(639\) 14.7643i 0.584067i
\(640\) −33.0263 + 32.8036i −1.30548 + 1.29668i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 28.5053i 1.12240i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −2.88682 + 25.2916i −0.113405 + 0.993549i
\(649\) 3.07180 0.120579
\(650\) −32.3842 + 51.4839i −1.27021 + 2.01937i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −19.5601 + 24.4305i −0.763692 + 0.953851i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) −84.0333 + 40.3683i −3.27099 + 1.57133i
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 4.04552 35.4430i 0.156997 1.37546i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 20.7970 9.99057i 0.804662 0.386547i
\(669\) 0 0
\(670\) 0 0
\(671\) 47.1678i 1.82089i
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) 8.29365 + 5.21684i 0.319459 + 0.200945i
\(675\) 61.9808 2.38564
\(676\) −11.2583 23.4361i −0.433013 0.901388i
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −9.70252 −0.371801
\(682\) 0 0
\(683\) −51.8583 −1.98430 −0.992152 0.125038i \(-0.960095\pi\)
−0.992152 + 0.125038i \(0.960095\pi\)
\(684\) 0 0
\(685\) 75.4577i 2.88309i
\(686\) 0 0
\(687\) 0 0
\(688\) 10.0000 12.4900i 0.381246 0.476177i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 82.2878i 3.12135i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −14.1072 + 22.4274i −0.532441 + 0.846467i
\(703\) 0 0
\(704\) −50.9820 11.7919i −1.92146 0.444426i
\(705\) −66.4974 −2.50444
\(706\) 44.8827 + 28.2319i 1.68918 + 1.06252i
\(707\) 0 0
\(708\) −0.704433 1.46640i −0.0264742 0.0551105i
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) −24.2394 15.2470i −0.909690 0.572209i
\(711\) 43.2666i 1.62262i
\(712\) −1.38526 + 12.1364i −0.0519149 + 0.454830i
\(713\) 0 0
\(714\) 0 0
\(715\) −97.0333 −3.62884
\(716\) 0 0
\(717\) 44.6675i 1.66814i
\(718\) 28.4904 45.2936i 1.06325 1.69034i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 38.5415 + 30.8579i 1.43636 + 1.15001i
\(721\) 0 0
\(722\) 22.7446 + 14.3067i 0.846467 + 0.532441i
\(723\) 0 0
\(724\) −45.0333 + 21.6333i −1.67365 + 0.803996i
\(725\) 0 0
\(726\) −65.9026 41.4538i −2.44587 1.53849i
\(727\) 14.4222i 0.534890i −0.963573 0.267445i \(-0.913821\pi\)
0.963573 0.267445i \(-0.0861794\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 22.5167 10.8167i 0.832240 0.399795i
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 28.2144 44.8548i 1.04141 1.65562i
\(735\) 49.8843i 1.84001i
\(736\) 0 0
\(737\) 0 0
\(738\) 28.0981 + 17.6741i 1.03430 + 0.650594i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 54.2941i 1.99186i 0.0901418 + 0.995929i \(0.471268\pi\)
−0.0901418 + 0.995929i \(0.528732\pi\)
\(744\) 0 0
\(745\) −1.21539 −0.0445285
\(746\) 27.1493 43.1615i 0.994006 1.58026i
\(747\) −37.8371 −1.38439
\(748\) 0 0
\(749\) 0 0
\(750\) 37.1769 59.1033i 1.35751 2.15815i
\(751\) 37.4700i 1.36730i −0.729810 0.683650i \(-0.760392\pi\)
0.729810 0.683650i \(-0.239608\pi\)
\(752\) −29.1367 23.3281i −1.06251 0.850687i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 36.0555i 1.31046i −0.755429 0.655230i \(-0.772572\pi\)
0.755429 0.655230i \(-0.227428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −48.0092 −1.74033 −0.870167 0.492757i \(-0.835989\pi\)
−0.870167 + 0.492757i \(0.835989\pi\)
\(762\) 18.8096 29.9032i 0.681399 1.08328i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 12.7776 20.3136i 0.461672 0.733960i
\(767\) 1.69325i 0.0611396i
\(768\) 6.06218 + 27.0416i 0.218750 + 0.975781i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12.9340i 0.465203i −0.972572 0.232601i \(-0.925276\pi\)
0.972572 0.232601i \(-0.0747237\pi\)
\(774\) −14.3650 9.03583i −0.516340 0.324786i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 22.2520 + 46.3212i 0.796748 + 1.65856i
\(781\) 32.1911i 1.15189i
\(782\) 0 0
\(783\) 0 0
\(784\) 17.5000 21.8575i 0.625000 0.780625i
\(785\) −102.777 −3.66828
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 43.9714 21.1232i 1.56642 0.752482i
\(789\) 0 0
\(790\) 71.0333 + 44.6811i 2.52725 + 1.58968i
\(791\) 0 0
\(792\) −6.29423 + 55.1441i −0.223656 + 1.95946i
\(793\) 26.0000 0.923287
\(794\) 0 0
\(795\) 0 0
\(796\) 26.0000 12.4900i 0.921546 0.442696i
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 63.7432 22.1320i 2.25366 0.782484i
\(801\) 12.9562 0.457783
\(802\) −30.3468 19.0886i −1.07158 0.674042i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 27.8827 44.3275i 0.979698 1.55751i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 58.0333 27.8783i 2.02661 0.973553i
\(821\) 57.3061i 2.00000i −0.00219583 0.999998i \(-0.500699\pi\)
0.00219583 0.999998i \(-0.499301\pi\)
\(822\) −38.0263 23.9191i −1.32632 0.834276i
\(823\) 12.4900i 0.435374i −0.976019 0.217687i \(-0.930149\pi\)
0.976019 0.217687i \(-0.0698512\pi\)
\(824\) −35.0991 4.00627i −1.22274 0.139565i
\(825\) 135.139 4.70492
\(826\) 0 0
\(827\) −27.5728 −0.958802 −0.479401 0.877596i \(-0.659146\pi\)
−0.479401 + 0.877596i \(0.659146\pi\)
\(828\) 0 0
\(829\) 50.4777i 1.75316i 0.481253 + 0.876582i \(0.340182\pi\)
−0.481253 + 0.876582i \(0.659818\pi\)
\(830\) −39.0741 + 62.1194i −1.35628 + 2.15619i
\(831\) 43.2666i 1.50090i
\(832\) −6.50000 + 28.1025i −0.225347 + 0.974279i
\(833\) 0 0
\(834\) 41.4682 + 26.0842i 1.43593 + 0.903221i
\(835\) −47.4641 −1.64256
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 44.4512i 1.53463i −0.641272 0.767314i \(-0.721593\pi\)
0.641272 0.767314i \(-0.278407\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 52.7976 1.81845
\(844\) 3.00000 + 6.24500i 0.103264 + 0.214962i
\(845\) 53.4871i 1.84001i
\(846\) −21.0788 + 33.5108i −0.724705 + 1.15213i
\(847\) 0 0
\(848\) 0 0
\(849\) 30.0000 1.02960
\(850\) 0 0
\(851\) 0 0
\(852\) −15.3672 + 7.38216i −0.526471 + 0.252908i
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) −30.7583 + 48.8991i −1.05007 + 1.66939i
\(859\) −10.3923 −0.354581 −0.177290 0.984159i \(-0.556733\pi\)
−0.177290 + 0.984159i \(0.556733\pi\)
\(860\) −29.6693 + 14.2527i −1.01171 + 0.486012i
\(861\) 0 0
\(862\) −30.1506 + 47.9330i −1.02693 + 1.63261i
\(863\) 47.6794i 1.62303i −0.584334 0.811513i \(-0.698644\pi\)
0.584334 0.811513i \(-0.301356\pi\)
\(864\) 27.7678 9.64111i 0.944679 0.327997i
\(865\) 0 0
\(866\) −24.8809 15.6505i −0.845489 0.531826i
\(867\) −29.4449 −1.00000
\(868\) 0 0
\(869\) 94.3356i 3.20011i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 9.40479 14.9516i 0.317396 0.504592i
\(879\) 56.4990i 1.90566i
\(880\) 84.0333 + 67.2805i 2.83276 + 2.26803i
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −25.1388 15.8127i −0.846467 0.532441i
\(883\) −51.9615 −1.74864 −0.874322 0.485346i \(-0.838694\pi\)
−0.874322 + 0.485346i \(0.838694\pi\)
\(884\) 0 0
\(885\) 3.34668i 0.112498i
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 13.3797 21.2709i 0.448489 0.713001i
\(891\) 58.8690 1.97218
\(892\) 0 0
\(893\) 0 0
\(894\) −0.385263 + 0.612486i −0.0128851 + 0.0204846i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 49.0788 + 30.8714i 1.63778 + 1.03019i
\(899\) 0 0
\(900\) −30.9904 64.5116i −1.03301 2.15039i
\(901\) 0 0
\(902\) 61.2631 + 38.5355i 2.03984 + 1.28309i
\(903\) 0 0
\(904\) 0 0
\(905\) 102.777 3.41644
\(906\) 0 0
\(907\) 17.3205 0.575118 0.287559 0.957763i \(-0.407156\pi\)
0.287559 + 0.957763i \(0.407156\pi\)
\(908\) 4.85126 + 10.0987i 0.160995 + 0.335137i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −82.4974 −2.73027
\(914\) 0 0
\(915\) −51.3887 −1.69886
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 14.4222i 0.475745i −0.971296 0.237872i \(-0.923550\pi\)
0.971296 0.237872i \(-0.0764500\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 18.8109 29.9053i 0.619504 0.984878i
\(923\) −17.7445 −0.584067
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 37.4700i 1.23068i
\(928\) 0 0
\(929\) 13.2078 0.433335 0.216667 0.976245i \(-0.430481\pi\)
0.216667 + 0.976245i \(0.430481\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 30.3967 + 3.46953i 0.993549 + 0.113405i
\(937\) −34.6410 −1.13167 −0.565836 0.824518i \(-0.691447\pi\)
−0.565836 + 0.824518i \(0.691447\pi\)
\(938\) 0 0
\(939\) 60.0000 1.95803
\(940\) 33.2487 + 69.2127i 1.08445 + 2.25747i
\(941\) 21.1627i 0.689886i −0.938624 0.344943i \(-0.887898\pi\)
0.938624 0.344943i \(-0.112102\pi\)
\(942\) −32.5791 + 51.7938i −1.06149 + 1.68753i
\(943\) 0 0
\(944\) −1.17406 + 1.46640i −0.0382123 + 0.0477271i
\(945\) 0 0
\(946\) −31.3205 19.7011i −1.01832 0.640538i
\(947\) 57.9297 1.88246 0.941231 0.337763i \(-0.109670\pi\)
0.941231 + 0.337763i \(0.109670\pi\)
\(948\) 45.0333 21.6333i 1.46261 0.702617i
\(949\) 0 0
\(950\) 0 0
\(951\) 29.0170i 0.940940i
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 46.4914 22.3337i 1.50364 0.722325i
\(957\) 0 0
\(958\) −25.1699 + 40.0147i −0.813202 + 1.29282i
\(959\) 0 0
\(960\) 12.8472 55.5443i 0.414641 1.79268i
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) −10.1952 + 89.3205i −0.327685 + 2.87087i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −13.5000 28.1025i −0.433013 0.901388i
\(973\) 0 0
\(974\) 0 0
\(975\) 74.4916i 2.38564i
\(976\) −22.5167 18.0278i −0.720741 0.577054i
\(977\) 51.5145 1.64810 0.824048 0.566520i \(-0.191711\pi\)
0.824048 + 0.566520i \(0.191711\pi\)
\(978\) 0 0
\(979\) 28.2487 0.902833
\(980\) −51.9213 + 24.9422i −1.65856 + 0.796748i
\(981\) 0 0
\(982\) 0 0
\(983\) 12.5594i 0.400583i 0.979736 + 0.200292i \(0.0641890\pi\)
−0.979736 + 0.200292i \(0.935811\pi\)
\(984\) 4.34679 38.0825i 0.138571 1.21402i
\(985\) −100.354 −3.19754
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 60.7935 96.6486i 1.93214 3.07169i
\(991\) 62.4500i 1.98379i 0.127064 + 0.991894i \(0.459445\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −59.3386 −1.88116
\(996\) 18.9186 + 39.3821i 0.599457 + 1.24787i
\(997\) 24.9800i 0.791124i 0.918439 + 0.395562i \(0.129450\pi\)
−0.918439 + 0.395562i \(0.870550\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.h.a.155.8 yes 8
3.2 odd 2 inner 312.2.h.a.155.1 8
4.3 odd 2 1248.2.h.a.623.5 8
8.3 odd 2 inner 312.2.h.a.155.7 yes 8
8.5 even 2 1248.2.h.a.623.7 8
12.11 even 2 1248.2.h.a.623.8 8
13.12 even 2 inner 312.2.h.a.155.1 8
24.5 odd 2 1248.2.h.a.623.6 8
24.11 even 2 inner 312.2.h.a.155.2 yes 8
39.38 odd 2 CM 312.2.h.a.155.8 yes 8
52.51 odd 2 1248.2.h.a.623.8 8
104.51 odd 2 inner 312.2.h.a.155.2 yes 8
104.77 even 2 1248.2.h.a.623.6 8
156.155 even 2 1248.2.h.a.623.5 8
312.77 odd 2 1248.2.h.a.623.7 8
312.155 even 2 inner 312.2.h.a.155.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.h.a.155.1 8 3.2 odd 2 inner
312.2.h.a.155.1 8 13.12 even 2 inner
312.2.h.a.155.2 yes 8 24.11 even 2 inner
312.2.h.a.155.2 yes 8 104.51 odd 2 inner
312.2.h.a.155.7 yes 8 8.3 odd 2 inner
312.2.h.a.155.7 yes 8 312.155 even 2 inner
312.2.h.a.155.8 yes 8 1.1 even 1 trivial
312.2.h.a.155.8 yes 8 39.38 odd 2 CM
1248.2.h.a.623.5 8 4.3 odd 2
1248.2.h.a.623.5 8 156.155 even 2
1248.2.h.a.623.6 8 24.5 odd 2
1248.2.h.a.623.6 8 104.77 even 2
1248.2.h.a.623.7 8 8.5 even 2
1248.2.h.a.623.7 8 312.77 odd 2
1248.2.h.a.623.8 8 12.11 even 2
1248.2.h.a.623.8 8 52.51 odd 2