Properties

Label 312.2.h.a.155.8
Level 312312
Weight 22
Character 312.155
Analytic conductor 2.4912.491
Analytic rank 00
Dimension 88
CM discriminant -39
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,2,Mod(155,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.155");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 312=23313 312 = 2^{3} \cdot 3 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 312.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.491332543062.49133254306
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.151613669376.21
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+5x4+16 x^{8} + 5x^{4} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 155.8
Root 1.19709+0.752986i1.19709 + 0.752986i of defining polynomial
Character χ\chi == 312.155
Dual form 312.2.h.a.155.7

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.19709+0.752986i)q21.73205q3+(0.866025+1.80278i)q44.11439iq5+(2.073411.30421i)q6+(0.320758+2.81018i)q8+3.00000q9+(3.098084.92527i)q10+6.54099q11+(1.500003.12250i)q123.60555iq13+7.12633iq15+(2.50000+3.12250i)q16+(3.59126+2.25896i)q18+(7.417323.56317i)q20+(7.83013+4.92527i)q22+(0.5555694.86738i)q2411.9282q25+(2.714934.31615i)q265.19615q27+(5.36603+8.53083i)q30+(5.34391+1.85543i)q3211.3293q33+(2.59808+5.40833i)q36+6.24500iq39+(11.5622+1.31972i)q40+7.82403q414.00000q43+(5.66467+11.7919i)q4412.3432iq45+9.33123iq47+(4.330135.40833i)q487.00000q49+(14.27918.98177i)q50+(6.500003.12250i)q52+(6.220243.91263i)q5426.9122iq55+0.469622q59+(12.8472+6.17158i)q60+7.21110iq61+(7.794231.80278i)q6414.8346q65+(13.56228.53083i)q664.92144iq71+(0.962274+8.43054i)q72+20.6603q75+(4.70239+7.47579i)q78+14.4222iq79+(12.8472+10.2860i)q80+9.00000q81+(9.36603+5.89138i)q8212.6124q83+(4.788343.01194i)q86+(2.09808+18.3814i)q88+4.31872q89+(9.2942314.7758i)q90+(7.02628+11.1703i)q94+(9.255923.21370i)q96+(8.379605.27090i)q98+19.6230q99+O(q100)q+(1.19709 + 0.752986i) q^{2} -1.73205 q^{3} +(0.866025 + 1.80278i) q^{4} -4.11439i q^{5} +(-2.07341 - 1.30421i) q^{6} +(-0.320758 + 2.81018i) q^{8} +3.00000 q^{9} +(3.09808 - 4.92527i) q^{10} +6.54099 q^{11} +(-1.50000 - 3.12250i) q^{12} -3.60555i q^{13} +7.12633i q^{15} +(-2.50000 + 3.12250i) q^{16} +(3.59126 + 2.25896i) q^{18} +(7.41732 - 3.56317i) q^{20} +(7.83013 + 4.92527i) q^{22} +(0.555569 - 4.86738i) q^{24} -11.9282 q^{25} +(2.71493 - 4.31615i) q^{26} -5.19615 q^{27} +(-5.36603 + 8.53083i) q^{30} +(-5.34391 + 1.85543i) q^{32} -11.3293 q^{33} +(2.59808 + 5.40833i) q^{36} +6.24500i q^{39} +(11.5622 + 1.31972i) q^{40} +7.82403 q^{41} -4.00000 q^{43} +(5.66467 + 11.7919i) q^{44} -12.3432i q^{45} +9.33123i q^{47} +(4.33013 - 5.40833i) q^{48} -7.00000 q^{49} +(-14.2791 - 8.98177i) q^{50} +(6.50000 - 3.12250i) q^{52} +(-6.22024 - 3.91263i) q^{54} -26.9122i q^{55} +0.469622 q^{59} +(-12.8472 + 6.17158i) q^{60} +7.21110i q^{61} +(-7.79423 - 1.80278i) q^{64} -14.8346 q^{65} +(-13.5622 - 8.53083i) q^{66} -4.92144i q^{71} +(-0.962274 + 8.43054i) q^{72} +20.6603 q^{75} +(-4.70239 + 7.47579i) q^{78} +14.4222i q^{79} +(12.8472 + 10.2860i) q^{80} +9.00000 q^{81} +(9.36603 + 5.89138i) q^{82} -12.6124 q^{83} +(-4.78834 - 3.01194i) q^{86} +(-2.09808 + 18.3814i) q^{88} +4.31872 q^{89} +(9.29423 - 14.7758i) q^{90} +(-7.02628 + 11.1703i) q^{94} +(9.25592 - 3.21370i) q^{96} +(-8.37960 - 5.27090i) q^{98} +19.6230 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+24q9+4q1012q1220q16+28q2240q2536q30+44q4032q4356q49+52q5260q66+96q75+72q81+68q82+4q88+12q90++20q94+O(q100) 8 q + 24 q^{9} + 4 q^{10} - 12 q^{12} - 20 q^{16} + 28 q^{22} - 40 q^{25} - 36 q^{30} + 44 q^{40} - 32 q^{43} - 56 q^{49} + 52 q^{52} - 60 q^{66} + 96 q^{75} + 72 q^{81} + 68 q^{82} + 4 q^{88} + 12 q^{90}+ \cdots + 20 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/312Z)×\left(\mathbb{Z}/312\mathbb{Z}\right)^\times.

nn 7979 145145 157157 209209
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.19709 + 0.752986i 0.846467 + 0.532441i
33 −1.73205 −1.00000
44 0.866025 + 1.80278i 0.433013 + 0.901388i
55 4.11439i 1.84001i −0.391905 0.920006i 0.628184π-0.628184\pi
0.391905 0.920006i 0.371816π-0.371816\pi
66 −2.07341 1.30421i −0.846467 0.532441i
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 −0.320758 + 2.81018i −0.113405 + 0.993549i
99 3.00000 1.00000
1010 3.09808 4.92527i 0.979698 1.55751i
1111 6.54099 1.97218 0.986092 0.166200i 0.0531498π-0.0531498\pi
0.986092 + 0.166200i 0.0531498π0.0531498\pi
1212 −1.50000 3.12250i −0.433013 0.901388i
1313 3.60555i 1.00000i
1414 0 0
1515 7.12633i 1.84001i
1616 −2.50000 + 3.12250i −0.625000 + 0.780625i
1717 0 0 1.00000 00
−1.00000 π\pi
1818 3.59126 + 2.25896i 0.846467 + 0.532441i
1919 0 0 1.00000 00
−1.00000 π\pi
2020 7.41732 3.56317i 1.65856 0.796748i
2121 0 0
2222 7.83013 + 4.92527i 1.66939 + 1.05007i
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0.555569 4.86738i 0.113405 0.993549i
2525 −11.9282 −2.38564
2626 2.71493 4.31615i 0.532441 0.846467i
2727 −5.19615 −1.00000
2828 0 0
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 −5.36603 + 8.53083i −0.979698 + 1.55751i
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 −5.34391 + 1.85543i −0.944679 + 0.327997i
3333 −11.3293 −1.97218
3434 0 0
3535 0 0
3636 2.59808 + 5.40833i 0.433013 + 0.901388i
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 6.24500i 1.00000i
4040 11.5622 + 1.31972i 1.82814 + 0.208667i
4141 7.82403 1.22191 0.610954 0.791666i 0.290786π-0.290786\pi
0.610954 + 0.791666i 0.290786π0.290786\pi
4242 0 0
4343 −4.00000 −0.609994 −0.304997 0.952353i 0.598656π-0.598656\pi
−0.304997 + 0.952353i 0.598656π0.598656\pi
4444 5.66467 + 11.7919i 0.853981 + 1.77770i
4545 12.3432i 1.84001i
4646 0 0
4747 9.33123i 1.36110i 0.732702 + 0.680550i 0.238259π0.238259\pi
−0.732702 + 0.680550i 0.761741π0.761741\pi
4848 4.33013 5.40833i 0.625000 0.780625i
4949 −7.00000 −1.00000
5050 −14.2791 8.98177i −2.01937 1.27021i
5151 0 0
5252 6.50000 3.12250i 0.901388 0.433013i
5353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
5454 −6.22024 3.91263i −0.846467 0.532441i
5555 26.9122i 3.62884i
5656 0 0
5757 0 0
5858 0 0
5959 0.469622 0.0611396 0.0305698 0.999533i 0.490268π-0.490268\pi
0.0305698 + 0.999533i 0.490268π0.490268\pi
6060 −12.8472 + 6.17158i −1.65856 + 0.796748i
6161 7.21110i 0.923287i 0.887066 + 0.461644i 0.152740π0.152740\pi
−0.887066 + 0.461644i 0.847260π0.847260\pi
6262 0 0
6363 0 0
6464 −7.79423 1.80278i −0.974279 0.225347i
6565 −14.8346 −1.84001
6666 −13.5622 8.53083i −1.66939 1.05007i
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 4.92144i 0.584067i −0.956408 0.292034i 0.905668π-0.905668\pi
0.956408 0.292034i 0.0943319π-0.0943319\pi
7272 −0.962274 + 8.43054i −0.113405 + 0.993549i
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 20.6603 2.38564
7676 0 0
7777 0 0
7878 −4.70239 + 7.47579i −0.532441 + 0.846467i
7979 14.4222i 1.62262i 0.584613 + 0.811312i 0.301246π0.301246\pi
−0.584613 + 0.811312i 0.698754π0.698754\pi
8080 12.8472 + 10.2860i 1.43636 + 1.15001i
8181 9.00000 1.00000
8282 9.36603 + 5.89138i 1.03430 + 0.650594i
8383 −12.6124 −1.38439 −0.692194 0.721712i 0.743356π-0.743356\pi
−0.692194 + 0.721712i 0.743356π0.743356\pi
8484 0 0
8585 0 0
8686 −4.78834 3.01194i −0.516340 0.324786i
8787 0 0
8888 −2.09808 + 18.3814i −0.223656 + 1.95946i
8989 4.31872 0.457783 0.228892 0.973452i 0.426490π-0.426490\pi
0.228892 + 0.973452i 0.426490π0.426490\pi
9090 9.29423 14.7758i 0.979698 1.55751i
9191 0 0
9292 0 0
9393 0 0
9494 −7.02628 + 11.1703i −0.724705 + 1.15213i
9595 0 0
9696 9.25592 3.21370i 0.944679 0.327997i
9797 0 0 1.00000 00
−1.00000 π\pi
9898 −8.37960 5.27090i −0.846467 0.532441i
9999 19.6230 1.97218
100100 −10.3301 21.5039i −1.03301 2.15039i
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 12.4900i 1.23068i 0.788263 + 0.615338i 0.210980π0.210980\pi
−0.788263 + 0.615338i 0.789020π0.789020\pi
104104 10.1322 + 1.15651i 0.993549 + 0.113405i
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 −4.50000 9.36750i −0.433013 0.901388i
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 20.2645 32.2162i 1.93214 3.07169i
111111 0 0
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 10.8167i 1.00000i
118118 0.562178 + 0.353619i 0.0517527 + 0.0325532i
119119 0 0
120120 −20.0263 2.28583i −1.82814 0.208667i
121121 31.7846 2.88951
122122 −5.42986 + 8.63230i −0.491596 + 0.781532i
123123 −13.5516 −1.22191
124124 0 0
125125 28.5053i 2.54959i
126126 0 0
127127 14.4222i 1.27976i 0.768473 + 0.639882i 0.221017π0.221017\pi
−0.768473 + 0.639882i 0.778983π0.778983\pi
128128 −7.97289 8.02702i −0.704711 0.709495i
129129 6.92820 0.609994
130130 −17.7583 11.1703i −1.55751 0.979698i
131131 0 0 1.00000 00
−1.00000 π\pi
132132 −9.81149 20.4242i −0.853981 1.77770i
133133 0 0
134134 0 0
135135 21.3790i 1.84001i
136136 0 0
137137 18.3400 1.56689 0.783444 0.621463i 0.213461π-0.213461\pi
0.783444 + 0.621463i 0.213461π0.213461\pi
138138 0 0
139139 −20.0000 −1.69638 −0.848189 0.529694i 0.822307π-0.822307\pi
−0.848189 + 0.529694i 0.822307π0.822307\pi
140140 0 0
141141 16.1622i 1.36110i
142142 3.70577 5.89138i 0.310981 0.494394i
143143 23.5839i 1.97218i
144144 −7.50000 + 9.36750i −0.625000 + 0.780625i
145145 0 0
146146 0 0
147147 12.1244 1.00000
148148 0 0
149149 0.295400i 0.0242001i −0.999927 0.0121001i 0.996148π-0.996148\pi
0.999927 0.0121001i 0.00385166π-0.00385166\pi
150150 24.7321 + 15.5569i 2.01937 + 1.27021i
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 −11.2583 + 5.40833i −0.901388 + 0.433013i
157157 24.9800i 1.99362i −0.0798087 0.996810i 0.525431π-0.525431\pi
0.0798087 0.996810i 0.474569π-0.474569\pi
158158 −10.8597 + 17.2646i −0.863952 + 1.37350i
159159 0 0
160160 7.63397 + 21.9869i 0.603519 + 1.73822i
161161 0 0
162162 10.7738 + 6.77687i 0.846467 + 0.532441i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 6.77581 + 14.1050i 0.529102 + 1.10141i
165165 46.6133i 3.62884i
166166 −15.0981 9.49693i −1.17184 0.737105i
167167 11.5361i 0.892692i −0.894860 0.446346i 0.852725π-0.852725\pi
0.894860 0.446346i 0.147275π-0.147275\pi
168168 0 0
169169 −13.0000 −1.00000
170170 0 0
171171 0 0
172172 −3.46410 7.21110i −0.264135 0.549841i
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 −16.3525 + 20.4242i −1.23262 + 1.53954i
177177 −0.813410 −0.0611396
178178 5.16987 + 3.25193i 0.387498 + 0.243743i
179179 0 0 1.00000 00
−1.00000 π\pi
180180 22.2520 10.6895i 1.65856 0.796748i
181181 24.9800i 1.85675i 0.371647 + 0.928374i 0.378793π0.378793\pi
−0.371647 + 0.928374i 0.621207π0.621207\pi
182182 0 0
183183 12.4900i 0.923287i
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 −16.8221 + 8.08108i −1.22688 + 0.589373i
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 13.5000 + 3.12250i 0.974279 + 0.225347i
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 25.6944 1.84001
196196 −6.06218 12.6194i −0.433013 0.901388i
197197 24.3909i 1.73778i −0.495003 0.868891i 0.664833π-0.664833\pi
0.495003 0.868891i 0.335167π-0.335167\pi
198198 23.4904 + 14.7758i 1.66939 + 1.05007i
199199 14.4222i 1.02236i −0.859473 0.511182i 0.829208π-0.829208\pi
0.859473 0.511182i 0.170792π-0.170792\pi
200200 3.82607 33.5204i 0.270544 2.37025i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 32.1911i 2.24832i
206206 −9.40479 + 14.9516i −0.655263 + 1.04173i
207207 0 0
208208 11.2583 + 9.01388i 0.780625 + 0.625000i
209209 0 0
210210 0 0
211211 3.46410 0.238479 0.119239 0.992866i 0.461954π-0.461954\pi
0.119239 + 0.992866i 0.461954π0.461954\pi
212212 0 0
213213 8.52418i 0.584067i
214214 0 0
215215 16.4576i 1.12240i
216216 1.66671 14.6021i 0.113405 0.993549i
217217 0 0
218218 0 0
219219 0 0
220220 48.5167 23.3066i 3.27099 1.57133i
221221 0 0
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 −35.7846 −2.38564
226226 0 0
227227 5.60175 0.371801 0.185901 0.982569i 0.440480π-0.440480\pi
0.185901 + 0.982569i 0.440480π0.440480\pi
228228 0 0
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 8.14478 12.9485i 0.532441 0.846467i
235235 38.3923 2.50444
236236 0.406705 + 0.846624i 0.0264742 + 0.0551105i
237237 24.9800i 1.62262i
238238 0 0
239239 25.7888i 1.66814i −0.551660 0.834069i 0.686005π-0.686005\pi
0.551660 0.834069i 0.313995π-0.313995\pi
240240 −22.2520 17.8158i −1.43636 1.15001i
241241 0 0 1.00000 00
−1.00000 π\pi
242242 38.0489 + 23.9334i 2.44587 + 1.53849i
243243 −15.5885 −1.00000
244244 −13.0000 + 6.24500i −0.832240 + 0.399795i
245245 28.8007i 1.84001i
246246 −16.2224 10.2042i −1.03430 0.650594i
247247 0 0
248248 0 0
249249 21.8453 1.38439
250250 −21.4641 + 34.1233i −1.35751 + 2.15815i
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 −10.8597 + 17.2646i −0.681399 + 1.08328i
255255 0 0
256256 −3.50000 15.6125i −0.218750 0.975781i
257257 0 0 1.00000 00
−1.00000 π\pi
258258 8.29365 + 5.21684i 0.516340 + 0.324786i
259259 0 0
260260 −12.8472 26.7435i −0.796748 1.65856i
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 3.63397 31.8375i 0.223656 1.95946i
265265 0 0
266266 0 0
267267 −7.48024 −0.457783
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 −16.0981 + 25.5925i −0.979698 + 1.55751i
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 21.9545 + 13.8097i 1.32632 + 0.834276i
275275 −78.0223 −4.70492
276276 0 0
277277 24.9800i 1.50090i 0.660926 + 0.750451i 0.270164π0.270164\pi
−0.660926 + 0.750451i 0.729836π0.729836\pi
278278 −23.9417 15.0597i −1.43593 0.903221i
279279 0 0
280280 0 0
281281 −30.4827 −1.81845 −0.909223 0.416310i 0.863323π-0.863323\pi
−0.909223 + 0.416310i 0.863323π0.863323\pi
282282 12.1699 19.3475i 0.724705 1.15213i
283283 −17.3205 −1.02960 −0.514799 0.857311i 0.672133π-0.672133\pi
−0.514799 + 0.857311i 0.672133π0.672133\pi
284284 8.87225 4.26209i 0.526471 0.252908i
285285 0 0
286286 17.7583 28.2319i 1.05007 1.66939i
287287 0 0
288288 −16.0317 + 5.56630i −0.944679 + 0.327997i
289289 17.0000 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 32.6197i 1.90566i 0.303498 + 0.952832i 0.401846π0.401846\pi
−0.303498 + 0.952832i 0.598154π0.598154\pi
294294 14.5139 + 9.12947i 0.846467 + 0.532441i
295295 1.93221i 0.112498i
296296 0 0
297297 −33.9880 −1.97218
298298 0.222432 0.353619i 0.0128851 0.0204846i
299299 0 0
300300 17.8923 + 37.2458i 1.03301 + 2.15039i
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 29.6693 1.69886
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 21.6333i 1.23068i
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 −17.5496 2.00313i −0.993549 0.113405i
313313 −34.6410 −1.95803 −0.979013 0.203798i 0.934671π-0.934671\pi
−0.979013 + 0.203798i 0.934671π0.934671\pi
314314 18.8096 29.9032i 1.06149 1.68753i
315315 0 0
316316 −26.0000 + 12.4900i −1.46261 + 0.702617i
317317 16.7530i 0.940940i 0.882416 + 0.470470i 0.155916π0.155916\pi
−0.882416 + 0.470470i 0.844084π0.844084\pi
318318 0 0
319319 0 0
320320 −7.41732 + 32.0685i −0.414641 + 1.79268i
321321 0 0
322322 0 0
323323 0 0
324324 7.79423 + 16.2250i 0.433013 + 0.901388i
325325 43.0077i 2.38564i
326326 0 0
327327 0 0
328328 −2.50962 + 21.9869i −0.138571 + 1.21402i
329329 0 0
330330 −35.0991 + 55.8001i −1.93214 + 3.07169i
331331 0 0 1.00000 00
−1.00000 π\pi
332332 −10.9226 22.7373i −0.599457 1.24787i
333333 0 0
334334 8.68653 13.8097i 0.475306 0.755634i
335335 0 0
336336 0 0
337337 6.92820 0.377403 0.188702 0.982034i 0.439572π-0.439572\pi
0.188702 + 0.982034i 0.439572π0.439572\pi
338338 −15.5621 9.78881i −0.846467 0.532441i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 1.28303 11.2407i 0.0691764 0.606059i
345345 0 0
346346 0 0
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 18.7350i 1.00000i
352352 −34.9545 + 12.1364i −1.86308 + 0.646871i
353353 37.4933 1.99557 0.997784 0.0665386i 0.0211956π-0.0211956\pi
0.997784 + 0.0665386i 0.0211956π0.0211956\pi
354354 −0.973721 0.612486i −0.0517527 0.0325532i
355355 −20.2487 −1.07469
356356 3.74012 + 7.78568i 0.198226 + 0.412640i
357357 0 0
358358 0 0
359359 37.8366i 1.99694i −0.0553230 0.998469i 0.517619π-0.517619\pi
0.0553230 0.998469i 0.482381π-0.482381\pi
360360 34.6865 + 3.95917i 1.82814 + 0.208667i
361361 19.0000 1.00000
362362 −18.8096 + 29.9032i −0.988609 + 1.57168i
363363 −55.0526 −2.88951
364364 0 0
365365 0 0
366366 9.40479 14.9516i 0.491596 0.781532i
367367 37.4700i 1.95592i −0.208798 0.977959i 0.566955π-0.566955\pi
0.208798 0.977959i 0.433045π-0.433045\pi
368368 0 0
369369 23.4721 1.22191
370370 0 0
371371 0 0
372372 0 0
373373 36.0555i 1.86688i −0.358729 0.933442i 0.616790π-0.616790\pi
0.358729 0.933442i 0.383210π-0.383210\pi
374374 0 0
375375 49.3727i 2.54959i
376376 −26.2224 2.99307i −1.35232 0.154356i
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 24.9800i 1.27976i
382382 0 0
383383 16.9692i 0.867086i −0.901133 0.433543i 0.857263π-0.857263\pi
0.901133 0.433543i 0.142737π-0.142737\pi
384384 13.8095 + 13.9032i 0.704711 + 0.709495i
385385 0 0
386386 0 0
387387 −12.0000 −0.609994
388388 0 0
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 30.7583 + 19.3475i 1.55751 + 0.979698i
391391 0 0
392392 2.24531 19.6713i 0.113405 0.993549i
393393 0 0
394394 18.3660 29.1980i 0.925267 1.47098i
395395 59.3386 2.98565
396396 16.9940 + 35.3758i 0.853981 + 1.77770i
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 10.8597 17.2646i 0.544348 0.865397i
399399 0 0
400400 29.8205 37.2458i 1.49103 1.86229i
401401 −25.3506 −1.26595 −0.632973 0.774173i 0.718166π-0.718166\pi
−0.632973 + 0.774173i 0.718166π0.718166\pi
402402 0 0
403403 0 0
404404 0 0
405405 37.0295i 1.84001i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 24.2394 38.5355i 1.19710 1.90313i
411411 −31.7657 −1.56689
412412 −22.5167 + 10.8167i −1.10932 + 0.532898i
413413 0 0
414414 0 0
415415 51.8922i 2.54729i
416416 6.68986 + 19.2677i 0.327997 + 0.944679i
417417 34.6410 1.69638
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
422422 4.14682 + 2.60842i 0.201864 + 0.126976i
423423 27.9937i 1.36110i
424424 0 0
425425 0 0
426426 −6.41858 + 10.2042i −0.310981 + 0.494394i
427427 0 0
428428 0 0
429429 40.8485i 1.97218i
430430 −12.3923 + 19.7011i −0.597610 + 0.950071i
431431 40.0415i 1.92873i 0.264578 + 0.964364i 0.414767π0.414767\pi
−0.264578 + 0.964364i 0.585233π0.585233\pi
432432 12.9904 16.2250i 0.625000 0.780625i
433433 −20.7846 −0.998845 −0.499422 0.866359i 0.666454π-0.666454\pi
−0.499422 + 0.866359i 0.666454π0.666454\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 12.4900i 0.596115i −0.954548 0.298057i 0.903661π-0.903661\pi
0.954548 0.298057i 0.0963387π-0.0963387\pi
440440 75.6281 + 8.63230i 3.60543 + 0.411529i
441441 −21.0000 −1.00000
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 17.7689i 0.842326i
446446 0 0
447447 0.511648i 0.0242001i
448448 0 0
449449 40.9986 1.93484 0.967422 0.253168i 0.0814726π-0.0814726\pi
0.967422 + 0.253168i 0.0814726π0.0814726\pi
450450 −42.8372 26.9453i −2.01937 1.27021i
451451 51.1769 2.40983
452452 0 0
453453 0 0
454454 6.70577 + 4.21804i 0.314717 + 0.197962i
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 24.9817i 1.16352i −0.813362 0.581758i 0.802365π-0.802365\pi
0.813362 0.581758i 0.197635π-0.197635\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000 00
−1.00000 π\pi
468468 19.5000 9.36750i 0.901388 0.433013i
469469 0 0
470470 45.9589 + 28.9089i 2.11992 + 1.33347i
471471 43.2666i 1.99362i
472472 −0.150635 + 1.31972i −0.00693354 + 0.0607452i
473473 −26.1640 −1.20302
474474 18.8096 29.9032i 0.863952 1.37350i
475475 0 0
476476 0 0
477477 0 0
478478 19.4186 30.8714i 0.888185 1.41202i
479479 33.4268i 1.52731i 0.645626 + 0.763654i 0.276597π0.276597\pi
−0.645626 + 0.763654i 0.723403π0.723403\pi
480480 −13.2224 38.0825i −0.603519 1.73822i
481481 0 0
482482 0 0
483483 0 0
484484 27.5263 + 57.3005i 1.25119 + 2.60457i
485485 0 0
486486 −18.6607 11.7379i −0.846467 0.532441i
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 −20.2645 2.31302i −0.917331 0.104705i
489489 0 0
490490 −21.6865 + 34.4769i −0.979698 + 1.55751i
491491 0 0 1.00000 00
−1.00000 π\pi
492492 −11.7360 24.4305i −0.529102 1.10141i
493493 0 0
494494 0 0
495495 80.7366i 3.62884i
496496 0 0
497497 0 0
498498 26.1506 + 16.4492i 1.17184 + 0.737105i
499499 0 0 1.00000 00
−1.00000 π\pi
500500 −51.3887 + 24.6863i −2.29817 + 1.10401i
501501 19.9811i 0.892692i
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 22.5167 1.00000
508508 −26.0000 + 12.4900i −1.15356 + 0.554154i
509509 11.7524i 0.520915i 0.965485 + 0.260457i 0.0838733π0.0838733\pi
−0.965485 + 0.260457i 0.916127π0.916127\pi
510510 0 0
511511 0 0
512512 7.56619 21.3249i 0.334381 0.942438i
513513 0 0
514514 0 0
515515 51.3887 2.26446
516516 6.00000 + 12.4900i 0.264135 + 0.549841i
517517 61.0355i 2.68434i
518518 0 0
519519 0 0
520520 4.75833 41.6880i 0.208667 1.82814i
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 44.0000 1.92399 0.961993 0.273075i 0.0880406π-0.0880406\pi
0.961993 + 0.273075i 0.0880406π0.0880406\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 28.3233 35.3758i 1.23262 1.53954i
529529 −23.0000 −1.00000
530530 0 0
531531 1.40887 0.0611396
532532 0 0
533533 28.2099i 1.22191i
534534 −8.95448 5.63251i −0.387498 0.243743i
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −45.7870 −1.97218
540540 −38.5415 + 18.5148i −1.65856 + 0.796748i
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 43.2666i 1.85675i
544544 0 0
545545 0 0
546546 0 0
547547 −28.0000 −1.19719 −0.598597 0.801050i 0.704275π-0.704275\pi
−0.598597 + 0.801050i 0.704275π0.704275\pi
548548 15.8829 + 33.0628i 0.678482 + 1.41237i
549549 21.6333i 0.923287i
550550 −93.3993 58.7497i −3.98256 2.50509i
551551 0 0
552552 0 0
553553 0 0
554554 −18.8096 + 29.9032i −0.799142 + 1.27046i
555555 0 0
556556 −17.3205 36.0555i −0.734553 1.52909i
557557 3.52359i 0.149299i −0.997210 0.0746496i 0.976216π-0.976216\pi
0.997210 0.0746496i 0.0237838π-0.0237838\pi
558558 0 0
559559 14.4222i 0.609994i
560560 0 0
561561 0 0
562562 −36.4904 22.9530i −1.53925 0.968215i
563563 0 0 1.00000 00
−1.00000 π\pi
564564 29.1367 13.9968i 1.22688 0.589373i
565565 0 0
566566 −20.7341 13.0421i −0.871520 0.548200i
567567 0 0
568568 13.8301 + 1.57859i 0.580299 + 0.0662362i
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 38.1051 1.59465 0.797325 0.603550i 0.206248π-0.206248\pi
0.797325 + 0.603550i 0.206248π0.206248\pi
572572 42.5165 20.4242i 1.77770 0.853981i
573573 0 0
574574 0 0
575575 0 0
576576 −23.3827 5.40833i −0.974279 0.225347i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 20.3504 + 12.8008i 0.846467 + 0.532441i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 −44.5039 −1.84001
586586 −24.5622 + 39.0486i −1.01465 + 1.61308i
587587 24.7551 1.02175 0.510876 0.859654i 0.329321π-0.329321\pi
0.510876 + 0.859654i 0.329321π0.329321\pi
588588 10.5000 + 21.8575i 0.433013 + 0.901388i
589589 0 0
590590 1.45493 2.31302i 0.0598983 0.0952255i
591591 42.2463i 1.73778i
592592 0 0
593593 −28.8559 −1.18497 −0.592484 0.805582i 0.701853π-0.701853\pi
−0.592484 + 0.805582i 0.701853π0.701853\pi
594594 −40.6865 25.5925i −1.66939 1.05007i
595595 0 0
596596 0.532540 0.255824i 0.0218137 0.0104790i
597597 24.9800i 1.02236i
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 −6.62694 + 58.0590i −0.270544 + 2.37025i
601601 48.4974 1.97825 0.989126 0.147074i 0.0469854π-0.0469854\pi
0.989126 + 0.147074i 0.0469854π0.0469854\pi
602602 0 0
603603 0 0
604604 0 0
605605 130.774i 5.31673i
606606 0 0
607607 37.4700i 1.52086i 0.649420 + 0.760430i 0.275012π0.275012\pi
−0.649420 + 0.760430i 0.724988π0.724988\pi
608608 0 0
609609 0 0
610610 35.5167 + 22.3405i 1.43803 + 0.904542i
611611 33.6442 1.36110
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 55.7566i 2.24832i
616616 0 0
617617 −16.4615 −0.662714 −0.331357 0.943506i 0.607506π-0.607506\pi
−0.331357 + 0.943506i 0.607506π0.607506\pi
618618 16.2896 25.8969i 0.655263 1.04173i
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 −19.5000 15.6125i −0.780625 0.625000i
625625 57.6410 2.30564
626626 −41.4682 26.0842i −1.65740 1.04253i
627627 0 0
628628 45.0333 21.6333i 1.79703 0.863263i
629629 0 0
630630 0 0
631631 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
632632 −40.5290 4.62604i −1.61216 0.184014i
633633 −6.00000 −0.238479
634634 −12.6147 + 20.0547i −0.500995 + 0.796475i
635635 59.3386 2.35478
636636 0 0
637637 25.2389i 1.00000i
638638 0 0
639639 14.7643i 0.584067i
640640 −33.0263 + 32.8036i −1.30548 + 1.29668i
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 28.5053i 1.12240i
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 −2.88682 + 25.2916i −0.113405 + 0.993549i
649649 3.07180 0.120579
650650 −32.3842 + 51.4839i −1.27021 + 2.01937i
651651 0 0
652652 0 0
653653 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
654654 0 0
655655 0 0
656656 −19.5601 + 24.4305i −0.763692 + 0.953851i
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 −84.0333 + 40.3683i −3.27099 + 1.57133i
661661 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
662662 0 0
663663 0 0
664664 4.04552 35.4430i 0.156997 1.37546i
665665 0 0
666666 0 0
667667 0 0
668668 20.7970 9.99057i 0.804662 0.386547i
669669 0 0
670670 0 0
671671 47.1678i 1.82089i
672672 0 0
673673 14.0000 0.539660 0.269830 0.962908i 0.413032π-0.413032\pi
0.269830 + 0.962908i 0.413032π0.413032\pi
674674 8.29365 + 5.21684i 0.319459 + 0.200945i
675675 61.9808 2.38564
676676 −11.2583 23.4361i −0.433013 0.901388i
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 −9.70252 −0.371801
682682 0 0
683683 −51.8583 −1.98430 −0.992152 0.125038i 0.960095π-0.960095\pi
−0.992152 + 0.125038i 0.960095π0.960095\pi
684684 0 0
685685 75.4577i 2.88309i
686686 0 0
687687 0 0
688688 10.0000 12.4900i 0.381246 0.476177i
689689 0 0
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 0 0
693693 0 0
694694 0 0
695695 82.2878i 3.12135i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 −14.1072 + 22.4274i −0.532441 + 0.846467i
703703 0 0
704704 −50.9820 11.7919i −1.92146 0.444426i
705705 −66.4974 −2.50444
706706 44.8827 + 28.2319i 1.68918 + 1.06252i
707707 0 0
708708 −0.704433 1.46640i −0.0264742 0.0551105i
709709 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
710710 −24.2394 15.2470i −0.909690 0.572209i
711711 43.2666i 1.62262i
712712 −1.38526 + 12.1364i −0.0519149 + 0.454830i
713713 0 0
714714 0 0
715715 −97.0333 −3.62884
716716 0 0
717717 44.6675i 1.66814i
718718 28.4904 45.2936i 1.06325 1.69034i
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 38.5415 + 30.8579i 1.43636 + 1.15001i
721721 0 0
722722 22.7446 + 14.3067i 0.846467 + 0.532441i
723723 0 0
724724 −45.0333 + 21.6333i −1.67365 + 0.803996i
725725 0 0
726726 −65.9026 41.4538i −2.44587 1.53849i
727727 14.4222i 0.534890i −0.963573 0.267445i 0.913821π-0.913821\pi
0.963573 0.267445i 0.0861794π-0.0861794\pi
728728 0 0
729729 27.0000 1.00000
730730 0 0
731731 0 0
732732 22.5167 10.8167i 0.832240 0.399795i
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 28.2144 44.8548i 1.04141 1.65562i
735735 49.8843i 1.84001i
736736 0 0
737737 0 0
738738 28.0981 + 17.6741i 1.03430 + 0.650594i
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 54.2941i 1.99186i 0.0901418 + 0.995929i 0.471268π0.471268\pi
−0.0901418 + 0.995929i 0.528732π0.528732\pi
744744 0 0
745745 −1.21539 −0.0445285
746746 27.1493 43.1615i 0.994006 1.58026i
747747 −37.8371 −1.38439
748748 0 0
749749 0 0
750750 37.1769 59.1033i 1.35751 2.15815i
751751 37.4700i 1.36730i −0.729810 0.683650i 0.760392π-0.760392\pi
0.729810 0.683650i 0.239608π-0.239608\pi
752752 −29.1367 23.3281i −1.06251 0.850687i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 36.0555i 1.31046i −0.755429 0.655230i 0.772572π-0.772572\pi
0.755429 0.655230i 0.227428π-0.227428\pi
758758 0 0
759759 0 0
760760 0 0
761761 −48.0092 −1.74033 −0.870167 0.492757i 0.835989π-0.835989\pi
−0.870167 + 0.492757i 0.835989π0.835989\pi
762762 18.8096 29.9032i 0.681399 1.08328i
763763 0 0
764764 0 0
765765 0 0
766766 12.7776 20.3136i 0.461672 0.733960i
767767 1.69325i 0.0611396i
768768 6.06218 + 27.0416i 0.218750 + 0.975781i
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 12.9340i 0.465203i −0.972572 0.232601i 0.925276π-0.925276\pi
0.972572 0.232601i 0.0747237π-0.0747237\pi
774774 −14.3650 9.03583i −0.516340 0.324786i
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 22.2520 + 46.3212i 0.796748 + 1.65856i
781781 32.1911i 1.15189i
782782 0 0
783783 0 0
784784 17.5000 21.8575i 0.625000 0.780625i
785785 −102.777 −3.66828
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 43.9714 21.1232i 1.56642 0.752482i
789789 0 0
790790 71.0333 + 44.6811i 2.52725 + 1.58968i
791791 0 0
792792 −6.29423 + 55.1441i −0.223656 + 1.95946i
793793 26.0000 0.923287
794794 0 0
795795 0 0
796796 26.0000 12.4900i 0.921546 0.442696i
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 63.7432 22.1320i 2.25366 0.782484i
801801 12.9562 0.457783
802802 −30.3468 19.0886i −1.07158 0.674042i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 27.8827 44.3275i 0.979698 1.55751i
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 58.0333 27.8783i 2.02661 0.973553i
821821 57.3061i 2.00000i −0.00219583 0.999998i 0.500699π-0.500699\pi
0.00219583 0.999998i 0.499301π-0.499301\pi
822822 −38.0263 23.9191i −1.32632 0.834276i
823823 12.4900i 0.435374i −0.976019 0.217687i 0.930149π-0.930149\pi
0.976019 0.217687i 0.0698512π-0.0698512\pi
824824 −35.0991 4.00627i −1.22274 0.139565i
825825 135.139 4.70492
826826 0 0
827827 −27.5728 −0.958802 −0.479401 0.877596i 0.659146π-0.659146\pi
−0.479401 + 0.877596i 0.659146π0.659146\pi
828828 0 0
829829 50.4777i 1.75316i 0.481253 + 0.876582i 0.340182π0.340182\pi
−0.481253 + 0.876582i 0.659818π0.659818\pi
830830 −39.0741 + 62.1194i −1.35628 + 2.15619i
831831 43.2666i 1.50090i
832832 −6.50000 + 28.1025i −0.225347 + 0.974279i
833833 0 0
834834 41.4682 + 26.0842i 1.43593 + 0.903221i
835835 −47.4641 −1.64256
836836 0 0
837837 0 0
838838 0 0
839839 44.4512i 1.53463i −0.641272 0.767314i 0.721593π-0.721593\pi
0.641272 0.767314i 0.278407π-0.278407\pi
840840 0 0
841841 −29.0000 −1.00000
842842 0 0
843843 52.7976 1.81845
844844 3.00000 + 6.24500i 0.103264 + 0.214962i
845845 53.4871i 1.84001i
846846 −21.0788 + 33.5108i −0.724705 + 1.15213i
847847 0 0
848848 0 0
849849 30.0000 1.02960
850850 0 0
851851 0 0
852852 −15.3672 + 7.38216i −0.526471 + 0.252908i
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 −30.7583 + 48.8991i −1.05007 + 1.66939i
859859 −10.3923 −0.354581 −0.177290 0.984159i 0.556733π-0.556733\pi
−0.177290 + 0.984159i 0.556733π0.556733\pi
860860 −29.6693 + 14.2527i −1.01171 + 0.486012i
861861 0 0
862862 −30.1506 + 47.9330i −1.02693 + 1.63261i
863863 47.6794i 1.62303i −0.584334 0.811513i 0.698644π-0.698644\pi
0.584334 0.811513i 0.301356π-0.301356\pi
864864 27.7678 9.64111i 0.944679 0.327997i
865865 0 0
866866 −24.8809 15.6505i −0.845489 0.531826i
867867 −29.4449 −1.00000
868868 0 0
869869 94.3356i 3.20011i
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 9.40479 14.9516i 0.317396 0.504592i
879879 56.4990i 1.90566i
880880 84.0333 + 67.2805i 2.83276 + 2.26803i
881881 0 0 1.00000 00
−1.00000 π\pi
882882 −25.1388 15.8127i −0.846467 0.532441i
883883 −51.9615 −1.74864 −0.874322 0.485346i 0.838694π-0.838694\pi
−0.874322 + 0.485346i 0.838694π0.838694\pi
884884 0 0
885885 3.34668i 0.112498i
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 13.3797 21.2709i 0.448489 0.713001i
891891 58.8690 1.97218
892892 0 0
893893 0 0
894894 −0.385263 + 0.612486i −0.0128851 + 0.0204846i
895895 0 0
896896 0 0
897897 0 0
898898 49.0788 + 30.8714i 1.63778 + 1.03019i
899899 0 0
900900 −30.9904 64.5116i −1.03301 2.15039i
901901 0 0
902902 61.2631 + 38.5355i 2.03984 + 1.28309i
903903 0 0
904904 0 0
905905 102.777 3.41644
906906 0 0
907907 17.3205 0.575118 0.287559 0.957763i 0.407156π-0.407156\pi
0.287559 + 0.957763i 0.407156π0.407156\pi
908908 4.85126 + 10.0987i 0.160995 + 0.335137i
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 −82.4974 −2.73027
914914 0 0
915915 −51.3887 −1.69886
916916 0 0
917917 0 0
918918 0 0
919919 14.4222i 0.475745i −0.971296 0.237872i 0.923550π-0.923550\pi
0.971296 0.237872i 0.0764500π-0.0764500\pi
920920 0 0
921921 0 0
922922 18.8109 29.9053i 0.619504 0.984878i
923923 −17.7445 −0.584067
924924 0 0
925925 0 0
926926 0 0
927927 37.4700i 1.23068i
928928 0 0
929929 13.2078 0.433335 0.216667 0.976245i 0.430481π-0.430481\pi
0.216667 + 0.976245i 0.430481π0.430481\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 30.3967 + 3.46953i 0.993549 + 0.113405i
937937 −34.6410 −1.13167 −0.565836 0.824518i 0.691447π-0.691447\pi
−0.565836 + 0.824518i 0.691447π0.691447\pi
938938 0 0
939939 60.0000 1.95803
940940 33.2487 + 69.2127i 1.08445 + 2.25747i
941941 21.1627i 0.689886i −0.938624 0.344943i 0.887898π-0.887898\pi
0.938624 0.344943i 0.112102π-0.112102\pi
942942 −32.5791 + 51.7938i −1.06149 + 1.68753i
943943 0 0
944944 −1.17406 + 1.46640i −0.0382123 + 0.0477271i
945945 0 0
946946 −31.3205 19.7011i −1.01832 0.640538i
947947 57.9297 1.88246 0.941231 0.337763i 0.109670π-0.109670\pi
0.941231 + 0.337763i 0.109670π0.109670\pi
948948 45.0333 21.6333i 1.46261 0.702617i
949949 0 0
950950 0 0
951951 29.0170i 0.940940i
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 0 0
956956 46.4914 22.3337i 1.50364 0.722325i
957957 0 0
958958 −25.1699 + 40.0147i −0.813202 + 1.29282i
959959 0 0
960960 12.8472 55.5443i 0.414641 1.79268i
961961 −31.0000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 −10.1952 + 89.3205i −0.327685 + 2.87087i
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 −13.5000 28.1025i −0.433013 0.901388i
973973 0 0
974974 0 0
975975 74.4916i 2.38564i
976976 −22.5167 18.0278i −0.720741 0.577054i
977977 51.5145 1.64810 0.824048 0.566520i 0.191711π-0.191711\pi
0.824048 + 0.566520i 0.191711π0.191711\pi
978978 0 0
979979 28.2487 0.902833
980980 −51.9213 + 24.9422i −1.65856 + 0.796748i
981981 0 0
982982 0 0
983983 12.5594i 0.400583i 0.979736 + 0.200292i 0.0641890π0.0641890\pi
−0.979736 + 0.200292i 0.935811π0.935811\pi
984984 4.34679 38.0825i 0.138571 1.21402i
985985 −100.354 −3.19754
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 60.7935 96.6486i 1.93214 3.07169i
991991 62.4500i 1.98379i 0.127064 + 0.991894i 0.459445π0.459445\pi
−0.127064 + 0.991894i 0.540555π0.540555\pi
992992 0 0
993993 0 0
994994 0 0
995995 −59.3386 −1.88116
996996 18.9186 + 39.3821i 0.599457 + 1.24787i
997997 24.9800i 0.791124i 0.918439 + 0.395562i 0.129450π0.129450\pi
−0.918439 + 0.395562i 0.870550π0.870550\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.h.a.155.8 yes 8
3.2 odd 2 inner 312.2.h.a.155.1 8
4.3 odd 2 1248.2.h.a.623.5 8
8.3 odd 2 inner 312.2.h.a.155.7 yes 8
8.5 even 2 1248.2.h.a.623.7 8
12.11 even 2 1248.2.h.a.623.8 8
13.12 even 2 inner 312.2.h.a.155.1 8
24.5 odd 2 1248.2.h.a.623.6 8
24.11 even 2 inner 312.2.h.a.155.2 yes 8
39.38 odd 2 CM 312.2.h.a.155.8 yes 8
52.51 odd 2 1248.2.h.a.623.8 8
104.51 odd 2 inner 312.2.h.a.155.2 yes 8
104.77 even 2 1248.2.h.a.623.6 8
156.155 even 2 1248.2.h.a.623.5 8
312.77 odd 2 1248.2.h.a.623.7 8
312.155 even 2 inner 312.2.h.a.155.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.h.a.155.1 8 3.2 odd 2 inner
312.2.h.a.155.1 8 13.12 even 2 inner
312.2.h.a.155.2 yes 8 24.11 even 2 inner
312.2.h.a.155.2 yes 8 104.51 odd 2 inner
312.2.h.a.155.7 yes 8 8.3 odd 2 inner
312.2.h.a.155.7 yes 8 312.155 even 2 inner
312.2.h.a.155.8 yes 8 1.1 even 1 trivial
312.2.h.a.155.8 yes 8 39.38 odd 2 CM
1248.2.h.a.623.5 8 4.3 odd 2
1248.2.h.a.623.5 8 156.155 even 2
1248.2.h.a.623.6 8 24.5 odd 2
1248.2.h.a.623.6 8 104.77 even 2
1248.2.h.a.623.7 8 8.5 even 2
1248.2.h.a.623.7 8 312.77 odd 2
1248.2.h.a.623.8 8 12.11 even 2
1248.2.h.a.623.8 8 52.51 odd 2