Properties

Label 3136.2.f.a
Level $3136$
Weight $2$
Character orbit 3136.f
Analytic conductor $25.041$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3136,2,Mod(3135,3136)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3136, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3136.3135");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3136 = 2^{6} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3136.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.0410860739\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} - \beta q^{5} - 2 q^{9} - \beta q^{11} + \beta q^{15} + 3 \beta q^{17} - 7 q^{19} + 5 \beta q^{23} + 2 q^{25} + 5 q^{27} + 6 q^{29} + 5 q^{31} + \beta q^{33} + 5 q^{37} - 4 \beta q^{41} - 2 \beta q^{43} + \cdots + 2 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 4 q^{9} - 14 q^{19} + 4 q^{25} + 10 q^{27} + 12 q^{29} + 10 q^{31} + 10 q^{37} + 6 q^{47} + 18 q^{53} - 6 q^{55} + 14 q^{57} - 18 q^{59} - 4 q^{75} + 2 q^{81} - 24 q^{83} + 18 q^{85} - 12 q^{87}+ \cdots - 10 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3136\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3135.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.00000 0 1.73205i 0 0 0 −2.00000 0
3135.2 0 −1.00000 0 1.73205i 0 0 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3136.2.f.a 2
4.b odd 2 1 3136.2.f.b 2
7.b odd 2 1 3136.2.f.b 2
7.c even 3 1 448.2.p.b 2
7.d odd 6 1 448.2.p.a 2
8.b even 2 1 784.2.f.b 2
8.d odd 2 1 784.2.f.a 2
24.f even 2 1 7056.2.b.b 2
24.h odd 2 1 7056.2.b.m 2
28.d even 2 1 inner 3136.2.f.a 2
28.f even 6 1 448.2.p.b 2
28.g odd 6 1 448.2.p.a 2
56.e even 2 1 784.2.f.b 2
56.h odd 2 1 784.2.f.a 2
56.j odd 6 1 112.2.p.b yes 2
56.j odd 6 1 784.2.p.d 2
56.k odd 6 1 112.2.p.b yes 2
56.k odd 6 1 784.2.p.d 2
56.m even 6 1 112.2.p.a 2
56.m even 6 1 784.2.p.c 2
56.p even 6 1 112.2.p.a 2
56.p even 6 1 784.2.p.c 2
168.e odd 2 1 7056.2.b.m 2
168.i even 2 1 7056.2.b.b 2
168.s odd 6 1 1008.2.cs.f 2
168.v even 6 1 1008.2.cs.c 2
168.ba even 6 1 1008.2.cs.c 2
168.be odd 6 1 1008.2.cs.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.2.p.a 2 56.m even 6 1
112.2.p.a 2 56.p even 6 1
112.2.p.b yes 2 56.j odd 6 1
112.2.p.b yes 2 56.k odd 6 1
448.2.p.a 2 7.d odd 6 1
448.2.p.a 2 28.g odd 6 1
448.2.p.b 2 7.c even 3 1
448.2.p.b 2 28.f even 6 1
784.2.f.a 2 8.d odd 2 1
784.2.f.a 2 56.h odd 2 1
784.2.f.b 2 8.b even 2 1
784.2.f.b 2 56.e even 2 1
784.2.p.c 2 56.m even 6 1
784.2.p.c 2 56.p even 6 1
784.2.p.d 2 56.j odd 6 1
784.2.p.d 2 56.k odd 6 1
1008.2.cs.c 2 168.v even 6 1
1008.2.cs.c 2 168.ba even 6 1
1008.2.cs.f 2 168.s odd 6 1
1008.2.cs.f 2 168.be odd 6 1
3136.2.f.a 2 1.a even 1 1 trivial
3136.2.f.a 2 28.d even 2 1 inner
3136.2.f.b 2 4.b odd 2 1
3136.2.f.b 2 7.b odd 2 1
7056.2.b.b 2 24.f even 2 1
7056.2.b.b 2 168.i even 2 1
7056.2.b.m 2 24.h odd 2 1
7056.2.b.m 2 168.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3136, [\chi])\):

\( T_{3} + 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 3 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 3 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 27 \) Copy content Toggle raw display
$19$ \( (T + 7)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 75 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T - 5)^{2} \) Copy content Toggle raw display
$37$ \( (T - 5)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 48 \) Copy content Toggle raw display
$43$ \( T^{2} + 12 \) Copy content Toggle raw display
$47$ \( (T - 3)^{2} \) Copy content Toggle raw display
$53$ \( (T - 9)^{2} \) Copy content Toggle raw display
$59$ \( (T + 9)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 75 \) Copy content Toggle raw display
$67$ \( T^{2} + 27 \) Copy content Toggle raw display
$71$ \( T^{2} + 12 \) Copy content Toggle raw display
$73$ \( T^{2} + 3 \) Copy content Toggle raw display
$79$ \( T^{2} + 27 \) Copy content Toggle raw display
$83$ \( (T + 12)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 147 \) Copy content Toggle raw display
$97$ \( T^{2} + 48 \) Copy content Toggle raw display
show more
show less