Properties

Label 784.2.f.a
Level 784784
Weight 22
Character orbit 784.f
Analytic conductor 6.2606.260
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(783,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.783"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 784=2472 784 = 2^{4} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 784.f (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.260271518476.26027151847
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{-3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq3+βq52q9βq11βq15+3βq177q195βq23+2q25+5q276q295q31+βq335q374βq412βq43++2βq99+O(q100) q - q^{3} + \beta q^{5} - 2 q^{9} - \beta q^{11} - \beta q^{15} + 3 \beta q^{17} - 7 q^{19} - 5 \beta q^{23} + 2 q^{25} + 5 q^{27} - 6 q^{29} - 5 q^{31} + \beta q^{33} - 5 q^{37} - 4 \beta q^{41} - 2 \beta q^{43} + \cdots + 2 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q34q914q19+4q25+10q2712q2910q3110q376q4718q53+6q55+14q5718q594q75+2q8124q8318q85+12q87++10q93+O(q100) 2 q - 2 q^{3} - 4 q^{9} - 14 q^{19} + 4 q^{25} + 10 q^{27} - 12 q^{29} - 10 q^{31} - 10 q^{37} - 6 q^{47} - 18 q^{53} + 6 q^{55} + 14 q^{57} - 18 q^{59} - 4 q^{75} + 2 q^{81} - 24 q^{83} - 18 q^{85} + 12 q^{87}+ \cdots + 10 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/784Z)×\left(\mathbb{Z}/784\mathbb{Z}\right)^\times.

nn 197197 687687 689689
χ(n)\chi(n) 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
783.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −1.00000 0 1.73205i 0 0 0 −2.00000 0
783.2 0 −1.00000 0 1.73205i 0 0 0 −2.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 784.2.f.a 2
3.b odd 2 1 7056.2.b.b 2
4.b odd 2 1 784.2.f.b 2
7.b odd 2 1 784.2.f.b 2
7.c even 3 1 112.2.p.b yes 2
7.c even 3 1 784.2.p.d 2
7.d odd 6 1 112.2.p.a 2
7.d odd 6 1 784.2.p.c 2
8.b even 2 1 3136.2.f.b 2
8.d odd 2 1 3136.2.f.a 2
12.b even 2 1 7056.2.b.m 2
21.c even 2 1 7056.2.b.m 2
21.g even 6 1 1008.2.cs.f 2
21.h odd 6 1 1008.2.cs.c 2
28.d even 2 1 inner 784.2.f.a 2
28.f even 6 1 112.2.p.b yes 2
28.f even 6 1 784.2.p.d 2
28.g odd 6 1 112.2.p.a 2
28.g odd 6 1 784.2.p.c 2
56.e even 2 1 3136.2.f.b 2
56.h odd 2 1 3136.2.f.a 2
56.j odd 6 1 448.2.p.b 2
56.k odd 6 1 448.2.p.b 2
56.m even 6 1 448.2.p.a 2
56.p even 6 1 448.2.p.a 2
84.h odd 2 1 7056.2.b.b 2
84.j odd 6 1 1008.2.cs.c 2
84.n even 6 1 1008.2.cs.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.2.p.a 2 7.d odd 6 1
112.2.p.a 2 28.g odd 6 1
112.2.p.b yes 2 7.c even 3 1
112.2.p.b yes 2 28.f even 6 1
448.2.p.a 2 56.m even 6 1
448.2.p.a 2 56.p even 6 1
448.2.p.b 2 56.j odd 6 1
448.2.p.b 2 56.k odd 6 1
784.2.f.a 2 1.a even 1 1 trivial
784.2.f.a 2 28.d even 2 1 inner
784.2.f.b 2 4.b odd 2 1
784.2.f.b 2 7.b odd 2 1
784.2.p.c 2 7.d odd 6 1
784.2.p.c 2 28.g odd 6 1
784.2.p.d 2 7.c even 3 1
784.2.p.d 2 28.f even 6 1
1008.2.cs.c 2 21.h odd 6 1
1008.2.cs.c 2 84.j odd 6 1
1008.2.cs.f 2 21.g even 6 1
1008.2.cs.f 2 84.n even 6 1
3136.2.f.a 2 8.d odd 2 1
3136.2.f.a 2 56.h odd 2 1
3136.2.f.b 2 8.b even 2 1
3136.2.f.b 2 56.e even 2 1
7056.2.b.b 2 3.b odd 2 1
7056.2.b.b 2 84.h odd 2 1
7056.2.b.m 2 12.b even 2 1
7056.2.b.m 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+1 T_{3} + 1 acting on S2new(784,[χ])S_{2}^{\mathrm{new}}(784, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
55 T2+3 T^{2} + 3 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+3 T^{2} + 3 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+27 T^{2} + 27 Copy content Toggle raw display
1919 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
2323 T2+75 T^{2} + 75 Copy content Toggle raw display
2929 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
3131 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
3737 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
4141 T2+48 T^{2} + 48 Copy content Toggle raw display
4343 T2+12 T^{2} + 12 Copy content Toggle raw display
4747 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
5353 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
5959 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
6161 T2+75 T^{2} + 75 Copy content Toggle raw display
6767 T2+27 T^{2} + 27 Copy content Toggle raw display
7171 T2+12 T^{2} + 12 Copy content Toggle raw display
7373 T2+3 T^{2} + 3 Copy content Toggle raw display
7979 T2+27 T^{2} + 27 Copy content Toggle raw display
8383 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
8989 T2+147 T^{2} + 147 Copy content Toggle raw display
9797 T2+48 T^{2} + 48 Copy content Toggle raw display
show more
show less