Properties

Label 315.2.ce.a.107.5
Level $315$
Weight $2$
Character 315.107
Analytic conductor $2.515$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,2,Mod(53,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 107.5
Character \(\chi\) \(=\) 315.107
Dual form 315.2.ce.a.53.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.364480 - 1.36026i) q^{2} +(0.0145936 - 0.00842564i) q^{4} +(-2.23601 + 0.0163814i) q^{5} +(-2.58285 + 0.573503i) q^{7} +(-2.00834 - 2.00834i) q^{8} +(0.837263 + 3.03558i) q^{10} +(-1.18008 + 0.681321i) q^{11} +(0.106323 - 0.106323i) q^{13} +(1.72151 + 3.30431i) q^{14} +(-1.98301 + 3.43467i) q^{16} +(-7.24761 - 1.94199i) q^{17} +(-2.03121 - 1.17272i) q^{19} +(-0.0324934 + 0.0190789i) q^{20} +(1.35689 + 1.35689i) q^{22} +(4.94811 - 1.32584i) q^{23} +(4.99946 - 0.0732577i) q^{25} +(-0.183379 - 0.105874i) q^{26} +(-0.0328610 + 0.0301316i) q^{28} +4.97834 q^{29} +(-3.40473 - 5.89716i) q^{31} +(-0.0920746 - 0.0246713i) q^{32} +10.5664i q^{34} +(5.76587 - 1.32467i) q^{35} +(-9.92059 + 2.65821i) q^{37} +(-0.854866 + 3.19040i) q^{38} +(4.52356 + 4.45776i) q^{40} +7.03642i q^{41} +(2.50280 - 2.50280i) q^{43} +(-0.0114811 + 0.0198859i) q^{44} +(-3.60698 - 6.24747i) q^{46} +(0.560444 + 2.09160i) q^{47} +(6.34219 - 2.96254i) q^{49} +(-1.92185 - 6.77386i) q^{50} +(0.000655798 - 0.00244747i) q^{52} +(1.62383 - 6.06020i) q^{53} +(2.62751 - 1.54277i) q^{55} +(6.33901 + 4.03544i) q^{56} +(-1.81451 - 6.77183i) q^{58} +(1.32684 + 2.29815i) q^{59} +(5.85558 - 10.1422i) q^{61} +(-6.78071 + 6.78071i) q^{62} +8.06626i q^{64} +(-0.235997 + 0.239480i) q^{65} +(3.16583 - 11.8150i) q^{67} +(-0.122132 + 0.0327250i) q^{68} +(-3.90343 - 7.36026i) q^{70} -4.94291i q^{71} +(-5.43505 - 1.45632i) q^{73} +(7.23171 + 12.5257i) q^{74} -0.0395236 q^{76} +(2.65723 - 2.43653i) q^{77} +(-10.4803 - 6.05078i) q^{79} +(4.37775 - 7.71243i) q^{80} +(9.57135 - 2.56463i) q^{82} +(-8.06859 - 8.06859i) q^{83} +(16.2375 + 4.22358i) q^{85} +(-4.31668 - 2.49224i) q^{86} +(3.73832 + 1.00168i) q^{88} +(1.38011 - 2.39042i) q^{89} +(-0.213639 + 0.335591i) q^{91} +(0.0610399 - 0.0610399i) q^{92} +(2.64085 - 1.52470i) q^{94} +(4.56101 + 2.58894i) q^{95} +(3.68206 + 3.68206i) q^{97} +(-6.34142 - 7.54723i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{7} + 8 q^{10} + 32 q^{16} - 48 q^{22} - 16 q^{25} + 88 q^{28} + 32 q^{31} - 16 q^{37} - 40 q^{40} - 16 q^{43} - 80 q^{52} - 32 q^{55} - 88 q^{58} + 48 q^{61} - 32 q^{67} - 112 q^{70} - 88 q^{73}+ \cdots + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.364480 1.36026i −0.257726 0.961848i −0.966553 0.256466i \(-0.917442\pi\)
0.708827 0.705382i \(-0.249225\pi\)
\(3\) 0 0
\(4\) 0.0145936 0.00842564i 0.00729681 0.00421282i
\(5\) −2.23601 + 0.0163814i −0.999973 + 0.00732597i
\(6\) 0 0
\(7\) −2.58285 + 0.573503i −0.976224 + 0.216764i
\(8\) −2.00834 2.00834i −0.710054 0.710054i
\(9\) 0 0
\(10\) 0.837263 + 3.03558i 0.264766 + 0.959934i
\(11\) −1.18008 + 0.681321i −0.355808 + 0.205426i −0.667240 0.744842i \(-0.732525\pi\)
0.311432 + 0.950268i \(0.399191\pi\)
\(12\) 0 0
\(13\) 0.106323 0.106323i 0.0294886 0.0294886i −0.692209 0.721697i \(-0.743362\pi\)
0.721697 + 0.692209i \(0.243362\pi\)
\(14\) 1.72151 + 3.30431i 0.460092 + 0.883113i
\(15\) 0 0
\(16\) −1.98301 + 3.43467i −0.495752 + 0.858667i
\(17\) −7.24761 1.94199i −1.75780 0.471002i −0.771541 0.636180i \(-0.780514\pi\)
−0.986264 + 0.165178i \(0.947180\pi\)
\(18\) 0 0
\(19\) −2.03121 1.17272i −0.465992 0.269040i 0.248569 0.968614i \(-0.420040\pi\)
−0.714560 + 0.699574i \(0.753373\pi\)
\(20\) −0.0324934 + 0.0190789i −0.00726576 + 0.00426616i
\(21\) 0 0
\(22\) 1.35689 + 1.35689i 0.289290 + 0.289290i
\(23\) 4.94811 1.32584i 1.03175 0.276457i 0.297061 0.954858i \(-0.403993\pi\)
0.734692 + 0.678401i \(0.237327\pi\)
\(24\) 0 0
\(25\) 4.99946 0.0732577i 0.999893 0.0146515i
\(26\) −0.183379 0.105874i −0.0359635 0.0207636i
\(27\) 0 0
\(28\) −0.0328610 + 0.0301316i −0.00621014 + 0.00569434i
\(29\) 4.97834 0.924454 0.462227 0.886762i \(-0.347051\pi\)
0.462227 + 0.886762i \(0.347051\pi\)
\(30\) 0 0
\(31\) −3.40473 5.89716i −0.611507 1.05916i −0.990987 0.133962i \(-0.957230\pi\)
0.379479 0.925200i \(-0.376103\pi\)
\(32\) −0.0920746 0.0246713i −0.0162766 0.00436131i
\(33\) 0 0
\(34\) 10.5664i 1.81213i
\(35\) 5.76587 1.32467i 0.974610 0.223910i
\(36\) 0 0
\(37\) −9.92059 + 2.65821i −1.63093 + 0.437008i −0.954188 0.299208i \(-0.903277\pi\)
−0.676747 + 0.736216i \(0.736611\pi\)
\(38\) −0.854866 + 3.19040i −0.138678 + 0.517552i
\(39\) 0 0
\(40\) 4.52356 + 4.45776i 0.715237 + 0.704833i
\(41\) 7.03642i 1.09890i 0.835525 + 0.549452i \(0.185163\pi\)
−0.835525 + 0.549452i \(0.814837\pi\)
\(42\) 0 0
\(43\) 2.50280 2.50280i 0.381674 0.381674i −0.490031 0.871705i \(-0.663015\pi\)
0.871705 + 0.490031i \(0.163015\pi\)
\(44\) −0.0114811 + 0.0198859i −0.00173084 + 0.00299791i
\(45\) 0 0
\(46\) −3.60698 6.24747i −0.531820 0.921139i
\(47\) 0.560444 + 2.09160i 0.0817491 + 0.305092i 0.994679 0.103025i \(-0.0328522\pi\)
−0.912930 + 0.408117i \(0.866186\pi\)
\(48\) 0 0
\(49\) 6.34219 2.96254i 0.906027 0.423220i
\(50\) −1.92185 6.77386i −0.271791 0.957969i
\(51\) 0 0
\(52\) 0.000655798 0.00244747i 9.09428e−5 0.000339403i
\(53\) 1.62383 6.06020i 0.223050 0.832433i −0.760127 0.649775i \(-0.774863\pi\)
0.983177 0.182658i \(-0.0584701\pi\)
\(54\) 0 0
\(55\) 2.62751 1.54277i 0.354294 0.208027i
\(56\) 6.33901 + 4.03544i 0.847086 + 0.539258i
\(57\) 0 0
\(58\) −1.81451 6.77183i −0.238256 0.889184i
\(59\) 1.32684 + 2.29815i 0.172739 + 0.299193i 0.939377 0.342887i \(-0.111405\pi\)
−0.766637 + 0.642080i \(0.778072\pi\)
\(60\) 0 0
\(61\) 5.85558 10.1422i 0.749730 1.29857i −0.198222 0.980157i \(-0.563517\pi\)
0.947952 0.318414i \(-0.103150\pi\)
\(62\) −6.78071 + 6.78071i −0.861151 + 0.861151i
\(63\) 0 0
\(64\) 8.06626i 1.00828i
\(65\) −0.235997 + 0.239480i −0.0292718 + 0.0297038i
\(66\) 0 0
\(67\) 3.16583 11.8150i 0.386767 1.44343i −0.448595 0.893735i \(-0.648076\pi\)
0.835362 0.549700i \(-0.185258\pi\)
\(68\) −0.122132 + 0.0327250i −0.0148106 + 0.00396849i
\(69\) 0 0
\(70\) −3.90343 7.36026i −0.466550 0.879719i
\(71\) 4.94291i 0.586616i −0.956018 0.293308i \(-0.905244\pi\)
0.956018 0.293308i \(-0.0947561\pi\)
\(72\) 0 0
\(73\) −5.43505 1.45632i −0.636125 0.170449i −0.0736773 0.997282i \(-0.523473\pi\)
−0.562447 + 0.826833i \(0.690140\pi\)
\(74\) 7.23171 + 12.5257i 0.840670 + 1.45608i
\(75\) 0 0
\(76\) −0.0395236 −0.00453367
\(77\) 2.65723 2.43653i 0.302820 0.277668i
\(78\) 0 0
\(79\) −10.4803 6.05078i −1.17912 0.680766i −0.223310 0.974747i \(-0.571686\pi\)
−0.955811 + 0.293981i \(0.905020\pi\)
\(80\) 4.37775 7.71243i 0.489448 0.862276i
\(81\) 0 0
\(82\) 9.57135 2.56463i 1.05698 0.283217i
\(83\) −8.06859 8.06859i −0.885643 0.885643i 0.108458 0.994101i \(-0.465409\pi\)
−0.994101 + 0.108458i \(0.965409\pi\)
\(84\) 0 0
\(85\) 16.2375 + 4.22358i 1.76121 + 0.458112i
\(86\) −4.31668 2.49224i −0.465480 0.268745i
\(87\) 0 0
\(88\) 3.73832 + 1.00168i 0.398507 + 0.106780i
\(89\) 1.38011 2.39042i 0.146291 0.253384i −0.783563 0.621313i \(-0.786600\pi\)
0.929854 + 0.367929i \(0.119933\pi\)
\(90\) 0 0
\(91\) −0.213639 + 0.335591i −0.0223954 + 0.0351795i
\(92\) 0.0610399 0.0610399i 0.00636385 0.00636385i
\(93\) 0 0
\(94\) 2.64085 1.52470i 0.272383 0.157260i
\(95\) 4.56101 + 2.58894i 0.467950 + 0.265619i
\(96\) 0 0
\(97\) 3.68206 + 3.68206i 0.373856 + 0.373856i 0.868880 0.495023i \(-0.164840\pi\)
−0.495023 + 0.868880i \(0.664840\pi\)
\(98\) −6.34142 7.54723i −0.640580 0.762385i
\(99\) 0 0
\(100\) 0.0723431 0.0431928i 0.00723431 0.00431928i
\(101\) −8.26084 + 4.76940i −0.821984 + 0.474573i −0.851100 0.525003i \(-0.824064\pi\)
0.0291161 + 0.999576i \(0.490731\pi\)
\(102\) 0 0
\(103\) 2.14544 + 8.00688i 0.211396 + 0.788941i 0.987404 + 0.158218i \(0.0505749\pi\)
−0.776008 + 0.630723i \(0.782758\pi\)
\(104\) −0.427063 −0.0418770
\(105\) 0 0
\(106\) −8.83529 −0.858159
\(107\) 0.0580815 + 0.216763i 0.00561495 + 0.0209553i 0.968676 0.248326i \(-0.0798805\pi\)
−0.963062 + 0.269281i \(0.913214\pi\)
\(108\) 0 0
\(109\) −4.69145 + 2.70861i −0.449359 + 0.259438i −0.707560 0.706654i \(-0.750204\pi\)
0.258200 + 0.966091i \(0.416871\pi\)
\(110\) −3.05624 3.01179i −0.291401 0.287163i
\(111\) 0 0
\(112\) 3.15201 10.0085i 0.297837 0.945712i
\(113\) 7.70220 + 7.70220i 0.724562 + 0.724562i 0.969531 0.244969i \(-0.0787778\pi\)
−0.244969 + 0.969531i \(0.578778\pi\)
\(114\) 0 0
\(115\) −11.0423 + 3.04565i −1.02970 + 0.284009i
\(116\) 0.0726520 0.0419457i 0.00674557 0.00389456i
\(117\) 0 0
\(118\) 2.64247 2.64247i 0.243259 0.243259i
\(119\) 19.8332 + 0.859342i 1.81811 + 0.0787757i
\(120\) 0 0
\(121\) −4.57160 + 7.91825i −0.415600 + 0.719841i
\(122\) −15.9302 4.26849i −1.44225 0.386450i
\(123\) 0 0
\(124\) −0.0993747 0.0573740i −0.00892411 0.00515234i
\(125\) −11.1776 + 0.245703i −0.999758 + 0.0219763i
\(126\) 0 0
\(127\) −9.41937 9.41937i −0.835834 0.835834i 0.152474 0.988308i \(-0.451276\pi\)
−0.988308 + 0.152474i \(0.951276\pi\)
\(128\) 10.7881 2.89065i 0.953538 0.255500i
\(129\) 0 0
\(130\) 0.411771 + 0.233731i 0.0361147 + 0.0204995i
\(131\) 6.41212 + 3.70204i 0.560230 + 0.323449i 0.753238 0.657748i \(-0.228491\pi\)
−0.193008 + 0.981197i \(0.561824\pi\)
\(132\) 0 0
\(133\) 5.91886 + 1.86405i 0.513230 + 0.161634i
\(134\) −17.2254 −1.48804
\(135\) 0 0
\(136\) 10.6555 + 18.4558i 0.913699 + 1.58257i
\(137\) 8.57248 + 2.29699i 0.732396 + 0.196245i 0.605696 0.795696i \(-0.292895\pi\)
0.126700 + 0.991941i \(0.459561\pi\)
\(138\) 0 0
\(139\) 8.29182i 0.703303i 0.936131 + 0.351652i \(0.114380\pi\)
−0.936131 + 0.351652i \(0.885620\pi\)
\(140\) 0.0729838 0.0679128i 0.00616826 0.00573968i
\(141\) 0 0
\(142\) −6.72364 + 1.80159i −0.564235 + 0.151186i
\(143\) −0.0530296 + 0.197909i −0.00443456 + 0.0165500i
\(144\) 0 0
\(145\) −11.1316 + 0.0815520i −0.924429 + 0.00677252i
\(146\) 7.92387i 0.655785i
\(147\) 0 0
\(148\) −0.122380 + 0.122380i −0.0100596 + 0.0100596i
\(149\) 2.30099 3.98543i 0.188505 0.326500i −0.756247 0.654286i \(-0.772969\pi\)
0.944752 + 0.327786i \(0.106303\pi\)
\(150\) 0 0
\(151\) 0.237053 + 0.410587i 0.0192911 + 0.0334131i 0.875510 0.483200i \(-0.160526\pi\)
−0.856219 + 0.516614i \(0.827192\pi\)
\(152\) 1.72414 + 6.43457i 0.139846 + 0.521912i
\(153\) 0 0
\(154\) −4.28281 2.72646i −0.345119 0.219704i
\(155\) 7.70961 + 13.1303i 0.619250 + 1.05465i
\(156\) 0 0
\(157\) −2.86177 + 10.6803i −0.228394 + 0.852379i 0.752622 + 0.658453i \(0.228789\pi\)
−0.981016 + 0.193926i \(0.937878\pi\)
\(158\) −4.41078 + 16.4613i −0.350903 + 1.30959i
\(159\) 0 0
\(160\) 0.206284 + 0.0536570i 0.0163082 + 0.00424195i
\(161\) −12.0198 + 6.26220i −0.947296 + 0.493531i
\(162\) 0 0
\(163\) 4.92872 + 18.3943i 0.386048 + 1.44075i 0.836509 + 0.547953i \(0.184593\pi\)
−0.450462 + 0.892796i \(0.648741\pi\)
\(164\) 0.0592863 + 0.102687i 0.00462948 + 0.00801850i
\(165\) 0 0
\(166\) −8.03453 + 13.9162i −0.623601 + 1.08011i
\(167\) 4.99821 4.99821i 0.386773 0.386773i −0.486762 0.873535i \(-0.661822\pi\)
0.873535 + 0.486762i \(0.161822\pi\)
\(168\) 0 0
\(169\) 12.9774i 0.998261i
\(170\) −0.173093 23.6267i −0.0132756 1.81208i
\(171\) 0 0
\(172\) 0.0154373 0.0576127i 0.00117708 0.00439292i
\(173\) −10.4408 + 2.79761i −0.793801 + 0.212698i −0.632861 0.774266i \(-0.718119\pi\)
−0.160940 + 0.986964i \(0.551453\pi\)
\(174\) 0 0
\(175\) −12.8708 + 3.05642i −0.972943 + 0.231044i
\(176\) 5.40425i 0.407361i
\(177\) 0 0
\(178\) −3.75461 1.00604i −0.281420 0.0754062i
\(179\) −8.39647 14.5431i −0.627582 1.08700i −0.988036 0.154227i \(-0.950711\pi\)
0.360454 0.932777i \(-0.382622\pi\)
\(180\) 0 0
\(181\) 1.56378 0.116235 0.0581174 0.998310i \(-0.481490\pi\)
0.0581174 + 0.998310i \(0.481490\pi\)
\(182\) 0.534358 + 0.168288i 0.0396093 + 0.0124743i
\(183\) 0 0
\(184\) −12.6002 7.27474i −0.928900 0.536301i
\(185\) 22.1390 6.10630i 1.62769 0.448944i
\(186\) 0 0
\(187\) 9.87590 2.64624i 0.722197 0.193512i
\(188\) 0.0258020 + 0.0258020i 0.00188180 + 0.00188180i
\(189\) 0 0
\(190\) 1.85922 7.14777i 0.134882 0.518554i
\(191\) −22.3265 12.8902i −1.61549 0.932703i −0.988067 0.154023i \(-0.950777\pi\)
−0.627422 0.778680i \(-0.715890\pi\)
\(192\) 0 0
\(193\) 15.7846 + 4.22947i 1.13620 + 0.304444i 0.777422 0.628980i \(-0.216527\pi\)
0.358777 + 0.933423i \(0.383194\pi\)
\(194\) 3.66651 6.35059i 0.263240 0.455946i
\(195\) 0 0
\(196\) 0.0675943 0.0966712i 0.00482816 0.00690508i
\(197\) −5.06226 + 5.06226i −0.360671 + 0.360671i −0.864060 0.503389i \(-0.832086\pi\)
0.503389 + 0.864060i \(0.332086\pi\)
\(198\) 0 0
\(199\) 12.6245 7.28877i 0.894928 0.516687i 0.0193768 0.999812i \(-0.493832\pi\)
0.875551 + 0.483125i \(0.160498\pi\)
\(200\) −10.1877 9.89348i −0.720381 0.699575i
\(201\) 0 0
\(202\) 9.49852 + 9.49852i 0.668314 + 0.668314i
\(203\) −12.8583 + 2.85509i −0.902474 + 0.200388i
\(204\) 0 0
\(205\) −0.115266 15.7335i −0.00805054 1.09887i
\(206\) 10.1095 5.83670i 0.704359 0.406662i
\(207\) 0 0
\(208\) 0.154345 + 0.576022i 0.0107019 + 0.0399399i
\(209\) 3.19599 0.221071
\(210\) 0 0
\(211\) −3.83207 −0.263810 −0.131905 0.991262i \(-0.542109\pi\)
−0.131905 + 0.991262i \(0.542109\pi\)
\(212\) −0.0273635 0.102122i −0.00187934 0.00701377i
\(213\) 0 0
\(214\) 0.273684 0.158012i 0.0187087 0.0108015i
\(215\) −5.55529 + 5.63729i −0.378867 + 0.384460i
\(216\) 0 0
\(217\) 12.1759 + 13.2788i 0.826556 + 0.901427i
\(218\) 5.39435 + 5.39435i 0.365351 + 0.365351i
\(219\) 0 0
\(220\) 0.0253461 0.0446531i 0.00170883 0.00301051i
\(221\) −0.977063 + 0.564108i −0.0657244 + 0.0379460i
\(222\) 0 0
\(223\) −1.22784 + 1.22784i −0.0822223 + 0.0822223i −0.747022 0.664800i \(-0.768517\pi\)
0.664800 + 0.747022i \(0.268517\pi\)
\(224\) 0.251964 + 0.0109172i 0.0168350 + 0.000729435i
\(225\) 0 0
\(226\) 7.66968 13.2843i 0.510180 0.883657i
\(227\) 12.1577 + 3.25763i 0.806932 + 0.216217i 0.638625 0.769518i \(-0.279503\pi\)
0.168307 + 0.985735i \(0.446170\pi\)
\(228\) 0 0
\(229\) −22.7534 13.1367i −1.50359 0.868097i −0.999991 0.00415788i \(-0.998677\pi\)
−0.503597 0.863939i \(-0.667990\pi\)
\(230\) 8.16757 + 13.9103i 0.538554 + 0.917218i
\(231\) 0 0
\(232\) −9.99818 9.99818i −0.656413 0.656413i
\(233\) −3.76896 + 1.00989i −0.246913 + 0.0661600i −0.380153 0.924924i \(-0.624129\pi\)
0.133240 + 0.991084i \(0.457462\pi\)
\(234\) 0 0
\(235\) −1.28742 4.66766i −0.0839820 0.304485i
\(236\) 0.0387267 + 0.0223589i 0.00252089 + 0.00145544i
\(237\) 0 0
\(238\) −6.05988 27.2915i −0.392804 1.76905i
\(239\) −18.9197 −1.22382 −0.611908 0.790929i \(-0.709598\pi\)
−0.611908 + 0.790929i \(0.709598\pi\)
\(240\) 0 0
\(241\) 6.77167 + 11.7289i 0.436202 + 0.755523i 0.997393 0.0721629i \(-0.0229901\pi\)
−0.561191 + 0.827686i \(0.689657\pi\)
\(242\) 12.4371 + 3.33252i 0.799489 + 0.214222i
\(243\) 0 0
\(244\) 0.197348i 0.0126339i
\(245\) −14.1327 + 6.72815i −0.902902 + 0.429846i
\(246\) 0 0
\(247\) −0.340650 + 0.0912770i −0.0216751 + 0.00580781i
\(248\) −5.00565 + 18.6813i −0.317859 + 1.18627i
\(249\) 0 0
\(250\) 4.40825 + 15.1149i 0.278802 + 0.955952i
\(251\) 20.2767i 1.27985i −0.768437 0.639925i \(-0.778965\pi\)
0.768437 0.639925i \(-0.221035\pi\)
\(252\) 0 0
\(253\) −4.93585 + 4.93585i −0.310315 + 0.310315i
\(254\) −9.37960 + 16.2460i −0.588529 + 1.01936i
\(255\) 0 0
\(256\) 0.202201 + 0.350222i 0.0126376 + 0.0218889i
\(257\) 6.39725 + 23.8748i 0.399049 + 1.48927i 0.814773 + 0.579781i \(0.196862\pi\)
−0.415723 + 0.909491i \(0.636472\pi\)
\(258\) 0 0
\(259\) 24.0989 12.5552i 1.49743 0.780145i
\(260\) −0.00142628 + 0.00548330i −8.84539e−5 + 0.000340060i
\(261\) 0 0
\(262\) 2.69864 10.0715i 0.166723 0.622217i
\(263\) 7.93511 29.6142i 0.489300 1.82609i −0.0705646 0.997507i \(-0.522480\pi\)
0.559864 0.828584i \(-0.310853\pi\)
\(264\) 0 0
\(265\) −3.53161 + 13.5773i −0.216945 + 0.834044i
\(266\) 0.378283 8.73059i 0.0231940 0.535307i
\(267\) 0 0
\(268\) −0.0533482 0.199098i −0.00325876 0.0121619i
\(269\) −11.7450 20.3429i −0.716104 1.24033i −0.962532 0.271167i \(-0.912590\pi\)
0.246428 0.969161i \(-0.420743\pi\)
\(270\) 0 0
\(271\) 14.2279 24.6434i 0.864282 1.49698i −0.00347606 0.999994i \(-0.501106\pi\)
0.867758 0.496987i \(-0.165560\pi\)
\(272\) 21.0422 21.0422i 1.27587 1.27587i
\(273\) 0 0
\(274\) 12.4980i 0.755031i
\(275\) −5.84986 + 3.49269i −0.352760 + 0.210617i
\(276\) 0 0
\(277\) 0.761143 2.84063i 0.0457327 0.170677i −0.939282 0.343145i \(-0.888508\pi\)
0.985015 + 0.172469i \(0.0551743\pi\)
\(278\) 11.2790 3.02220i 0.676471 0.181260i
\(279\) 0 0
\(280\) −14.2402 8.91943i −0.851014 0.533038i
\(281\) 18.1830i 1.08471i 0.840150 + 0.542354i \(0.182467\pi\)
−0.840150 + 0.542354i \(0.817533\pi\)
\(282\) 0 0
\(283\) −29.6744 7.95124i −1.76396 0.472652i −0.776448 0.630182i \(-0.782980\pi\)
−0.987514 + 0.157529i \(0.949647\pi\)
\(284\) −0.0416472 0.0721350i −0.00247131 0.00428043i
\(285\) 0 0
\(286\) 0.288536 0.0170615
\(287\) −4.03540 18.1740i −0.238202 1.07278i
\(288\) 0 0
\(289\) 34.0341 + 19.6496i 2.00201 + 1.15586i
\(290\) 4.16818 + 15.1121i 0.244764 + 0.887415i
\(291\) 0 0
\(292\) −0.0915875 + 0.0245408i −0.00535976 + 0.00143614i
\(293\) −2.15360 2.15360i −0.125815 0.125815i 0.641396 0.767210i \(-0.278356\pi\)
−0.767210 + 0.641396i \(0.778356\pi\)
\(294\) 0 0
\(295\) −3.00446 5.11694i −0.174927 0.297920i
\(296\) 25.2625 + 14.5853i 1.46835 + 0.847753i
\(297\) 0 0
\(298\) −6.25989 1.67733i −0.362626 0.0971652i
\(299\) 0.385129 0.667064i 0.0222726 0.0385773i
\(300\) 0 0
\(301\) −5.02899 + 7.89972i −0.289866 + 0.455332i
\(302\) 0.472103 0.472103i 0.0271665 0.0271665i
\(303\) 0 0
\(304\) 8.05581 4.65102i 0.462032 0.266754i
\(305\) −12.9270 + 22.7739i −0.740197 + 1.30403i
\(306\) 0 0
\(307\) −7.16976 7.16976i −0.409200 0.409200i 0.472260 0.881460i \(-0.343438\pi\)
−0.881460 + 0.472260i \(0.843438\pi\)
\(308\) 0.0182494 0.0579466i 0.00103985 0.00330182i
\(309\) 0 0
\(310\) 15.0506 15.2728i 0.854819 0.867437i
\(311\) 20.1351 11.6250i 1.14176 0.659193i 0.194892 0.980825i \(-0.437565\pi\)
0.946865 + 0.321631i \(0.104231\pi\)
\(312\) 0 0
\(313\) 4.23480 + 15.8045i 0.239365 + 0.893323i 0.976132 + 0.217177i \(0.0696848\pi\)
−0.736767 + 0.676147i \(0.763649\pi\)
\(314\) 15.5710 0.878723
\(315\) 0 0
\(316\) −0.203927 −0.0114718
\(317\) 0.257510 + 0.961041i 0.0144632 + 0.0539775i 0.972780 0.231729i \(-0.0744383\pi\)
−0.958317 + 0.285707i \(0.907772\pi\)
\(318\) 0 0
\(319\) −5.87485 + 3.39184i −0.328928 + 0.189907i
\(320\) −0.132136 18.0362i −0.00738665 1.00826i
\(321\) 0 0
\(322\) 12.8992 + 14.0676i 0.718845 + 0.783959i
\(323\) 12.4440 + 12.4440i 0.692403 + 0.692403i
\(324\) 0 0
\(325\) 0.523767 0.539345i 0.0290534 0.0299175i
\(326\) 23.2245 13.4087i 1.28629 0.742638i
\(327\) 0 0
\(328\) 14.1315 14.1315i 0.780281 0.780281i
\(329\) −2.64708 5.08088i −0.145938 0.280118i
\(330\) 0 0
\(331\) 8.83110 15.2959i 0.485401 0.840739i −0.514458 0.857515i \(-0.672007\pi\)
0.999859 + 0.0167761i \(0.00534024\pi\)
\(332\) −0.185733 0.0497670i −0.0101934 0.00273132i
\(333\) 0 0
\(334\) −8.62060 4.97710i −0.471698 0.272335i
\(335\) −6.88526 + 26.4703i −0.376182 + 1.44623i
\(336\) 0 0
\(337\) 3.21477 + 3.21477i 0.175119 + 0.175119i 0.789224 0.614105i \(-0.210483\pi\)
−0.614105 + 0.789224i \(0.710483\pi\)
\(338\) 17.6526 4.73000i 0.960175 0.257278i
\(339\) 0 0
\(340\) 0.272551 0.0751741i 0.0147812 0.00407689i
\(341\) 8.03572 + 4.63942i 0.435159 + 0.251239i
\(342\) 0 0
\(343\) −14.6819 + 11.2890i −0.792747 + 0.609551i
\(344\) −10.0529 −0.542018
\(345\) 0 0
\(346\) 7.61095 + 13.1825i 0.409167 + 0.708698i
\(347\) −0.639400 0.171327i −0.0343248 0.00919729i 0.241616 0.970372i \(-0.422323\pi\)
−0.275941 + 0.961175i \(0.588989\pi\)
\(348\) 0 0
\(349\) 10.8004i 0.578130i −0.957309 0.289065i \(-0.906656\pi\)
0.957309 0.289065i \(-0.0933444\pi\)
\(350\) 8.84868 + 16.3937i 0.472982 + 0.876278i
\(351\) 0 0
\(352\) 0.125465 0.0336182i 0.00668729 0.00179185i
\(353\) −0.660082 + 2.46346i −0.0351326 + 0.131117i −0.981265 0.192664i \(-0.938287\pi\)
0.946132 + 0.323781i \(0.104954\pi\)
\(354\) 0 0
\(355\) 0.0809717 + 11.0524i 0.00429753 + 0.586600i
\(356\) 0.0465132i 0.00246519i
\(357\) 0 0
\(358\) −16.7220 + 16.7220i −0.883788 + 0.883788i
\(359\) −15.4836 + 26.8184i −0.817194 + 1.41542i 0.0905479 + 0.995892i \(0.471138\pi\)
−0.907742 + 0.419529i \(0.862195\pi\)
\(360\) 0 0
\(361\) −6.74946 11.6904i −0.355235 0.615284i
\(362\) −0.569967 2.12715i −0.0299568 0.111800i
\(363\) 0 0
\(364\) −0.000290194 0.00669754i −1.52103e−5 0.000351046i
\(365\) 12.1767 + 3.16730i 0.637356 + 0.165784i
\(366\) 0 0
\(367\) 1.30619 4.87477i 0.0681826 0.254461i −0.923419 0.383795i \(-0.874617\pi\)
0.991601 + 0.129333i \(0.0412838\pi\)
\(368\) −5.25831 + 19.6243i −0.274108 + 1.02299i
\(369\) 0 0
\(370\) −16.3754 27.8891i −0.851314 1.44988i
\(371\) −0.718551 + 16.5838i −0.0373053 + 0.860990i
\(372\) 0 0
\(373\) 0.304003 + 1.13455i 0.0157407 + 0.0587449i 0.973349 0.229327i \(-0.0736525\pi\)
−0.957609 + 0.288072i \(0.906986\pi\)
\(374\) −7.19914 12.4693i −0.372259 0.644771i
\(375\) 0 0
\(376\) 3.07509 5.32620i 0.158585 0.274678i
\(377\) 0.529310 0.529310i 0.0272609 0.0272609i
\(378\) 0 0
\(379\) 12.4955i 0.641851i −0.947105 0.320925i \(-0.896006\pi\)
0.947105 0.320925i \(-0.103994\pi\)
\(380\) 0.0883752 0.000647451i 0.00453355 3.32135e-5i
\(381\) 0 0
\(382\) −9.39645 + 35.0680i −0.480764 + 1.79424i
\(383\) 18.9066 5.06600i 0.966080 0.258860i 0.258908 0.965902i \(-0.416637\pi\)
0.707172 + 0.707042i \(0.249971\pi\)
\(384\) 0 0
\(385\) −5.90168 + 5.49162i −0.300777 + 0.279879i
\(386\) 23.0127i 1.17131i
\(387\) 0 0
\(388\) 0.0847583 + 0.0227109i 0.00430295 + 0.00115297i
\(389\) −5.66554 9.81300i −0.287254 0.497539i 0.685899 0.727697i \(-0.259409\pi\)
−0.973153 + 0.230158i \(0.926076\pi\)
\(390\) 0 0
\(391\) −38.4368 −1.94383
\(392\) −18.6870 6.78748i −0.943837 0.342819i
\(393\) 0 0
\(394\) 8.73108 + 5.04089i 0.439865 + 0.253956i
\(395\) 23.5331 + 13.3579i 1.18408 + 0.672110i
\(396\) 0 0
\(397\) −11.8070 + 3.16369i −0.592578 + 0.158781i −0.542631 0.839971i \(-0.682572\pi\)
−0.0499470 + 0.998752i \(0.515905\pi\)
\(398\) −14.5160 14.5160i −0.727621 0.727621i
\(399\) 0 0
\(400\) −9.66235 + 17.3168i −0.483118 + 0.865838i
\(401\) −17.5382 10.1257i −0.875816 0.505653i −0.00653958 0.999979i \(-0.502082\pi\)
−0.869277 + 0.494326i \(0.835415\pi\)
\(402\) 0 0
\(403\) −0.989002 0.265002i −0.0492657 0.0132007i
\(404\) −0.0803704 + 0.139206i −0.00399858 + 0.00692574i
\(405\) 0 0
\(406\) 8.57025 + 16.4500i 0.425334 + 0.816398i
\(407\) 9.89601 9.89601i 0.490527 0.490527i
\(408\) 0 0
\(409\) 19.9017 11.4903i 0.984077 0.568157i 0.0805784 0.996748i \(-0.474323\pi\)
0.903499 + 0.428591i \(0.140990\pi\)
\(410\) −21.3596 + 5.89134i −1.05488 + 0.290952i
\(411\) 0 0
\(412\) 0.0987728 + 0.0987728i 0.00486618 + 0.00486618i
\(413\) −4.74501 5.17482i −0.233486 0.254636i
\(414\) 0 0
\(415\) 18.1736 + 17.9093i 0.892108 + 0.879131i
\(416\) −0.0124127 + 0.00716650i −0.000608585 + 0.000351366i
\(417\) 0 0
\(418\) −1.16488 4.34738i −0.0569759 0.212637i
\(419\) −16.8385 −0.822617 −0.411308 0.911496i \(-0.634928\pi\)
−0.411308 + 0.911496i \(0.634928\pi\)
\(420\) 0 0
\(421\) 33.5542 1.63533 0.817667 0.575692i \(-0.195267\pi\)
0.817667 + 0.575692i \(0.195267\pi\)
\(422\) 1.39671 + 5.21260i 0.0679909 + 0.253745i
\(423\) 0 0
\(424\) −15.4321 + 8.90973i −0.749450 + 0.432695i
\(425\) −36.3764 9.17798i −1.76452 0.445197i
\(426\) 0 0
\(427\) −9.30751 + 29.5538i −0.450422 + 1.43021i
\(428\) 0.00267399 + 0.00267399i 0.000129252 + 0.000129252i
\(429\) 0 0
\(430\) 9.69296 + 5.50195i 0.467436 + 0.265327i
\(431\) −11.5363 + 6.66051i −0.555686 + 0.320826i −0.751412 0.659833i \(-0.770627\pi\)
0.195726 + 0.980659i \(0.437294\pi\)
\(432\) 0 0
\(433\) 23.3937 23.3937i 1.12423 1.12423i 0.133129 0.991099i \(-0.457497\pi\)
0.991099 0.133129i \(-0.0425025\pi\)
\(434\) 13.6248 21.4023i 0.654010 1.02734i
\(435\) 0 0
\(436\) −0.0456435 + 0.0790569i −0.00218593 + 0.00378614i
\(437\) −11.6055 3.10968i −0.555166 0.148756i
\(438\) 0 0
\(439\) −2.48600 1.43529i −0.118650 0.0685027i 0.439500 0.898242i \(-0.355155\pi\)
−0.558151 + 0.829740i \(0.688489\pi\)
\(440\) −8.37533 2.17853i −0.399278 0.103857i
\(441\) 0 0
\(442\) 1.12345 + 1.12345i 0.0534372 + 0.0534372i
\(443\) 16.6068 4.44977i 0.789011 0.211415i 0.158257 0.987398i \(-0.449413\pi\)
0.630754 + 0.775983i \(0.282746\pi\)
\(444\) 0 0
\(445\) −3.04678 + 5.36760i −0.144431 + 0.254449i
\(446\) 2.11770 + 1.22266i 0.100276 + 0.0578945i
\(447\) 0 0
\(448\) −4.62602 20.8339i −0.218559 0.984310i
\(449\) 0.314555 0.0148448 0.00742239 0.999972i \(-0.497637\pi\)
0.00742239 + 0.999972i \(0.497637\pi\)
\(450\) 0 0
\(451\) −4.79406 8.30355i −0.225743 0.390999i
\(452\) 0.177299 + 0.0475071i 0.00833944 + 0.00223455i
\(453\) 0 0
\(454\) 17.7249i 0.831871i
\(455\) 0.472201 0.753885i 0.0221371 0.0353427i
\(456\) 0 0
\(457\) −17.6258 + 4.72282i −0.824501 + 0.220924i −0.646313 0.763072i \(-0.723690\pi\)
−0.178188 + 0.983997i \(0.557023\pi\)
\(458\) −9.57612 + 35.7386i −0.447463 + 1.66995i
\(459\) 0 0
\(460\) −0.135486 + 0.137486i −0.00631705 + 0.00641030i
\(461\) 15.4893i 0.721410i −0.932680 0.360705i \(-0.882536\pi\)
0.932680 0.360705i \(-0.117464\pi\)
\(462\) 0 0
\(463\) 21.9975 21.9975i 1.02231 1.02231i 0.0225635 0.999745i \(-0.492817\pi\)
0.999745 0.0225635i \(-0.00718281\pi\)
\(464\) −9.87208 + 17.0989i −0.458300 + 0.793798i
\(465\) 0 0
\(466\) 2.74742 + 4.75867i 0.127272 + 0.220441i
\(467\) −8.28740 30.9290i −0.383495 1.43122i −0.840525 0.541772i \(-0.817754\pi\)
0.457030 0.889451i \(-0.348913\pi\)
\(468\) 0 0
\(469\) −1.40089 + 32.3320i −0.0646873 + 1.49295i
\(470\) −5.87999 + 3.45249i −0.271224 + 0.159252i
\(471\) 0 0
\(472\) 1.95072 7.28018i 0.0897892 0.335098i
\(473\) −1.24830 + 4.65872i −0.0573969 + 0.214208i
\(474\) 0 0
\(475\) −10.2409 5.71417i −0.469883 0.262184i
\(476\) 0.296679 0.154566i 0.0135983 0.00708454i
\(477\) 0 0
\(478\) 6.89586 + 25.7357i 0.315409 + 1.17712i
\(479\) −5.51544 9.55302i −0.252007 0.436489i 0.712071 0.702107i \(-0.247757\pi\)
−0.964078 + 0.265618i \(0.914424\pi\)
\(480\) 0 0
\(481\) −0.772155 + 1.33741i −0.0352072 + 0.0609807i
\(482\) 13.4862 13.4862i 0.614278 0.614278i
\(483\) 0 0
\(484\) 0.154075i 0.00700340i
\(485\) −8.29343 8.17280i −0.376585 0.371108i
\(486\) 0 0
\(487\) −10.2546 + 38.2705i −0.464678 + 1.73420i 0.193275 + 0.981145i \(0.438089\pi\)
−0.657953 + 0.753059i \(0.728578\pi\)
\(488\) −32.1289 + 8.60890i −1.45440 + 0.389707i
\(489\) 0 0
\(490\) 14.3031 + 16.7718i 0.646148 + 0.757672i
\(491\) 36.6693i 1.65486i −0.561567 0.827431i \(-0.689801\pi\)
0.561567 0.827431i \(-0.310199\pi\)
\(492\) 0 0
\(493\) −36.0811 9.66789i −1.62501 0.435420i
\(494\) 0.248321 + 0.430104i 0.0111725 + 0.0193513i
\(495\) 0 0
\(496\) 27.0064 1.21262
\(497\) 2.83477 + 12.7668i 0.127157 + 0.572669i
\(498\) 0 0
\(499\) −16.0187 9.24839i −0.717094 0.414015i 0.0965879 0.995324i \(-0.469207\pi\)
−0.813682 + 0.581310i \(0.802540\pi\)
\(500\) −0.161052 + 0.0977644i −0.00720247 + 0.00437216i
\(501\) 0 0
\(502\) −27.5815 + 7.39044i −1.23102 + 0.329851i
\(503\) 12.8656 + 12.8656i 0.573650 + 0.573650i 0.933146 0.359497i \(-0.117052\pi\)
−0.359497 + 0.933146i \(0.617052\pi\)
\(504\) 0 0
\(505\) 18.3932 10.7997i 0.818485 0.480582i
\(506\) 8.51306 + 4.91502i 0.378452 + 0.218499i
\(507\) 0 0
\(508\) −0.216827 0.0580986i −0.00962014 0.00257771i
\(509\) 11.6839 20.2371i 0.517879 0.896994i −0.481905 0.876224i \(-0.660055\pi\)
0.999784 0.0207700i \(-0.00661177\pi\)
\(510\) 0 0
\(511\) 14.8731 + 0.644428i 0.657948 + 0.0285078i
\(512\) 16.1975 16.1975i 0.715835 0.715835i
\(513\) 0 0
\(514\) 30.1443 17.4038i 1.32961 0.767649i
\(515\) −4.92838 17.8683i −0.217170 0.787371i
\(516\) 0 0
\(517\) −2.08642 2.08642i −0.0917607 0.0917607i
\(518\) −25.8619 28.2045i −1.13631 1.23924i
\(519\) 0 0
\(520\) 0.954917 0.00699588i 0.0418759 0.000306790i
\(521\) −10.3332 + 5.96588i −0.452706 + 0.261370i −0.708972 0.705236i \(-0.750841\pi\)
0.256267 + 0.966606i \(0.417508\pi\)
\(522\) 0 0
\(523\) 1.33330 + 4.97594i 0.0583011 + 0.217583i 0.988930 0.148381i \(-0.0474062\pi\)
−0.930629 + 0.365964i \(0.880739\pi\)
\(524\) 0.124768 0.00545052
\(525\) 0 0
\(526\) −43.1752 −1.88253
\(527\) 13.2239 + 49.3523i 0.576043 + 2.14982i
\(528\) 0 0
\(529\) 2.80738 1.62084i 0.122060 0.0704713i
\(530\) 19.7558 0.144734i 0.858136 0.00628685i
\(531\) 0 0
\(532\) 0.102083 0.0226669i 0.00442588 0.000982735i
\(533\) 0.748131 + 0.748131i 0.0324051 + 0.0324051i
\(534\) 0 0
\(535\) −0.133422 0.483733i −0.00576832 0.0209136i
\(536\) −30.0866 + 17.3705i −1.29954 + 0.750291i
\(537\) 0 0
\(538\) −23.3908 + 23.3908i −1.00845 + 1.00845i
\(539\) −5.46586 + 7.81710i −0.235431 + 0.336706i
\(540\) 0 0
\(541\) −1.79429 + 3.10781i −0.0771427 + 0.133615i −0.902016 0.431703i \(-0.857913\pi\)
0.824873 + 0.565318i \(0.191246\pi\)
\(542\) −38.7072 10.3716i −1.66262 0.445497i
\(543\) 0 0
\(544\) 0.619410 + 0.357616i 0.0265570 + 0.0153327i
\(545\) 10.4457 6.13333i 0.447447 0.262723i
\(546\) 0 0
\(547\) −6.56221 6.56221i −0.280580 0.280580i 0.552761 0.833340i \(-0.313574\pi\)
−0.833340 + 0.552761i \(0.813574\pi\)
\(548\) 0.144457 0.0387072i 0.00617090 0.00165349i
\(549\) 0 0
\(550\) 6.88312 + 6.68431i 0.293497 + 0.285020i
\(551\) −10.1120 5.83819i −0.430788 0.248715i
\(552\) 0 0
\(553\) 30.5390 + 9.61778i 1.29865 + 0.408990i
\(554\) −4.14141 −0.175951
\(555\) 0 0
\(556\) 0.0698639 + 0.121008i 0.00296289 + 0.00513187i
\(557\) −4.41306 1.18248i −0.186987 0.0501031i 0.164110 0.986442i \(-0.447525\pi\)
−0.351097 + 0.936339i \(0.614191\pi\)
\(558\) 0 0
\(559\) 0.532209i 0.0225101i
\(560\) −6.88397 + 22.4307i −0.290901 + 0.947869i
\(561\) 0 0
\(562\) 24.7336 6.62735i 1.04332 0.279558i
\(563\) −4.87949 + 18.2105i −0.205646 + 0.767480i 0.783606 + 0.621258i \(0.213378\pi\)
−0.989252 + 0.146222i \(0.953289\pi\)
\(564\) 0 0
\(565\) −17.3484 17.0960i −0.729851 0.719234i
\(566\) 43.2630i 1.81848i
\(567\) 0 0
\(568\) −9.92703 + 9.92703i −0.416529 + 0.416529i
\(569\) −5.64958 + 9.78536i −0.236843 + 0.410224i −0.959807 0.280662i \(-0.909446\pi\)
0.722964 + 0.690886i \(0.242779\pi\)
\(570\) 0 0
\(571\) 7.98119 + 13.8238i 0.334002 + 0.578509i 0.983293 0.182032i \(-0.0582673\pi\)
−0.649290 + 0.760541i \(0.724934\pi\)
\(572\) 0.000893617 0.00333502i 3.73640e−5 0.000139444i
\(573\) 0 0
\(574\) −23.2505 + 12.1133i −0.970457 + 0.505597i
\(575\) 24.6408 6.99099i 1.02759 0.291544i
\(576\) 0 0
\(577\) 2.86742 10.7014i 0.119372 0.445503i −0.880205 0.474595i \(-0.842595\pi\)
0.999577 + 0.0290913i \(0.00926136\pi\)
\(578\) 14.3238 53.4571i 0.595791 2.22352i
\(579\) 0 0
\(580\) −0.161763 + 0.0949810i −0.00671686 + 0.00394387i
\(581\) 25.4673 + 16.2126i 1.05656 + 0.672611i
\(582\) 0 0
\(583\) 2.21269 + 8.25788i 0.0916403 + 0.342006i
\(584\) 7.99064 + 13.8402i 0.330655 + 0.572711i
\(585\) 0 0
\(586\) −2.14451 + 3.71440i −0.0885890 + 0.153441i
\(587\) 6.15146 6.15146i 0.253898 0.253898i −0.568669 0.822567i \(-0.692541\pi\)
0.822567 + 0.568669i \(0.192541\pi\)
\(588\) 0 0
\(589\) 15.9712i 0.658081i
\(590\) −5.86529 + 5.95187i −0.241470 + 0.245034i
\(591\) 0 0
\(592\) 10.5425 39.3452i 0.433294 1.61708i
\(593\) 24.5364 6.57452i 1.00759 0.269983i 0.282968 0.959129i \(-0.408681\pi\)
0.724622 + 0.689146i \(0.242014\pi\)
\(594\) 0 0
\(595\) −44.3613 1.59660i −1.81864 0.0654542i
\(596\) 0.0775493i 0.00317654i
\(597\) 0 0
\(598\) −1.04775 0.280744i −0.0428457 0.0114805i
\(599\) 4.21188 + 7.29518i 0.172093 + 0.298073i 0.939151 0.343504i \(-0.111614\pi\)
−0.767059 + 0.641577i \(0.778280\pi\)
\(600\) 0 0
\(601\) −33.7338 −1.37603 −0.688016 0.725696i \(-0.741518\pi\)
−0.688016 + 0.725696i \(0.741518\pi\)
\(602\) 12.5786 + 3.96144i 0.512666 + 0.161456i
\(603\) 0 0
\(604\) 0.00691891 + 0.00399464i 0.000281527 + 0.000162539i
\(605\) 10.0924 17.7802i 0.410316 0.722866i
\(606\) 0 0
\(607\) 41.6118 11.1499i 1.68897 0.452558i 0.718847 0.695168i \(-0.244670\pi\)
0.970124 + 0.242610i \(0.0780034\pi\)
\(608\) 0.158090 + 0.158090i 0.00641141 + 0.00641141i
\(609\) 0 0
\(610\) 35.6900 + 9.28341i 1.44505 + 0.375874i
\(611\) 0.281973 + 0.162797i 0.0114074 + 0.00658606i
\(612\) 0 0
\(613\) −19.7127 5.28200i −0.796188 0.213338i −0.162278 0.986745i \(-0.551884\pi\)
−0.633910 + 0.773407i \(0.718551\pi\)
\(614\) −7.13949 + 12.3660i −0.288127 + 0.499050i
\(615\) 0 0
\(616\) −10.2300 0.443249i −0.412178 0.0178590i
\(617\) −11.0864 + 11.0864i −0.446321 + 0.446321i −0.894130 0.447808i \(-0.852205\pi\)
0.447808 + 0.894130i \(0.352205\pi\)
\(618\) 0 0
\(619\) 5.11052 2.95056i 0.205409 0.118593i −0.393767 0.919210i \(-0.628828\pi\)
0.599176 + 0.800617i \(0.295495\pi\)
\(620\) 0.223143 + 0.126661i 0.00896162 + 0.00508682i
\(621\) 0 0
\(622\) −23.1519 23.1519i −0.928305 0.928305i
\(623\) −2.19370 + 6.96558i −0.0878886 + 0.279070i
\(624\) 0 0
\(625\) 24.9893 0.732499i 0.999571 0.0292999i
\(626\) 19.9547 11.5209i 0.797550 0.460466i
\(627\) 0 0
\(628\) 0.0482245 + 0.179976i 0.00192437 + 0.00718184i
\(629\) 77.0628 3.07270
\(630\) 0 0
\(631\) 26.3658 1.04961 0.524803 0.851224i \(-0.324139\pi\)
0.524803 + 0.851224i \(0.324139\pi\)
\(632\) 8.89589 + 33.1999i 0.353859 + 1.32062i
\(633\) 0 0
\(634\) 1.21341 0.700561i 0.0481906 0.0278228i
\(635\) 21.2161 + 20.9075i 0.841935 + 0.829688i
\(636\) 0 0
\(637\) 0.359333 0.989303i 0.0142373 0.0391976i
\(638\) 6.75505 + 6.75505i 0.267435 + 0.267435i
\(639\) 0 0
\(640\) −24.0748 + 6.64024i −0.951641 + 0.262479i
\(641\) 11.1623 6.44455i 0.440884 0.254544i −0.263089 0.964772i \(-0.584741\pi\)
0.703972 + 0.710227i \(0.251408\pi\)
\(642\) 0 0
\(643\) 13.4467 13.4467i 0.530286 0.530286i −0.390372 0.920657i \(-0.627654\pi\)
0.920657 + 0.390372i \(0.127654\pi\)
\(644\) −0.122650 + 0.192663i −0.00483309 + 0.00759199i
\(645\) 0 0
\(646\) 12.3915 21.4627i 0.487536 0.844437i
\(647\) 3.87299 + 1.03777i 0.152263 + 0.0407988i 0.334145 0.942522i \(-0.391552\pi\)
−0.181882 + 0.983320i \(0.558219\pi\)
\(648\) 0 0
\(649\) −3.13155 1.80800i −0.122924 0.0709702i
\(650\) −0.924552 0.515878i −0.0362639 0.0202344i
\(651\) 0 0
\(652\) 0.226911 + 0.226911i 0.00888653 + 0.00888653i
\(653\) 34.1463 9.14947i 1.33625 0.358047i 0.481207 0.876607i \(-0.340199\pi\)
0.855041 + 0.518561i \(0.173532\pi\)
\(654\) 0 0
\(655\) −14.3982 8.17275i −0.562584 0.319336i
\(656\) −24.1678 13.9533i −0.943593 0.544783i
\(657\) 0 0
\(658\) −5.94650 + 5.45259i −0.231819 + 0.212564i
\(659\) 9.12406 0.355423 0.177712 0.984083i \(-0.443131\pi\)
0.177712 + 0.984083i \(0.443131\pi\)
\(660\) 0 0
\(661\) −9.28949 16.0899i −0.361319 0.625823i 0.626859 0.779133i \(-0.284340\pi\)
−0.988178 + 0.153310i \(0.951007\pi\)
\(662\) −24.0252 6.43752i −0.933764 0.250201i
\(663\) 0 0
\(664\) 32.4089i 1.25771i
\(665\) −13.2652 4.07107i −0.514401 0.157869i
\(666\) 0 0
\(667\) 24.6334 6.60049i 0.953808 0.255572i
\(668\) 0.0308289 0.115055i 0.00119281 0.00445161i
\(669\) 0 0
\(670\) 38.5160 0.282175i 1.48800 0.0109014i
\(671\) 15.9581i 0.616056i
\(672\) 0 0
\(673\) 7.94341 7.94341i 0.306196 0.306196i −0.537236 0.843432i \(-0.680532\pi\)
0.843432 + 0.537236i \(0.180532\pi\)
\(674\) 3.20119 5.54463i 0.123305 0.213571i
\(675\) 0 0
\(676\) 0.109343 + 0.189387i 0.00420549 + 0.00728412i
\(677\) −2.38854 8.91415i −0.0917991 0.342599i 0.904716 0.426016i \(-0.140083\pi\)
−0.996515 + 0.0834172i \(0.973417\pi\)
\(678\) 0 0
\(679\) −11.6219 7.39852i −0.446006 0.283929i
\(680\) −24.1281 41.0928i −0.925269 1.57584i
\(681\) 0 0
\(682\) 3.38196 12.6216i 0.129502 0.483307i
\(683\) −3.44703 + 12.8645i −0.131897 + 0.492246i −0.999991 0.00415310i \(-0.998678\pi\)
0.868094 + 0.496399i \(0.165345\pi\)
\(684\) 0 0
\(685\) −19.2058 4.99566i −0.733814 0.190874i
\(686\) 20.7073 + 15.8565i 0.790607 + 0.605404i
\(687\) 0 0
\(688\) 3.63322 + 13.5594i 0.138515 + 0.516946i
\(689\) −0.471687 0.816986i −0.0179699 0.0311247i
\(690\) 0 0
\(691\) −8.15132 + 14.1185i −0.310091 + 0.537093i −0.978382 0.206807i \(-0.933693\pi\)
0.668291 + 0.743900i \(0.267026\pi\)
\(692\) −0.128798 + 0.128798i −0.00489616 + 0.00489616i
\(693\) 0 0
\(694\) 0.932194i 0.0353856i
\(695\) −0.135831 18.5406i −0.00515238 0.703284i
\(696\) 0 0
\(697\) 13.6647 50.9972i 0.517586 1.93166i
\(698\) −14.6913 + 3.93652i −0.556073 + 0.148999i
\(699\) 0 0
\(700\) −0.162080 + 0.153049i −0.00612604 + 0.00578472i
\(701\) 6.83585i 0.258186i 0.991632 + 0.129093i \(0.0412066\pi\)
−0.991632 + 0.129093i \(0.958793\pi\)
\(702\) 0 0
\(703\) 23.2681 + 6.23468i 0.877574 + 0.235145i
\(704\) −5.49571 9.51885i −0.207127 0.358755i
\(705\) 0 0
\(706\) 3.59153 0.135169
\(707\) 18.6012 17.0562i 0.699571 0.641466i
\(708\) 0 0
\(709\) −12.3735 7.14386i −0.464697 0.268293i 0.249320 0.968421i \(-0.419793\pi\)
−0.714017 + 0.700128i \(0.753126\pi\)
\(710\) 15.0046 4.13852i 0.563113 0.155316i
\(711\) 0 0
\(712\) −7.57249 + 2.02904i −0.283791 + 0.0760416i
\(713\) −24.6657 24.6657i −0.923738 0.923738i
\(714\) 0 0
\(715\) 0.115333 0.443395i 0.00431320 0.0165820i
\(716\) −0.245070 0.141491i −0.00915870 0.00528778i
\(717\) 0 0
\(718\) 42.1234 + 11.2869i 1.57203 + 0.421225i
\(719\) −13.6899 + 23.7117i −0.510549 + 0.884297i 0.489376 + 0.872073i \(0.337224\pi\)
−0.999925 + 0.0122240i \(0.996109\pi\)
\(720\) 0 0
\(721\) −10.1333 19.4501i −0.377384 0.724360i
\(722\) −13.4419 + 13.4419i −0.500257 + 0.500257i
\(723\) 0 0
\(724\) 0.0228212 0.0131758i 0.000848145 0.000489676i
\(725\) 24.8890 0.364702i 0.924355 0.0135447i
\(726\) 0 0
\(727\) 23.4350 + 23.4350i 0.869155 + 0.869155i 0.992379 0.123224i \(-0.0393235\pi\)
−0.123224 + 0.992379i \(0.539323\pi\)
\(728\) 1.10304 0.244922i 0.0408813 0.00907741i
\(729\) 0 0
\(730\) −0.129804 17.7178i −0.00480426 0.655767i
\(731\) −22.9998 + 13.2789i −0.850677 + 0.491139i
\(732\) 0 0
\(733\) −12.4724 46.5476i −0.460678 1.71927i −0.670835 0.741607i \(-0.734064\pi\)
0.210157 0.977668i \(-0.432603\pi\)
\(734\) −7.10703 −0.262325
\(735\) 0 0
\(736\) −0.488306 −0.0179992
\(737\) 4.31388 + 16.0996i 0.158904 + 0.593038i
\(738\) 0 0
\(739\) −28.9487 + 16.7136i −1.06490 + 0.614818i −0.926783 0.375598i \(-0.877437\pi\)
−0.138114 + 0.990416i \(0.544104\pi\)
\(740\) 0.271638 0.275648i 0.00998563 0.0101330i
\(741\) 0 0
\(742\) 22.8202 5.06706i 0.837756 0.186018i
\(743\) −4.26258 4.26258i −0.156379 0.156379i 0.624581 0.780960i \(-0.285270\pi\)
−0.780960 + 0.624581i \(0.785270\pi\)
\(744\) 0 0
\(745\) −5.07975 + 8.94916i −0.186108 + 0.327872i
\(746\) 1.43248 0.827044i 0.0524469 0.0302802i
\(747\) 0 0
\(748\) 0.121829 0.121829i 0.00445451 0.00445451i
\(749\) −0.274330 0.526556i −0.0100238 0.0192399i
\(750\) 0 0
\(751\) −17.2308 + 29.8447i −0.628762 + 1.08905i 0.359039 + 0.933323i \(0.383105\pi\)
−0.987800 + 0.155725i \(0.950229\pi\)
\(752\) −8.29533 2.22273i −0.302500 0.0810545i
\(753\) 0 0
\(754\) −0.912922 0.527075i −0.0332466 0.0191950i
\(755\) −0.536777 0.914193i −0.0195353 0.0332709i
\(756\) 0 0
\(757\) −13.7624 13.7624i −0.500202 0.500202i 0.411299 0.911501i \(-0.365075\pi\)
−0.911501 + 0.411299i \(0.865075\pi\)
\(758\) −16.9971 + 4.55436i −0.617363 + 0.165422i
\(759\) 0 0
\(760\) −3.96059 14.3595i −0.143666 0.520874i
\(761\) 10.6969 + 6.17587i 0.387763 + 0.223875i 0.681190 0.732106i \(-0.261463\pi\)
−0.293427 + 0.955981i \(0.594796\pi\)
\(762\) 0 0
\(763\) 10.5639 9.68648i 0.382439 0.350674i
\(764\) −0.434433 −0.0157172
\(765\) 0 0
\(766\) −13.7821 23.8714i −0.497969 0.862507i
\(767\) 0.385418 + 0.103272i 0.0139166 + 0.00372895i
\(768\) 0 0
\(769\) 6.22694i 0.224549i 0.993677 + 0.112275i \(0.0358136\pi\)
−0.993677 + 0.112275i \(0.964186\pi\)
\(770\) 9.62107 + 6.02622i 0.346719 + 0.217170i
\(771\) 0 0
\(772\) 0.265990 0.0712719i 0.00957320 0.00256513i
\(773\) −2.27482 + 8.48975i −0.0818197 + 0.305355i −0.994693 0.102888i \(-0.967192\pi\)
0.912873 + 0.408243i \(0.133858\pi\)
\(774\) 0 0
\(775\) −17.4538 29.2332i −0.626960 1.05009i
\(776\) 14.7896i 0.530917i
\(777\) 0 0
\(778\) −11.2832 + 11.2832i −0.404524 + 0.404524i
\(779\) 8.25175 14.2924i 0.295649 0.512080i
\(780\) 0 0
\(781\) 3.36771 + 5.83304i 0.120506 + 0.208723i
\(782\) 14.0094 + 52.2840i 0.500977 + 1.86967i
\(783\) 0 0
\(784\) −2.40127 + 27.6581i −0.0857595 + 0.987788i
\(785\) 6.22399 23.9281i 0.222144 0.854030i
\(786\) 0 0
\(787\) 9.63721 35.9666i 0.343530 1.28207i −0.550791 0.834643i \(-0.685674\pi\)
0.894321 0.447427i \(-0.147659\pi\)
\(788\) −0.0312240 + 0.116530i −0.00111231 + 0.00415119i
\(789\) 0 0
\(790\) 9.59288 36.8797i 0.341299 1.31212i
\(791\) −24.3108 15.4764i −0.864393 0.550276i
\(792\) 0 0
\(793\) −0.455761 1.70092i −0.0161845 0.0604015i
\(794\) 8.60686 + 14.9075i 0.305446 + 0.529048i
\(795\) 0 0
\(796\) 0.122825 0.212739i 0.00435342 0.00754034i
\(797\) −15.8626 + 15.8626i −0.561880 + 0.561880i −0.929841 0.367961i \(-0.880056\pi\)
0.367961 + 0.929841i \(0.380056\pi\)
\(798\) 0 0
\(799\) 16.2475i 0.574796i
\(800\) −0.462131 0.116598i −0.0163388 0.00412237i
\(801\) 0 0
\(802\) −7.38122 + 27.5471i −0.260640 + 0.972722i
\(803\) 7.40603 1.98444i 0.261353 0.0700293i
\(804\) 0 0
\(805\) 26.7739 14.1992i 0.943655 0.500457i
\(806\) 1.44189i 0.0507883i
\(807\) 0 0
\(808\) 26.1691 + 7.01199i 0.920626 + 0.246681i
\(809\) 20.0158 + 34.6684i 0.703718 + 1.21888i 0.967152 + 0.254199i \(0.0818117\pi\)
−0.263434 + 0.964678i \(0.584855\pi\)
\(810\) 0 0
\(811\) 32.9623 1.15746 0.578732 0.815518i \(-0.303548\pi\)
0.578732 + 0.815518i \(0.303548\pi\)
\(812\) −0.163593 + 0.150005i −0.00574099 + 0.00526415i
\(813\) 0 0
\(814\) −17.0680 9.85423i −0.598234 0.345391i
\(815\) −11.3220 41.0490i −0.396592 1.43788i
\(816\) 0 0
\(817\) −8.01880 + 2.14863i −0.280542 + 0.0751711i
\(818\) −22.8835 22.8835i −0.800103 0.800103i
\(819\) 0 0
\(820\) −0.134247 0.228637i −0.00468810 0.00798437i
\(821\) −4.48457 2.58917i −0.156513 0.0903625i 0.419698 0.907664i \(-0.362136\pi\)
−0.576211 + 0.817301i \(0.695469\pi\)
\(822\) 0 0
\(823\) −6.85811 1.83762i −0.239059 0.0640556i 0.137300 0.990529i \(-0.456157\pi\)
−0.376359 + 0.926474i \(0.622824\pi\)
\(824\) 11.7717 20.3893i 0.410088 0.710294i
\(825\) 0 0
\(826\) −5.30963 + 8.34055i −0.184746 + 0.290205i
\(827\) −19.9878 + 19.9878i −0.695043 + 0.695043i −0.963337 0.268294i \(-0.913540\pi\)
0.268294 + 0.963337i \(0.413540\pi\)
\(828\) 0 0
\(829\) −31.9596 + 18.4519i −1.11000 + 0.640860i −0.938830 0.344381i \(-0.888089\pi\)
−0.171173 + 0.985241i \(0.554756\pi\)
\(830\) 17.7373 31.2484i 0.615671 1.08465i
\(831\) 0 0
\(832\) 0.857627 + 0.857627i 0.0297329 + 0.0297329i
\(833\) −51.7190 + 9.15485i −1.79196 + 0.317197i
\(834\) 0 0
\(835\) −11.0941 + 11.2579i −0.383929 + 0.389596i
\(836\) 0.0466411 0.0269283i 0.00161312 0.000931334i
\(837\) 0 0
\(838\) 6.13731 + 22.9048i 0.212010 + 0.791232i
\(839\) −20.5318 −0.708836 −0.354418 0.935087i \(-0.615321\pi\)
−0.354418 + 0.935087i \(0.615321\pi\)
\(840\) 0 0
\(841\) −4.21616 −0.145385
\(842\) −12.2299 45.6424i −0.421469 1.57294i
\(843\) 0 0
\(844\) −0.0559238 + 0.0322876i −0.00192497 + 0.00111138i
\(845\) −0.212587 29.0175i −0.00731323 0.998234i
\(846\) 0 0
\(847\) 7.26661 23.0735i 0.249684 0.792813i
\(848\) 17.5947 + 17.5947i 0.604205 + 0.604205i
\(849\) 0 0
\(850\) 0.774074 + 52.8266i 0.0265505 + 1.81194i
\(851\) −45.5638 + 26.3063i −1.56191 + 0.901768i
\(852\) 0 0
\(853\) 8.22782 8.22782i 0.281715 0.281715i −0.552078 0.833793i \(-0.686165\pi\)
0.833793 + 0.552078i \(0.186165\pi\)
\(854\) 43.5933 + 1.88883i 1.49173 + 0.0646343i
\(855\) 0 0
\(856\) 0.318686 0.551981i 0.0108925 0.0188663i
\(857\) 0.952220 + 0.255147i 0.0325272 + 0.00871564i 0.275046 0.961431i \(-0.411307\pi\)
−0.242519 + 0.970147i \(0.577974\pi\)
\(858\) 0 0
\(859\) 29.3440 + 16.9418i 1.00121 + 0.578046i 0.908605 0.417657i \(-0.137149\pi\)
0.0926009 + 0.995703i \(0.470482\pi\)
\(860\) −0.0335741 + 0.129075i −0.00114487 + 0.00440143i
\(861\) 0 0
\(862\) 13.2648 + 13.2648i 0.451800 + 0.451800i
\(863\) 10.1675 2.72438i 0.346106 0.0927388i −0.0815784 0.996667i \(-0.525996\pi\)
0.427684 + 0.903928i \(0.359329\pi\)
\(864\) 0 0
\(865\) 23.2999 6.42651i 0.792222 0.218508i
\(866\) −40.3480 23.2949i −1.37108 0.791593i
\(867\) 0 0
\(868\) 0.289574 + 0.0911966i 0.00982877 + 0.00309541i
\(869\) 16.4901 0.559388
\(870\) 0 0
\(871\) −0.919605 1.59280i −0.0311596 0.0539701i
\(872\) 14.8618 + 3.98221i 0.503284 + 0.134855i
\(873\) 0 0
\(874\) 16.9199i 0.572324i
\(875\) 28.7292 7.04502i 0.971225 0.238165i
\(876\) 0 0
\(877\) −21.2308 + 5.68877i −0.716912 + 0.192096i −0.598793 0.800904i \(-0.704353\pi\)
−0.118119 + 0.992999i \(0.537686\pi\)
\(878\) −1.04627 + 3.90473i −0.0353099 + 0.131778i
\(879\) 0 0
\(880\) 0.0885290 + 12.0840i 0.00298431 + 0.407350i
\(881\) 6.52365i 0.219787i 0.993943 + 0.109894i \(0.0350510\pi\)
−0.993943 + 0.109894i \(0.964949\pi\)
\(882\) 0 0
\(883\) −10.6633 + 10.6633i −0.358849 + 0.358849i −0.863388 0.504540i \(-0.831662\pi\)
0.504540 + 0.863388i \(0.331662\pi\)
\(884\) −0.00950593 + 0.0164648i −0.000319719 + 0.000553770i
\(885\) 0 0
\(886\) −12.1057 20.9676i −0.406698 0.704421i
\(887\) −5.81970 21.7194i −0.195406 0.729267i −0.992161 0.124964i \(-0.960118\pi\)
0.796755 0.604303i \(-0.206548\pi\)
\(888\) 0 0
\(889\) 29.7308 + 18.9268i 0.997140 + 0.634783i
\(890\) 8.41182 + 2.18802i 0.281965 + 0.0733425i
\(891\) 0 0
\(892\) −0.00757331 + 0.0282640i −0.000253573 + 0.000946348i
\(893\) 1.31449 4.90573i 0.0439876 0.164164i
\(894\) 0 0
\(895\) 19.0128 + 32.3810i 0.635528 + 1.08238i
\(896\) −26.2061 + 13.6531i −0.875484 + 0.456118i
\(897\) 0 0
\(898\) −0.114649 0.427877i −0.00382589 0.0142784i
\(899\) −16.9499 29.3581i −0.565311 0.979147i
\(900\) 0 0
\(901\) −23.5377 + 40.7685i −0.784155 + 1.35820i
\(902\) −9.54764 + 9.54764i −0.317901 + 0.317901i
\(903\) 0 0
\(904\) 30.9372i 1.02896i
\(905\) −3.49663 + 0.0256169i −0.116232 + 0.000851533i
\(906\) 0 0
\(907\) −10.1119 + 37.7381i −0.335760 + 1.25307i 0.567283 + 0.823523i \(0.307994\pi\)
−0.903043 + 0.429550i \(0.858672\pi\)
\(908\) 0.204872 0.0548953i 0.00679892 0.00182176i
\(909\) 0 0
\(910\) −1.19759 0.367539i −0.0396996 0.0121838i
\(911\) 45.1293i 1.49520i 0.664148 + 0.747601i \(0.268794\pi\)
−0.664148 + 0.747601i \(0.731206\pi\)
\(912\) 0 0
\(913\) 15.0189 + 4.02430i 0.497053 + 0.133185i
\(914\) 12.8485 + 22.2543i 0.424991 + 0.736106i
\(915\) 0 0
\(916\) −0.442740 −0.0146285
\(917\) −18.6846 5.88443i −0.617022 0.194321i
\(918\) 0 0
\(919\) −11.3866 6.57407i −0.375610 0.216859i 0.300296 0.953846i \(-0.402914\pi\)
−0.675907 + 0.736987i \(0.736248\pi\)
\(920\) 28.2934 + 16.0600i 0.932804 + 0.529481i
\(921\) 0 0
\(922\) −21.0695 + 5.64555i −0.693886 + 0.185926i
\(923\) −0.525544 0.525544i −0.0172985 0.0172985i
\(924\) 0 0
\(925\) −49.4029 + 14.0164i −1.62436 + 0.460856i
\(926\) −37.9399 21.9046i −1.24678 0.719830i
\(927\) 0 0
\(928\) −0.458378 0.122822i −0.0150470 0.00403183i
\(929\) −9.19334 + 15.9233i −0.301624 + 0.522428i −0.976504 0.215500i \(-0.930862\pi\)
0.674880 + 0.737927i \(0.264195\pi\)
\(930\) 0 0
\(931\) −16.3565 1.42007i −0.536064 0.0465410i
\(932\) −0.0464938 + 0.0464938i −0.00152296 + 0.00152296i
\(933\) 0 0
\(934\) −39.0508 + 22.5460i −1.27778 + 0.737728i
\(935\) −22.0392 + 6.07879i −0.720760 + 0.198798i
\(936\) 0 0
\(937\) −12.8792 12.8792i −0.420745 0.420745i 0.464715 0.885460i \(-0.346157\pi\)
−0.885460 + 0.464715i \(0.846157\pi\)
\(938\) 44.4905 9.87879i 1.45267 0.322554i
\(939\) 0 0
\(940\) −0.0581161 0.0572708i −0.00189554 0.00186797i
\(941\) 41.7477 24.1030i 1.36094 0.785736i 0.371187 0.928558i \(-0.378951\pi\)
0.989748 + 0.142822i \(0.0456176\pi\)
\(942\) 0 0
\(943\) 9.32919 + 34.8170i 0.303800 + 1.13380i
\(944\) −10.5245 −0.342543
\(945\) 0 0
\(946\) 6.79205 0.220829
\(947\) −10.2186 38.1363i −0.332059 1.23926i −0.907022 0.421083i \(-0.861650\pi\)
0.574963 0.818179i \(-0.305016\pi\)
\(948\) 0 0
\(949\) −0.732709 + 0.423030i −0.0237847 + 0.0137321i
\(950\) −4.04015 + 16.0129i −0.131080 + 0.519528i
\(951\) 0 0
\(952\) −38.1059 41.5576i −1.23502 1.34689i
\(953\) −32.6743 32.6743i −1.05843 1.05843i −0.998184 0.0602421i \(-0.980813\pi\)
−0.0602421 0.998184i \(-0.519187\pi\)
\(954\) 0 0
\(955\) 50.1334 + 28.4569i 1.62228 + 0.920843i
\(956\) −0.276107 + 0.159411i −0.00892995 + 0.00515571i
\(957\) 0 0
\(958\) −10.9843 + 10.9843i −0.354887 + 0.354887i
\(959\) −23.4587 1.01643i −0.757522 0.0328222i
\(960\) 0 0
\(961\) −7.68437 + 13.3097i −0.247883 + 0.429346i
\(962\) 2.10066 + 0.562870i 0.0677280 + 0.0181477i
\(963\) 0 0
\(964\) 0.197646 + 0.114111i 0.00636576 + 0.00367528i
\(965\) −35.3637 9.19855i −1.13840 0.296112i
\(966\) 0 0
\(967\) 1.01300 + 1.01300i 0.0325759 + 0.0325759i 0.723207 0.690631i \(-0.242667\pi\)
−0.690631 + 0.723207i \(0.742667\pi\)
\(968\) 25.0838 6.72119i 0.806225 0.216027i
\(969\) 0 0
\(970\) −8.09432 + 14.2600i −0.259893 + 0.457862i
\(971\) 50.0760 + 28.9114i 1.60702 + 0.927811i 0.990033 + 0.140835i \(0.0449787\pi\)
0.616983 + 0.786976i \(0.288355\pi\)
\(972\) 0 0
\(973\) −4.75538 21.4165i −0.152451 0.686581i
\(974\) 55.7954 1.78780
\(975\) 0 0
\(976\) 23.2233 + 40.2240i 0.743360 + 1.28754i
\(977\) 31.6484 + 8.48016i 1.01252 + 0.271304i 0.726682 0.686973i \(-0.241061\pi\)
0.285839 + 0.958278i \(0.407728\pi\)
\(978\) 0 0
\(979\) 3.76119i 0.120208i
\(980\) −0.149558 + 0.217265i −0.00477745 + 0.00694027i
\(981\) 0 0
\(982\) −49.8797 + 13.3652i −1.59173 + 0.426502i
\(983\) −10.1297 + 37.8045i −0.323087 + 1.20578i 0.593135 + 0.805103i \(0.297890\pi\)
−0.916221 + 0.400672i \(0.868777\pi\)
\(984\) 0 0
\(985\) 11.2363 11.4022i 0.358019 0.363304i
\(986\) 52.6033i 1.67523i
\(987\) 0 0
\(988\) −0.00420226 + 0.00420226i −0.000133692 + 0.000133692i
\(989\) 9.06583 15.7025i 0.288276 0.499310i
\(990\) 0 0
\(991\) 6.11042 + 10.5836i 0.194104 + 0.336198i 0.946606 0.322391i \(-0.104487\pi\)
−0.752502 + 0.658589i \(0.771153\pi\)
\(992\) 0.167998 + 0.626978i 0.00533395 + 0.0199066i
\(993\) 0 0
\(994\) 16.3329 8.50926i 0.518048 0.269897i
\(995\) −28.1091 + 16.5045i −0.891119 + 0.523229i
\(996\) 0 0
\(997\) −2.50867 + 9.36249i −0.0794504 + 0.296513i −0.994206 0.107496i \(-0.965717\pi\)
0.914755 + 0.404009i \(0.132383\pi\)
\(998\) −6.74171 + 25.1604i −0.213405 + 0.796438i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.ce.a.107.5 yes 64
3.2 odd 2 inner 315.2.ce.a.107.12 yes 64
5.3 odd 4 inner 315.2.ce.a.233.5 yes 64
7.4 even 3 inner 315.2.ce.a.242.12 yes 64
15.8 even 4 inner 315.2.ce.a.233.12 yes 64
21.11 odd 6 inner 315.2.ce.a.242.5 yes 64
35.18 odd 12 inner 315.2.ce.a.53.12 yes 64
105.53 even 12 inner 315.2.ce.a.53.5 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.ce.a.53.5 64 105.53 even 12 inner
315.2.ce.a.53.12 yes 64 35.18 odd 12 inner
315.2.ce.a.107.5 yes 64 1.1 even 1 trivial
315.2.ce.a.107.12 yes 64 3.2 odd 2 inner
315.2.ce.a.233.5 yes 64 5.3 odd 4 inner
315.2.ce.a.233.12 yes 64 15.8 even 4 inner
315.2.ce.a.242.5 yes 64 21.11 odd 6 inner
315.2.ce.a.242.12 yes 64 7.4 even 3 inner