Properties

Label 315.2.ce.a.53.5
Level $315$
Weight $2$
Character 315.53
Analytic conductor $2.515$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,2,Mod(53,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 53.5
Character \(\chi\) \(=\) 315.53
Dual form 315.2.ce.a.107.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.364480 + 1.36026i) q^{2} +(0.0145936 + 0.00842564i) q^{4} +(-2.23601 - 0.0163814i) q^{5} +(-2.58285 - 0.573503i) q^{7} +(-2.00834 + 2.00834i) q^{8} +(0.837263 - 3.03558i) q^{10} +(-1.18008 - 0.681321i) q^{11} +(0.106323 + 0.106323i) q^{13} +(1.72151 - 3.30431i) q^{14} +(-1.98301 - 3.43467i) q^{16} +(-7.24761 + 1.94199i) q^{17} +(-2.03121 + 1.17272i) q^{19} +(-0.0324934 - 0.0190789i) q^{20} +(1.35689 - 1.35689i) q^{22} +(4.94811 + 1.32584i) q^{23} +(4.99946 + 0.0732577i) q^{25} +(-0.183379 + 0.105874i) q^{26} +(-0.0328610 - 0.0301316i) q^{28} +4.97834 q^{29} +(-3.40473 + 5.89716i) q^{31} +(-0.0920746 + 0.0246713i) q^{32} -10.5664i q^{34} +(5.76587 + 1.32467i) q^{35} +(-9.92059 - 2.65821i) q^{37} +(-0.854866 - 3.19040i) q^{38} +(4.52356 - 4.45776i) q^{40} -7.03642i q^{41} +(2.50280 + 2.50280i) q^{43} +(-0.0114811 - 0.0198859i) q^{44} +(-3.60698 + 6.24747i) q^{46} +(0.560444 - 2.09160i) q^{47} +(6.34219 + 2.96254i) q^{49} +(-1.92185 + 6.77386i) q^{50} +(0.000655798 + 0.00244747i) q^{52} +(1.62383 + 6.06020i) q^{53} +(2.62751 + 1.54277i) q^{55} +(6.33901 - 4.03544i) q^{56} +(-1.81451 + 6.77183i) q^{58} +(1.32684 - 2.29815i) q^{59} +(5.85558 + 10.1422i) q^{61} +(-6.78071 - 6.78071i) q^{62} -8.06626i q^{64} +(-0.235997 - 0.239480i) q^{65} +(3.16583 + 11.8150i) q^{67} +(-0.122132 - 0.0327250i) q^{68} +(-3.90343 + 7.36026i) q^{70} +4.94291i q^{71} +(-5.43505 + 1.45632i) q^{73} +(7.23171 - 12.5257i) q^{74} -0.0395236 q^{76} +(2.65723 + 2.43653i) q^{77} +(-10.4803 + 6.05078i) q^{79} +(4.37775 + 7.71243i) q^{80} +(9.57135 + 2.56463i) q^{82} +(-8.06859 + 8.06859i) q^{83} +(16.2375 - 4.22358i) q^{85} +(-4.31668 + 2.49224i) q^{86} +(3.73832 - 1.00168i) q^{88} +(1.38011 + 2.39042i) q^{89} +(-0.213639 - 0.335591i) q^{91} +(0.0610399 + 0.0610399i) q^{92} +(2.64085 + 1.52470i) q^{94} +(4.56101 - 2.58894i) q^{95} +(3.68206 - 3.68206i) q^{97} +(-6.34142 + 7.54723i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{7} + 8 q^{10} + 32 q^{16} - 48 q^{22} - 16 q^{25} + 88 q^{28} + 32 q^{31} - 16 q^{37} - 40 q^{40} - 16 q^{43} - 80 q^{52} - 32 q^{55} - 88 q^{58} + 48 q^{61} - 32 q^{67} - 112 q^{70} - 88 q^{73}+ \cdots + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.364480 + 1.36026i −0.257726 + 0.961848i 0.708827 + 0.705382i \(0.249225\pi\)
−0.966553 + 0.256466i \(0.917442\pi\)
\(3\) 0 0
\(4\) 0.0145936 + 0.00842564i 0.00729681 + 0.00421282i
\(5\) −2.23601 0.0163814i −0.999973 0.00732597i
\(6\) 0 0
\(7\) −2.58285 0.573503i −0.976224 0.216764i
\(8\) −2.00834 + 2.00834i −0.710054 + 0.710054i
\(9\) 0 0
\(10\) 0.837263 3.03558i 0.264766 0.959934i
\(11\) −1.18008 0.681321i −0.355808 0.205426i 0.311432 0.950268i \(-0.399191\pi\)
−0.667240 + 0.744842i \(0.732525\pi\)
\(12\) 0 0
\(13\) 0.106323 + 0.106323i 0.0294886 + 0.0294886i 0.721697 0.692209i \(-0.243362\pi\)
−0.692209 + 0.721697i \(0.743362\pi\)
\(14\) 1.72151 3.30431i 0.460092 0.883113i
\(15\) 0 0
\(16\) −1.98301 3.43467i −0.495752 0.858667i
\(17\) −7.24761 + 1.94199i −1.75780 + 0.471002i −0.986264 0.165178i \(-0.947180\pi\)
−0.771541 + 0.636180i \(0.780514\pi\)
\(18\) 0 0
\(19\) −2.03121 + 1.17272i −0.465992 + 0.269040i −0.714560 0.699574i \(-0.753373\pi\)
0.248569 + 0.968614i \(0.420040\pi\)
\(20\) −0.0324934 0.0190789i −0.00726576 0.00426616i
\(21\) 0 0
\(22\) 1.35689 1.35689i 0.289290 0.289290i
\(23\) 4.94811 + 1.32584i 1.03175 + 0.276457i 0.734692 0.678401i \(-0.237327\pi\)
0.297061 + 0.954858i \(0.403993\pi\)
\(24\) 0 0
\(25\) 4.99946 + 0.0732577i 0.999893 + 0.0146515i
\(26\) −0.183379 + 0.105874i −0.0359635 + 0.0207636i
\(27\) 0 0
\(28\) −0.0328610 0.0301316i −0.00621014 0.00569434i
\(29\) 4.97834 0.924454 0.462227 0.886762i \(-0.347051\pi\)
0.462227 + 0.886762i \(0.347051\pi\)
\(30\) 0 0
\(31\) −3.40473 + 5.89716i −0.611507 + 1.05916i 0.379479 + 0.925200i \(0.376103\pi\)
−0.990987 + 0.133962i \(0.957230\pi\)
\(32\) −0.0920746 + 0.0246713i −0.0162766 + 0.00436131i
\(33\) 0 0
\(34\) 10.5664i 1.81213i
\(35\) 5.76587 + 1.32467i 0.974610 + 0.223910i
\(36\) 0 0
\(37\) −9.92059 2.65821i −1.63093 0.437008i −0.676747 0.736216i \(-0.736611\pi\)
−0.954188 + 0.299208i \(0.903277\pi\)
\(38\) −0.854866 3.19040i −0.138678 0.517552i
\(39\) 0 0
\(40\) 4.52356 4.45776i 0.715237 0.704833i
\(41\) 7.03642i 1.09890i −0.835525 0.549452i \(-0.814837\pi\)
0.835525 0.549452i \(-0.185163\pi\)
\(42\) 0 0
\(43\) 2.50280 + 2.50280i 0.381674 + 0.381674i 0.871705 0.490031i \(-0.163015\pi\)
−0.490031 + 0.871705i \(0.663015\pi\)
\(44\) −0.0114811 0.0198859i −0.00173084 0.00299791i
\(45\) 0 0
\(46\) −3.60698 + 6.24747i −0.531820 + 0.921139i
\(47\) 0.560444 2.09160i 0.0817491 0.305092i −0.912930 0.408117i \(-0.866186\pi\)
0.994679 + 0.103025i \(0.0328522\pi\)
\(48\) 0 0
\(49\) 6.34219 + 2.96254i 0.906027 + 0.423220i
\(50\) −1.92185 + 6.77386i −0.271791 + 0.957969i
\(51\) 0 0
\(52\) 0.000655798 0.00244747i 9.09428e−5 0.000339403i
\(53\) 1.62383 + 6.06020i 0.223050 + 0.832433i 0.983177 + 0.182658i \(0.0584701\pi\)
−0.760127 + 0.649775i \(0.774863\pi\)
\(54\) 0 0
\(55\) 2.62751 + 1.54277i 0.354294 + 0.208027i
\(56\) 6.33901 4.03544i 0.847086 0.539258i
\(57\) 0 0
\(58\) −1.81451 + 6.77183i −0.238256 + 0.889184i
\(59\) 1.32684 2.29815i 0.172739 0.299193i −0.766637 0.642080i \(-0.778072\pi\)
0.939377 + 0.342887i \(0.111405\pi\)
\(60\) 0 0
\(61\) 5.85558 + 10.1422i 0.749730 + 1.29857i 0.947952 + 0.318414i \(0.103150\pi\)
−0.198222 + 0.980157i \(0.563517\pi\)
\(62\) −6.78071 6.78071i −0.861151 0.861151i
\(63\) 0 0
\(64\) 8.06626i 1.00828i
\(65\) −0.235997 0.239480i −0.0292718 0.0297038i
\(66\) 0 0
\(67\) 3.16583 + 11.8150i 0.386767 + 1.44343i 0.835362 + 0.549700i \(0.185258\pi\)
−0.448595 + 0.893735i \(0.648076\pi\)
\(68\) −0.122132 0.0327250i −0.0148106 0.00396849i
\(69\) 0 0
\(70\) −3.90343 + 7.36026i −0.466550 + 0.879719i
\(71\) 4.94291i 0.586616i 0.956018 + 0.293308i \(0.0947561\pi\)
−0.956018 + 0.293308i \(0.905244\pi\)
\(72\) 0 0
\(73\) −5.43505 + 1.45632i −0.636125 + 0.170449i −0.562447 0.826833i \(-0.690140\pi\)
−0.0736773 + 0.997282i \(0.523473\pi\)
\(74\) 7.23171 12.5257i 0.840670 1.45608i
\(75\) 0 0
\(76\) −0.0395236 −0.00453367
\(77\) 2.65723 + 2.43653i 0.302820 + 0.277668i
\(78\) 0 0
\(79\) −10.4803 + 6.05078i −1.17912 + 0.680766i −0.955811 0.293981i \(-0.905020\pi\)
−0.223310 + 0.974747i \(0.571686\pi\)
\(80\) 4.37775 + 7.71243i 0.489448 + 0.862276i
\(81\) 0 0
\(82\) 9.57135 + 2.56463i 1.05698 + 0.283217i
\(83\) −8.06859 + 8.06859i −0.885643 + 0.885643i −0.994101 0.108458i \(-0.965409\pi\)
0.108458 + 0.994101i \(0.465409\pi\)
\(84\) 0 0
\(85\) 16.2375 4.22358i 1.76121 0.458112i
\(86\) −4.31668 + 2.49224i −0.465480 + 0.268745i
\(87\) 0 0
\(88\) 3.73832 1.00168i 0.398507 0.106780i
\(89\) 1.38011 + 2.39042i 0.146291 + 0.253384i 0.929854 0.367929i \(-0.119933\pi\)
−0.783563 + 0.621313i \(0.786600\pi\)
\(90\) 0 0
\(91\) −0.213639 0.335591i −0.0223954 0.0351795i
\(92\) 0.0610399 + 0.0610399i 0.00636385 + 0.00636385i
\(93\) 0 0
\(94\) 2.64085 + 1.52470i 0.272383 + 0.157260i
\(95\) 4.56101 2.58894i 0.467950 0.265619i
\(96\) 0 0
\(97\) 3.68206 3.68206i 0.373856 0.373856i −0.495023 0.868880i \(-0.664840\pi\)
0.868880 + 0.495023i \(0.164840\pi\)
\(98\) −6.34142 + 7.54723i −0.640580 + 0.762385i
\(99\) 0 0
\(100\) 0.0723431 + 0.0431928i 0.00723431 + 0.00431928i
\(101\) −8.26084 4.76940i −0.821984 0.474573i 0.0291161 0.999576i \(-0.490731\pi\)
−0.851100 + 0.525003i \(0.824064\pi\)
\(102\) 0 0
\(103\) 2.14544 8.00688i 0.211396 0.788941i −0.776008 0.630723i \(-0.782758\pi\)
0.987404 0.158218i \(-0.0505749\pi\)
\(104\) −0.427063 −0.0418770
\(105\) 0 0
\(106\) −8.83529 −0.858159
\(107\) 0.0580815 0.216763i 0.00561495 0.0209553i −0.963062 0.269281i \(-0.913214\pi\)
0.968676 + 0.248326i \(0.0798805\pi\)
\(108\) 0 0
\(109\) −4.69145 2.70861i −0.449359 0.259438i 0.258200 0.966091i \(-0.416871\pi\)
−0.707560 + 0.706654i \(0.750204\pi\)
\(110\) −3.05624 + 3.01179i −0.291401 + 0.287163i
\(111\) 0 0
\(112\) 3.15201 + 10.0085i 0.297837 + 0.945712i
\(113\) 7.70220 7.70220i 0.724562 0.724562i −0.244969 0.969531i \(-0.578778\pi\)
0.969531 + 0.244969i \(0.0787778\pi\)
\(114\) 0 0
\(115\) −11.0423 3.04565i −1.02970 0.284009i
\(116\) 0.0726520 + 0.0419457i 0.00674557 + 0.00389456i
\(117\) 0 0
\(118\) 2.64247 + 2.64247i 0.243259 + 0.243259i
\(119\) 19.8332 0.859342i 1.81811 0.0787757i
\(120\) 0 0
\(121\) −4.57160 7.91825i −0.415600 0.719841i
\(122\) −15.9302 + 4.26849i −1.44225 + 0.386450i
\(123\) 0 0
\(124\) −0.0993747 + 0.0573740i −0.00892411 + 0.00515234i
\(125\) −11.1776 0.245703i −0.999758 0.0219763i
\(126\) 0 0
\(127\) −9.41937 + 9.41937i −0.835834 + 0.835834i −0.988308 0.152474i \(-0.951276\pi\)
0.152474 + 0.988308i \(0.451276\pi\)
\(128\) 10.7881 + 2.89065i 0.953538 + 0.255500i
\(129\) 0 0
\(130\) 0.411771 0.233731i 0.0361147 0.0204995i
\(131\) 6.41212 3.70204i 0.560230 0.323449i −0.193008 0.981197i \(-0.561824\pi\)
0.753238 + 0.657748i \(0.228491\pi\)
\(132\) 0 0
\(133\) 5.91886 1.86405i 0.513230 0.161634i
\(134\) −17.2254 −1.48804
\(135\) 0 0
\(136\) 10.6555 18.4558i 0.913699 1.58257i
\(137\) 8.57248 2.29699i 0.732396 0.196245i 0.126700 0.991941i \(-0.459561\pi\)
0.605696 + 0.795696i \(0.292895\pi\)
\(138\) 0 0
\(139\) 8.29182i 0.703303i −0.936131 0.351652i \(-0.885620\pi\)
0.936131 0.351652i \(-0.114380\pi\)
\(140\) 0.0729838 + 0.0679128i 0.00616826 + 0.00573968i
\(141\) 0 0
\(142\) −6.72364 1.80159i −0.564235 0.151186i
\(143\) −0.0530296 0.197909i −0.00443456 0.0165500i
\(144\) 0 0
\(145\) −11.1316 0.0815520i −0.924429 0.00677252i
\(146\) 7.92387i 0.655785i
\(147\) 0 0
\(148\) −0.122380 0.122380i −0.0100596 0.0100596i
\(149\) 2.30099 + 3.98543i 0.188505 + 0.326500i 0.944752 0.327786i \(-0.106303\pi\)
−0.756247 + 0.654286i \(0.772969\pi\)
\(150\) 0 0
\(151\) 0.237053 0.410587i 0.0192911 0.0334131i −0.856219 0.516614i \(-0.827192\pi\)
0.875510 + 0.483200i \(0.160526\pi\)
\(152\) 1.72414 6.43457i 0.139846 0.521912i
\(153\) 0 0
\(154\) −4.28281 + 2.72646i −0.345119 + 0.219704i
\(155\) 7.70961 13.1303i 0.619250 1.05465i
\(156\) 0 0
\(157\) −2.86177 10.6803i −0.228394 0.852379i −0.981016 0.193926i \(-0.937878\pi\)
0.752622 0.658453i \(-0.228789\pi\)
\(158\) −4.41078 16.4613i −0.350903 1.30959i
\(159\) 0 0
\(160\) 0.206284 0.0536570i 0.0163082 0.00424195i
\(161\) −12.0198 6.26220i −0.947296 0.493531i
\(162\) 0 0
\(163\) 4.92872 18.3943i 0.386048 1.44075i −0.450462 0.892796i \(-0.648741\pi\)
0.836509 0.547953i \(-0.184593\pi\)
\(164\) 0.0592863 0.102687i 0.00462948 0.00801850i
\(165\) 0 0
\(166\) −8.03453 13.9162i −0.623601 1.08011i
\(167\) 4.99821 + 4.99821i 0.386773 + 0.386773i 0.873535 0.486762i \(-0.161822\pi\)
−0.486762 + 0.873535i \(0.661822\pi\)
\(168\) 0 0
\(169\) 12.9774i 0.998261i
\(170\) −0.173093 + 23.6267i −0.0132756 + 1.81208i
\(171\) 0 0
\(172\) 0.0154373 + 0.0576127i 0.00117708 + 0.00439292i
\(173\) −10.4408 2.79761i −0.793801 0.212698i −0.160940 0.986964i \(-0.551453\pi\)
−0.632861 + 0.774266i \(0.718119\pi\)
\(174\) 0 0
\(175\) −12.8708 3.05642i −0.972943 0.231044i
\(176\) 5.40425i 0.407361i
\(177\) 0 0
\(178\) −3.75461 + 1.00604i −0.281420 + 0.0754062i
\(179\) −8.39647 + 14.5431i −0.627582 + 1.08700i 0.360454 + 0.932777i \(0.382622\pi\)
−0.988036 + 0.154227i \(0.950711\pi\)
\(180\) 0 0
\(181\) 1.56378 0.116235 0.0581174 0.998310i \(-0.481490\pi\)
0.0581174 + 0.998310i \(0.481490\pi\)
\(182\) 0.534358 0.168288i 0.0396093 0.0124743i
\(183\) 0 0
\(184\) −12.6002 + 7.27474i −0.928900 + 0.536301i
\(185\) 22.1390 + 6.10630i 1.62769 + 0.448944i
\(186\) 0 0
\(187\) 9.87590 + 2.64624i 0.722197 + 0.193512i
\(188\) 0.0258020 0.0258020i 0.00188180 0.00188180i
\(189\) 0 0
\(190\) 1.85922 + 7.14777i 0.134882 + 0.518554i
\(191\) −22.3265 + 12.8902i −1.61549 + 0.932703i −0.627422 + 0.778680i \(0.715890\pi\)
−0.988067 + 0.154023i \(0.950777\pi\)
\(192\) 0 0
\(193\) 15.7846 4.22947i 1.13620 0.304444i 0.358777 0.933423i \(-0.383194\pi\)
0.777422 + 0.628980i \(0.216527\pi\)
\(194\) 3.66651 + 6.35059i 0.263240 + 0.455946i
\(195\) 0 0
\(196\) 0.0675943 + 0.0966712i 0.00482816 + 0.00690508i
\(197\) −5.06226 5.06226i −0.360671 0.360671i 0.503389 0.864060i \(-0.332086\pi\)
−0.864060 + 0.503389i \(0.832086\pi\)
\(198\) 0 0
\(199\) 12.6245 + 7.28877i 0.894928 + 0.516687i 0.875551 0.483125i \(-0.160498\pi\)
0.0193768 + 0.999812i \(0.493832\pi\)
\(200\) −10.1877 + 9.89348i −0.720381 + 0.699575i
\(201\) 0 0
\(202\) 9.49852 9.49852i 0.668314 0.668314i
\(203\) −12.8583 2.85509i −0.902474 0.200388i
\(204\) 0 0
\(205\) −0.115266 + 15.7335i −0.00805054 + 1.09887i
\(206\) 10.1095 + 5.83670i 0.704359 + 0.406662i
\(207\) 0 0
\(208\) 0.154345 0.576022i 0.0107019 0.0399399i
\(209\) 3.19599 0.221071
\(210\) 0 0
\(211\) −3.83207 −0.263810 −0.131905 0.991262i \(-0.542109\pi\)
−0.131905 + 0.991262i \(0.542109\pi\)
\(212\) −0.0273635 + 0.102122i −0.00187934 + 0.00701377i
\(213\) 0 0
\(214\) 0.273684 + 0.158012i 0.0187087 + 0.0108015i
\(215\) −5.55529 5.63729i −0.378867 0.384460i
\(216\) 0 0
\(217\) 12.1759 13.2788i 0.826556 0.901427i
\(218\) 5.39435 5.39435i 0.365351 0.365351i
\(219\) 0 0
\(220\) 0.0253461 + 0.0446531i 0.00170883 + 0.00301051i
\(221\) −0.977063 0.564108i −0.0657244 0.0379460i
\(222\) 0 0
\(223\) −1.22784 1.22784i −0.0822223 0.0822223i 0.664800 0.747022i \(-0.268517\pi\)
−0.747022 + 0.664800i \(0.768517\pi\)
\(224\) 0.251964 0.0109172i 0.0168350 0.000729435i
\(225\) 0 0
\(226\) 7.66968 + 13.2843i 0.510180 + 0.883657i
\(227\) 12.1577 3.25763i 0.806932 0.216217i 0.168307 0.985735i \(-0.446170\pi\)
0.638625 + 0.769518i \(0.279503\pi\)
\(228\) 0 0
\(229\) −22.7534 + 13.1367i −1.50359 + 0.868097i −0.503597 + 0.863939i \(0.667990\pi\)
−0.999991 + 0.00415788i \(0.998677\pi\)
\(230\) 8.16757 13.9103i 0.538554 0.917218i
\(231\) 0 0
\(232\) −9.99818 + 9.99818i −0.656413 + 0.656413i
\(233\) −3.76896 1.00989i −0.246913 0.0661600i 0.133240 0.991084i \(-0.457462\pi\)
−0.380153 + 0.924924i \(0.624129\pi\)
\(234\) 0 0
\(235\) −1.28742 + 4.66766i −0.0839820 + 0.304485i
\(236\) 0.0387267 0.0223589i 0.00252089 0.00145544i
\(237\) 0 0
\(238\) −6.05988 + 27.2915i −0.392804 + 1.76905i
\(239\) −18.9197 −1.22382 −0.611908 0.790929i \(-0.709598\pi\)
−0.611908 + 0.790929i \(0.709598\pi\)
\(240\) 0 0
\(241\) 6.77167 11.7289i 0.436202 0.755523i −0.561191 0.827686i \(-0.689657\pi\)
0.997393 + 0.0721629i \(0.0229901\pi\)
\(242\) 12.4371 3.33252i 0.799489 0.214222i
\(243\) 0 0
\(244\) 0.197348i 0.0126339i
\(245\) −14.1327 6.72815i −0.902902 0.429846i
\(246\) 0 0
\(247\) −0.340650 0.0912770i −0.0216751 0.00580781i
\(248\) −5.00565 18.6813i −0.317859 1.18627i
\(249\) 0 0
\(250\) 4.40825 15.1149i 0.278802 0.955952i
\(251\) 20.2767i 1.27985i 0.768437 + 0.639925i \(0.221035\pi\)
−0.768437 + 0.639925i \(0.778965\pi\)
\(252\) 0 0
\(253\) −4.93585 4.93585i −0.310315 0.310315i
\(254\) −9.37960 16.2460i −0.588529 1.01936i
\(255\) 0 0
\(256\) 0.202201 0.350222i 0.0126376 0.0218889i
\(257\) 6.39725 23.8748i 0.399049 1.48927i −0.415723 0.909491i \(-0.636472\pi\)
0.814773 0.579781i \(-0.196862\pi\)
\(258\) 0 0
\(259\) 24.0989 + 12.5552i 1.49743 + 0.780145i
\(260\) −0.00142628 0.00548330i −8.84539e−5 0.000340060i
\(261\) 0 0
\(262\) 2.69864 + 10.0715i 0.166723 + 0.622217i
\(263\) 7.93511 + 29.6142i 0.489300 + 1.82609i 0.559864 + 0.828584i \(0.310853\pi\)
−0.0705646 + 0.997507i \(0.522480\pi\)
\(264\) 0 0
\(265\) −3.53161 13.5773i −0.216945 0.834044i
\(266\) 0.378283 + 8.73059i 0.0231940 + 0.535307i
\(267\) 0 0
\(268\) −0.0533482 + 0.199098i −0.00325876 + 0.0121619i
\(269\) −11.7450 + 20.3429i −0.716104 + 1.24033i 0.246428 + 0.969161i \(0.420743\pi\)
−0.962532 + 0.271167i \(0.912590\pi\)
\(270\) 0 0
\(271\) 14.2279 + 24.6434i 0.864282 + 1.49698i 0.867758 + 0.496987i \(0.165560\pi\)
−0.00347606 + 0.999994i \(0.501106\pi\)
\(272\) 21.0422 + 21.0422i 1.27587 + 1.27587i
\(273\) 0 0
\(274\) 12.4980i 0.755031i
\(275\) −5.84986 3.49269i −0.352760 0.210617i
\(276\) 0 0
\(277\) 0.761143 + 2.84063i 0.0457327 + 0.170677i 0.985015 0.172469i \(-0.0551743\pi\)
−0.939282 + 0.343145i \(0.888508\pi\)
\(278\) 11.2790 + 3.02220i 0.676471 + 0.181260i
\(279\) 0 0
\(280\) −14.2402 + 8.91943i −0.851014 + 0.533038i
\(281\) 18.1830i 1.08471i −0.840150 0.542354i \(-0.817533\pi\)
0.840150 0.542354i \(-0.182467\pi\)
\(282\) 0 0
\(283\) −29.6744 + 7.95124i −1.76396 + 0.472652i −0.987514 0.157529i \(-0.949647\pi\)
−0.776448 + 0.630182i \(0.782980\pi\)
\(284\) −0.0416472 + 0.0721350i −0.00247131 + 0.00428043i
\(285\) 0 0
\(286\) 0.288536 0.0170615
\(287\) −4.03540 + 18.1740i −0.238202 + 1.07278i
\(288\) 0 0
\(289\) 34.0341 19.6496i 2.00201 1.15586i
\(290\) 4.16818 15.1121i 0.244764 0.887415i
\(291\) 0 0
\(292\) −0.0915875 0.0245408i −0.00535976 0.00143614i
\(293\) −2.15360 + 2.15360i −0.125815 + 0.125815i −0.767210 0.641396i \(-0.778356\pi\)
0.641396 + 0.767210i \(0.278356\pi\)
\(294\) 0 0
\(295\) −3.00446 + 5.11694i −0.174927 + 0.297920i
\(296\) 25.2625 14.5853i 1.46835 0.847753i
\(297\) 0 0
\(298\) −6.25989 + 1.67733i −0.362626 + 0.0971652i
\(299\) 0.385129 + 0.667064i 0.0222726 + 0.0385773i
\(300\) 0 0
\(301\) −5.02899 7.89972i −0.289866 0.455332i
\(302\) 0.472103 + 0.472103i 0.0271665 + 0.0271665i
\(303\) 0 0
\(304\) 8.05581 + 4.65102i 0.462032 + 0.266754i
\(305\) −12.9270 22.7739i −0.740197 1.30403i
\(306\) 0 0
\(307\) −7.16976 + 7.16976i −0.409200 + 0.409200i −0.881460 0.472260i \(-0.843438\pi\)
0.472260 + 0.881460i \(0.343438\pi\)
\(308\) 0.0182494 + 0.0579466i 0.00103985 + 0.00330182i
\(309\) 0 0
\(310\) 15.0506 + 15.2728i 0.854819 + 0.867437i
\(311\) 20.1351 + 11.6250i 1.14176 + 0.659193i 0.946865 0.321631i \(-0.104231\pi\)
0.194892 + 0.980825i \(0.437565\pi\)
\(312\) 0 0
\(313\) 4.23480 15.8045i 0.239365 0.893323i −0.736767 0.676147i \(-0.763649\pi\)
0.976132 0.217177i \(-0.0696848\pi\)
\(314\) 15.5710 0.878723
\(315\) 0 0
\(316\) −0.203927 −0.0114718
\(317\) 0.257510 0.961041i 0.0144632 0.0539775i −0.958317 0.285707i \(-0.907772\pi\)
0.972780 + 0.231729i \(0.0744383\pi\)
\(318\) 0 0
\(319\) −5.87485 3.39184i −0.328928 0.189907i
\(320\) −0.132136 + 18.0362i −0.00738665 + 1.00826i
\(321\) 0 0
\(322\) 12.8992 14.0676i 0.718845 0.783959i
\(323\) 12.4440 12.4440i 0.692403 0.692403i
\(324\) 0 0
\(325\) 0.523767 + 0.539345i 0.0290534 + 0.0299175i
\(326\) 23.2245 + 13.4087i 1.28629 + 0.742638i
\(327\) 0 0
\(328\) 14.1315 + 14.1315i 0.780281 + 0.780281i
\(329\) −2.64708 + 5.08088i −0.145938 + 0.280118i
\(330\) 0 0
\(331\) 8.83110 + 15.2959i 0.485401 + 0.840739i 0.999859 0.0167761i \(-0.00534024\pi\)
−0.514458 + 0.857515i \(0.672007\pi\)
\(332\) −0.185733 + 0.0497670i −0.0101934 + 0.00273132i
\(333\) 0 0
\(334\) −8.62060 + 4.97710i −0.471698 + 0.272335i
\(335\) −6.88526 26.4703i −0.376182 1.44623i
\(336\) 0 0
\(337\) 3.21477 3.21477i 0.175119 0.175119i −0.614105 0.789224i \(-0.710483\pi\)
0.789224 + 0.614105i \(0.210483\pi\)
\(338\) 17.6526 + 4.73000i 0.960175 + 0.257278i
\(339\) 0 0
\(340\) 0.272551 + 0.0751741i 0.0147812 + 0.00407689i
\(341\) 8.03572 4.63942i 0.435159 0.251239i
\(342\) 0 0
\(343\) −14.6819 11.2890i −0.792747 0.609551i
\(344\) −10.0529 −0.542018
\(345\) 0 0
\(346\) 7.61095 13.1825i 0.409167 0.708698i
\(347\) −0.639400 + 0.171327i −0.0343248 + 0.00919729i −0.275941 0.961175i \(-0.588989\pi\)
0.241616 + 0.970372i \(0.422323\pi\)
\(348\) 0 0
\(349\) 10.8004i 0.578130i 0.957309 + 0.289065i \(0.0933444\pi\)
−0.957309 + 0.289065i \(0.906656\pi\)
\(350\) 8.84868 16.3937i 0.472982 0.876278i
\(351\) 0 0
\(352\) 0.125465 + 0.0336182i 0.00668729 + 0.00179185i
\(353\) −0.660082 2.46346i −0.0351326 0.131117i 0.946132 0.323781i \(-0.104954\pi\)
−0.981265 + 0.192664i \(0.938287\pi\)
\(354\) 0 0
\(355\) 0.0809717 11.0524i 0.00429753 0.586600i
\(356\) 0.0465132i 0.00246519i
\(357\) 0 0
\(358\) −16.7220 16.7220i −0.883788 0.883788i
\(359\) −15.4836 26.8184i −0.817194 1.41542i −0.907742 0.419529i \(-0.862195\pi\)
0.0905479 0.995892i \(-0.471138\pi\)
\(360\) 0 0
\(361\) −6.74946 + 11.6904i −0.355235 + 0.615284i
\(362\) −0.569967 + 2.12715i −0.0299568 + 0.111800i
\(363\) 0 0
\(364\) −0.000290194 0.00669754i −1.52103e−5 0.000351046i
\(365\) 12.1767 3.16730i 0.637356 0.165784i
\(366\) 0 0
\(367\) 1.30619 + 4.87477i 0.0681826 + 0.254461i 0.991601 0.129333i \(-0.0412838\pi\)
−0.923419 + 0.383795i \(0.874617\pi\)
\(368\) −5.25831 19.6243i −0.274108 1.02299i
\(369\) 0 0
\(370\) −16.3754 + 27.8891i −0.851314 + 1.44988i
\(371\) −0.718551 16.5838i −0.0373053 0.860990i
\(372\) 0 0
\(373\) 0.304003 1.13455i 0.0157407 0.0587449i −0.957609 0.288072i \(-0.906986\pi\)
0.973349 + 0.229327i \(0.0736525\pi\)
\(374\) −7.19914 + 12.4693i −0.372259 + 0.644771i
\(375\) 0 0
\(376\) 3.07509 + 5.32620i 0.158585 + 0.274678i
\(377\) 0.529310 + 0.529310i 0.0272609 + 0.0272609i
\(378\) 0 0
\(379\) 12.4955i 0.641851i 0.947105 + 0.320925i \(0.103994\pi\)
−0.947105 + 0.320925i \(0.896006\pi\)
\(380\) 0.0883752 0.000647451i 0.00453355 3.32135e-5i
\(381\) 0 0
\(382\) −9.39645 35.0680i −0.480764 1.79424i
\(383\) 18.9066 + 5.06600i 0.966080 + 0.258860i 0.707172 0.707042i \(-0.249971\pi\)
0.258908 + 0.965902i \(0.416637\pi\)
\(384\) 0 0
\(385\) −5.90168 5.49162i −0.300777 0.279879i
\(386\) 23.0127i 1.17131i
\(387\) 0 0
\(388\) 0.0847583 0.0227109i 0.00430295 0.00115297i
\(389\) −5.66554 + 9.81300i −0.287254 + 0.497539i −0.973153 0.230158i \(-0.926076\pi\)
0.685899 + 0.727697i \(0.259409\pi\)
\(390\) 0 0
\(391\) −38.4368 −1.94383
\(392\) −18.6870 + 6.78748i −0.943837 + 0.342819i
\(393\) 0 0
\(394\) 8.73108 5.04089i 0.439865 0.253956i
\(395\) 23.5331 13.3579i 1.18408 0.672110i
\(396\) 0 0
\(397\) −11.8070 3.16369i −0.592578 0.158781i −0.0499470 0.998752i \(-0.515905\pi\)
−0.542631 + 0.839971i \(0.682572\pi\)
\(398\) −14.5160 + 14.5160i −0.727621 + 0.727621i
\(399\) 0 0
\(400\) −9.66235 17.3168i −0.483118 0.865838i
\(401\) −17.5382 + 10.1257i −0.875816 + 0.505653i −0.869277 0.494326i \(-0.835415\pi\)
−0.00653958 + 0.999979i \(0.502082\pi\)
\(402\) 0 0
\(403\) −0.989002 + 0.265002i −0.0492657 + 0.0132007i
\(404\) −0.0803704 0.139206i −0.00399858 0.00692574i
\(405\) 0 0
\(406\) 8.57025 16.4500i 0.425334 0.816398i
\(407\) 9.89601 + 9.89601i 0.490527 + 0.490527i
\(408\) 0 0
\(409\) 19.9017 + 11.4903i 0.984077 + 0.568157i 0.903499 0.428591i \(-0.140990\pi\)
0.0805784 + 0.996748i \(0.474323\pi\)
\(410\) −21.3596 5.89134i −1.05488 0.290952i
\(411\) 0 0
\(412\) 0.0987728 0.0987728i 0.00486618 0.00486618i
\(413\) −4.74501 + 5.17482i −0.233486 + 0.254636i
\(414\) 0 0
\(415\) 18.1736 17.9093i 0.892108 0.879131i
\(416\) −0.0124127 0.00716650i −0.000608585 0.000351366i
\(417\) 0 0
\(418\) −1.16488 + 4.34738i −0.0569759 + 0.212637i
\(419\) −16.8385 −0.822617 −0.411308 0.911496i \(-0.634928\pi\)
−0.411308 + 0.911496i \(0.634928\pi\)
\(420\) 0 0
\(421\) 33.5542 1.63533 0.817667 0.575692i \(-0.195267\pi\)
0.817667 + 0.575692i \(0.195267\pi\)
\(422\) 1.39671 5.21260i 0.0679909 0.253745i
\(423\) 0 0
\(424\) −15.4321 8.90973i −0.749450 0.432695i
\(425\) −36.3764 + 9.17798i −1.76452 + 0.445197i
\(426\) 0 0
\(427\) −9.30751 29.5538i −0.450422 1.43021i
\(428\) 0.00267399 0.00267399i 0.000129252 0.000129252i
\(429\) 0 0
\(430\) 9.69296 5.50195i 0.467436 0.265327i
\(431\) −11.5363 6.66051i −0.555686 0.320826i 0.195726 0.980659i \(-0.437294\pi\)
−0.751412 + 0.659833i \(0.770627\pi\)
\(432\) 0 0
\(433\) 23.3937 + 23.3937i 1.12423 + 1.12423i 0.991099 + 0.133129i \(0.0425025\pi\)
0.133129 + 0.991099i \(0.457497\pi\)
\(434\) 13.6248 + 21.4023i 0.654010 + 1.02734i
\(435\) 0 0
\(436\) −0.0456435 0.0790569i −0.00218593 0.00378614i
\(437\) −11.6055 + 3.10968i −0.555166 + 0.148756i
\(438\) 0 0
\(439\) −2.48600 + 1.43529i −0.118650 + 0.0685027i −0.558151 0.829740i \(-0.688489\pi\)
0.439500 + 0.898242i \(0.355155\pi\)
\(440\) −8.37533 + 2.17853i −0.399278 + 0.103857i
\(441\) 0 0
\(442\) 1.12345 1.12345i 0.0534372 0.0534372i
\(443\) 16.6068 + 4.44977i 0.789011 + 0.211415i 0.630754 0.775983i \(-0.282746\pi\)
0.158257 + 0.987398i \(0.449413\pi\)
\(444\) 0 0
\(445\) −3.04678 5.36760i −0.144431 0.254449i
\(446\) 2.11770 1.22266i 0.100276 0.0578945i
\(447\) 0 0
\(448\) −4.62602 + 20.8339i −0.218559 + 0.984310i
\(449\) 0.314555 0.0148448 0.00742239 0.999972i \(-0.497637\pi\)
0.00742239 + 0.999972i \(0.497637\pi\)
\(450\) 0 0
\(451\) −4.79406 + 8.30355i −0.225743 + 0.390999i
\(452\) 0.177299 0.0475071i 0.00833944 0.00223455i
\(453\) 0 0
\(454\) 17.7249i 0.831871i
\(455\) 0.472201 + 0.753885i 0.0221371 + 0.0353427i
\(456\) 0 0
\(457\) −17.6258 4.72282i −0.824501 0.220924i −0.178188 0.983997i \(-0.557023\pi\)
−0.646313 + 0.763072i \(0.723690\pi\)
\(458\) −9.57612 35.7386i −0.447463 1.66995i
\(459\) 0 0
\(460\) −0.135486 0.137486i −0.00631705 0.00641030i
\(461\) 15.4893i 0.721410i 0.932680 + 0.360705i \(0.117464\pi\)
−0.932680 + 0.360705i \(0.882536\pi\)
\(462\) 0 0
\(463\) 21.9975 + 21.9975i 1.02231 + 1.02231i 0.999745 + 0.0225635i \(0.00718281\pi\)
0.0225635 + 0.999745i \(0.492817\pi\)
\(464\) −9.87208 17.0989i −0.458300 0.793798i
\(465\) 0 0
\(466\) 2.74742 4.75867i 0.127272 0.220441i
\(467\) −8.28740 + 30.9290i −0.383495 + 1.43122i 0.457030 + 0.889451i \(0.348913\pi\)
−0.840525 + 0.541772i \(0.817754\pi\)
\(468\) 0 0
\(469\) −1.40089 32.3320i −0.0646873 1.49295i
\(470\) −5.87999 3.45249i −0.271224 0.159252i
\(471\) 0 0
\(472\) 1.95072 + 7.28018i 0.0897892 + 0.335098i
\(473\) −1.24830 4.65872i −0.0573969 0.214208i
\(474\) 0 0
\(475\) −10.2409 + 5.71417i −0.469883 + 0.262184i
\(476\) 0.296679 + 0.154566i 0.0135983 + 0.00708454i
\(477\) 0 0
\(478\) 6.89586 25.7357i 0.315409 1.17712i
\(479\) −5.51544 + 9.55302i −0.252007 + 0.436489i −0.964078 0.265618i \(-0.914424\pi\)
0.712071 + 0.702107i \(0.247757\pi\)
\(480\) 0 0
\(481\) −0.772155 1.33741i −0.0352072 0.0609807i
\(482\) 13.4862 + 13.4862i 0.614278 + 0.614278i
\(483\) 0 0
\(484\) 0.154075i 0.00700340i
\(485\) −8.29343 + 8.17280i −0.376585 + 0.371108i
\(486\) 0 0
\(487\) −10.2546 38.2705i −0.464678 1.73420i −0.657953 0.753059i \(-0.728578\pi\)
0.193275 0.981145i \(-0.438089\pi\)
\(488\) −32.1289 8.60890i −1.45440 0.389707i
\(489\) 0 0
\(490\) 14.3031 16.7718i 0.646148 0.757672i
\(491\) 36.6693i 1.65486i 0.561567 + 0.827431i \(0.310199\pi\)
−0.561567 + 0.827431i \(0.689801\pi\)
\(492\) 0 0
\(493\) −36.0811 + 9.66789i −1.62501 + 0.435420i
\(494\) 0.248321 0.430104i 0.0111725 0.0193513i
\(495\) 0 0
\(496\) 27.0064 1.21262
\(497\) 2.83477 12.7668i 0.127157 0.572669i
\(498\) 0 0
\(499\) −16.0187 + 9.24839i −0.717094 + 0.414015i −0.813682 0.581310i \(-0.802540\pi\)
0.0965879 + 0.995324i \(0.469207\pi\)
\(500\) −0.161052 0.0977644i −0.00720247 0.00437216i
\(501\) 0 0
\(502\) −27.5815 7.39044i −1.23102 0.329851i
\(503\) 12.8656 12.8656i 0.573650 0.573650i −0.359497 0.933146i \(-0.617052\pi\)
0.933146 + 0.359497i \(0.117052\pi\)
\(504\) 0 0
\(505\) 18.3932 + 10.7997i 0.818485 + 0.480582i
\(506\) 8.51306 4.91502i 0.378452 0.218499i
\(507\) 0 0
\(508\) −0.216827 + 0.0580986i −0.00962014 + 0.00257771i
\(509\) 11.6839 + 20.2371i 0.517879 + 0.896994i 0.999784 + 0.0207700i \(0.00661177\pi\)
−0.481905 + 0.876224i \(0.660055\pi\)
\(510\) 0 0
\(511\) 14.8731 0.644428i 0.657948 0.0285078i
\(512\) 16.1975 + 16.1975i 0.715835 + 0.715835i
\(513\) 0 0
\(514\) 30.1443 + 17.4038i 1.32961 + 0.767649i
\(515\) −4.92838 + 17.8683i −0.217170 + 0.787371i
\(516\) 0 0
\(517\) −2.08642 + 2.08642i −0.0917607 + 0.0917607i
\(518\) −25.8619 + 28.2045i −1.13631 + 1.23924i
\(519\) 0 0
\(520\) 0.954917 + 0.00699588i 0.0418759 + 0.000306790i
\(521\) −10.3332 5.96588i −0.452706 0.261370i 0.256267 0.966606i \(-0.417508\pi\)
−0.708972 + 0.705236i \(0.750841\pi\)
\(522\) 0 0
\(523\) 1.33330 4.97594i 0.0583011 0.217583i −0.930629 0.365964i \(-0.880739\pi\)
0.988930 + 0.148381i \(0.0474062\pi\)
\(524\) 0.124768 0.00545052
\(525\) 0 0
\(526\) −43.1752 −1.88253
\(527\) 13.2239 49.3523i 0.576043 2.14982i
\(528\) 0 0
\(529\) 2.80738 + 1.62084i 0.122060 + 0.0704713i
\(530\) 19.7558 + 0.144734i 0.858136 + 0.00628685i
\(531\) 0 0
\(532\) 0.102083 + 0.0226669i 0.00442588 + 0.000982735i
\(533\) 0.748131 0.748131i 0.0324051 0.0324051i
\(534\) 0 0
\(535\) −0.133422 + 0.483733i −0.00576832 + 0.0209136i
\(536\) −30.0866 17.3705i −1.29954 0.750291i
\(537\) 0 0
\(538\) −23.3908 23.3908i −1.00845 1.00845i
\(539\) −5.46586 7.81710i −0.235431 0.336706i
\(540\) 0 0
\(541\) −1.79429 3.10781i −0.0771427 0.133615i 0.824873 0.565318i \(-0.191246\pi\)
−0.902016 + 0.431703i \(0.857913\pi\)
\(542\) −38.7072 + 10.3716i −1.66262 + 0.445497i
\(543\) 0 0
\(544\) 0.619410 0.357616i 0.0265570 0.0153327i
\(545\) 10.4457 + 6.13333i 0.447447 + 0.262723i
\(546\) 0 0
\(547\) −6.56221 + 6.56221i −0.280580 + 0.280580i −0.833340 0.552761i \(-0.813574\pi\)
0.552761 + 0.833340i \(0.313574\pi\)
\(548\) 0.144457 + 0.0387072i 0.00617090 + 0.00165349i
\(549\) 0 0
\(550\) 6.88312 6.68431i 0.293497 0.285020i
\(551\) −10.1120 + 5.83819i −0.430788 + 0.248715i
\(552\) 0 0
\(553\) 30.5390 9.61778i 1.29865 0.408990i
\(554\) −4.14141 −0.175951
\(555\) 0 0
\(556\) 0.0698639 0.121008i 0.00296289 0.00513187i
\(557\) −4.41306 + 1.18248i −0.186987 + 0.0501031i −0.351097 0.936339i \(-0.614191\pi\)
0.164110 + 0.986442i \(0.447525\pi\)
\(558\) 0 0
\(559\) 0.532209i 0.0225101i
\(560\) −6.88397 22.4307i −0.290901 0.947869i
\(561\) 0 0
\(562\) 24.7336 + 6.62735i 1.04332 + 0.279558i
\(563\) −4.87949 18.2105i −0.205646 0.767480i −0.989252 0.146222i \(-0.953289\pi\)
0.783606 0.621258i \(-0.213378\pi\)
\(564\) 0 0
\(565\) −17.3484 + 17.0960i −0.729851 + 0.719234i
\(566\) 43.2630i 1.81848i
\(567\) 0 0
\(568\) −9.92703 9.92703i −0.416529 0.416529i
\(569\) −5.64958 9.78536i −0.236843 0.410224i 0.722964 0.690886i \(-0.242779\pi\)
−0.959807 + 0.280662i \(0.909446\pi\)
\(570\) 0 0
\(571\) 7.98119 13.8238i 0.334002 0.578509i −0.649290 0.760541i \(-0.724934\pi\)
0.983293 + 0.182032i \(0.0582673\pi\)
\(572\) 0.000893617 0.00333502i 3.73640e−5 0.000139444i
\(573\) 0 0
\(574\) −23.2505 12.1133i −0.970457 0.505597i
\(575\) 24.6408 + 6.99099i 1.02759 + 0.291544i
\(576\) 0 0
\(577\) 2.86742 + 10.7014i 0.119372 + 0.445503i 0.999577 0.0290913i \(-0.00926136\pi\)
−0.880205 + 0.474595i \(0.842595\pi\)
\(578\) 14.3238 + 53.4571i 0.595791 + 2.22352i
\(579\) 0 0
\(580\) −0.161763 0.0949810i −0.00671686 0.00394387i
\(581\) 25.4673 16.2126i 1.05656 0.672611i
\(582\) 0 0
\(583\) 2.21269 8.25788i 0.0916403 0.342006i
\(584\) 7.99064 13.8402i 0.330655 0.572711i
\(585\) 0 0
\(586\) −2.14451 3.71440i −0.0885890 0.153441i
\(587\) 6.15146 + 6.15146i 0.253898 + 0.253898i 0.822567 0.568669i \(-0.192541\pi\)
−0.568669 + 0.822567i \(0.692541\pi\)
\(588\) 0 0
\(589\) 15.9712i 0.658081i
\(590\) −5.86529 5.95187i −0.241470 0.245034i
\(591\) 0 0
\(592\) 10.5425 + 39.3452i 0.433294 + 1.61708i
\(593\) 24.5364 + 6.57452i 1.00759 + 0.269983i 0.724622 0.689146i \(-0.242014\pi\)
0.282968 + 0.959129i \(0.408681\pi\)
\(594\) 0 0
\(595\) −44.3613 + 1.59660i −1.81864 + 0.0654542i
\(596\) 0.0775493i 0.00317654i
\(597\) 0 0
\(598\) −1.04775 + 0.280744i −0.0428457 + 0.0114805i
\(599\) 4.21188 7.29518i 0.172093 0.298073i −0.767059 0.641577i \(-0.778280\pi\)
0.939151 + 0.343504i \(0.111614\pi\)
\(600\) 0 0
\(601\) −33.7338 −1.37603 −0.688016 0.725696i \(-0.741518\pi\)
−0.688016 + 0.725696i \(0.741518\pi\)
\(602\) 12.5786 3.96144i 0.512666 0.161456i
\(603\) 0 0
\(604\) 0.00691891 0.00399464i 0.000281527 0.000162539i
\(605\) 10.0924 + 17.7802i 0.410316 + 0.722866i
\(606\) 0 0
\(607\) 41.6118 + 11.1499i 1.68897 + 0.452558i 0.970124 0.242610i \(-0.0780034\pi\)
0.718847 + 0.695168i \(0.244670\pi\)
\(608\) 0.158090 0.158090i 0.00641141 0.00641141i
\(609\) 0 0
\(610\) 35.6900 9.28341i 1.44505 0.375874i
\(611\) 0.281973 0.162797i 0.0114074 0.00658606i
\(612\) 0 0
\(613\) −19.7127 + 5.28200i −0.796188 + 0.213338i −0.633910 0.773407i \(-0.718551\pi\)
−0.162278 + 0.986745i \(0.551884\pi\)
\(614\) −7.13949 12.3660i −0.288127 0.499050i
\(615\) 0 0
\(616\) −10.2300 + 0.443249i −0.412178 + 0.0178590i
\(617\) −11.0864 11.0864i −0.446321 0.446321i 0.447808 0.894130i \(-0.352205\pi\)
−0.894130 + 0.447808i \(0.852205\pi\)
\(618\) 0 0
\(619\) 5.11052 + 2.95056i 0.205409 + 0.118593i 0.599176 0.800617i \(-0.295495\pi\)
−0.393767 + 0.919210i \(0.628828\pi\)
\(620\) 0.223143 0.126661i 0.00896162 0.00508682i
\(621\) 0 0
\(622\) −23.1519 + 23.1519i −0.928305 + 0.928305i
\(623\) −2.19370 6.96558i −0.0878886 0.279070i
\(624\) 0 0
\(625\) 24.9893 + 0.732499i 0.999571 + 0.0292999i
\(626\) 19.9547 + 11.5209i 0.797550 + 0.460466i
\(627\) 0 0
\(628\) 0.0482245 0.179976i 0.00192437 0.00718184i
\(629\) 77.0628 3.07270
\(630\) 0 0
\(631\) 26.3658 1.04961 0.524803 0.851224i \(-0.324139\pi\)
0.524803 + 0.851224i \(0.324139\pi\)
\(632\) 8.89589 33.1999i 0.353859 1.32062i
\(633\) 0 0
\(634\) 1.21341 + 0.700561i 0.0481906 + 0.0278228i
\(635\) 21.2161 20.9075i 0.841935 0.829688i
\(636\) 0 0
\(637\) 0.359333 + 0.989303i 0.0142373 + 0.0391976i
\(638\) 6.75505 6.75505i 0.267435 0.267435i
\(639\) 0 0
\(640\) −24.0748 6.64024i −0.951641 0.262479i
\(641\) 11.1623 + 6.44455i 0.440884 + 0.254544i 0.703972 0.710227i \(-0.251408\pi\)
−0.263089 + 0.964772i \(0.584741\pi\)
\(642\) 0 0
\(643\) 13.4467 + 13.4467i 0.530286 + 0.530286i 0.920657 0.390372i \(-0.127654\pi\)
−0.390372 + 0.920657i \(0.627654\pi\)
\(644\) −0.122650 0.192663i −0.00483309 0.00759199i
\(645\) 0 0
\(646\) 12.3915 + 21.4627i 0.487536 + 0.844437i
\(647\) 3.87299 1.03777i 0.152263 0.0407988i −0.181882 0.983320i \(-0.558219\pi\)
0.334145 + 0.942522i \(0.391552\pi\)
\(648\) 0 0
\(649\) −3.13155 + 1.80800i −0.122924 + 0.0709702i
\(650\) −0.924552 + 0.515878i −0.0362639 + 0.0202344i
\(651\) 0 0
\(652\) 0.226911 0.226911i 0.00888653 0.00888653i
\(653\) 34.1463 + 9.14947i 1.33625 + 0.358047i 0.855041 0.518561i \(-0.173532\pi\)
0.481207 + 0.876607i \(0.340199\pi\)
\(654\) 0 0
\(655\) −14.3982 + 8.17275i −0.562584 + 0.319336i
\(656\) −24.1678 + 13.9533i −0.943593 + 0.544783i
\(657\) 0 0
\(658\) −5.94650 5.45259i −0.231819 0.212564i
\(659\) 9.12406 0.355423 0.177712 0.984083i \(-0.443131\pi\)
0.177712 + 0.984083i \(0.443131\pi\)
\(660\) 0 0
\(661\) −9.28949 + 16.0899i −0.361319 + 0.625823i −0.988178 0.153310i \(-0.951007\pi\)
0.626859 + 0.779133i \(0.284340\pi\)
\(662\) −24.0252 + 6.43752i −0.933764 + 0.250201i
\(663\) 0 0
\(664\) 32.4089i 1.25771i
\(665\) −13.2652 + 4.07107i −0.514401 + 0.157869i
\(666\) 0 0
\(667\) 24.6334 + 6.60049i 0.953808 + 0.255572i
\(668\) 0.0308289 + 0.115055i 0.00119281 + 0.00445161i
\(669\) 0 0
\(670\) 38.5160 + 0.282175i 1.48800 + 0.0109014i
\(671\) 15.9581i 0.616056i
\(672\) 0 0
\(673\) 7.94341 + 7.94341i 0.306196 + 0.306196i 0.843432 0.537236i \(-0.180532\pi\)
−0.537236 + 0.843432i \(0.680532\pi\)
\(674\) 3.20119 + 5.54463i 0.123305 + 0.213571i
\(675\) 0 0
\(676\) 0.109343 0.189387i 0.00420549 0.00728412i
\(677\) −2.38854 + 8.91415i −0.0917991 + 0.342599i −0.996515 0.0834172i \(-0.973417\pi\)
0.904716 + 0.426016i \(0.140083\pi\)
\(678\) 0 0
\(679\) −11.6219 + 7.39852i −0.446006 + 0.283929i
\(680\) −24.1281 + 41.0928i −0.925269 + 1.57584i
\(681\) 0 0
\(682\) 3.38196 + 12.6216i 0.129502 + 0.483307i
\(683\) −3.44703 12.8645i −0.131897 0.492246i 0.868094 0.496399i \(-0.165345\pi\)
−0.999991 + 0.00415310i \(0.998678\pi\)
\(684\) 0 0
\(685\) −19.2058 + 4.99566i −0.733814 + 0.190874i
\(686\) 20.7073 15.8565i 0.790607 0.605404i
\(687\) 0 0
\(688\) 3.63322 13.5594i 0.138515 0.516946i
\(689\) −0.471687 + 0.816986i −0.0179699 + 0.0311247i
\(690\) 0 0
\(691\) −8.15132 14.1185i −0.310091 0.537093i 0.668291 0.743900i \(-0.267026\pi\)
−0.978382 + 0.206807i \(0.933693\pi\)
\(692\) −0.128798 0.128798i −0.00489616 0.00489616i
\(693\) 0 0
\(694\) 0.932194i 0.0353856i
\(695\) −0.135831 + 18.5406i −0.00515238 + 0.703284i
\(696\) 0 0
\(697\) 13.6647 + 50.9972i 0.517586 + 1.93166i
\(698\) −14.6913 3.93652i −0.556073 0.148999i
\(699\) 0 0
\(700\) −0.162080 0.153049i −0.00612604 0.00578472i
\(701\) 6.83585i 0.258186i −0.991632 0.129093i \(-0.958793\pi\)
0.991632 0.129093i \(-0.0412066\pi\)
\(702\) 0 0
\(703\) 23.2681 6.23468i 0.877574 0.235145i
\(704\) −5.49571 + 9.51885i −0.207127 + 0.358755i
\(705\) 0 0
\(706\) 3.59153 0.135169
\(707\) 18.6012 + 17.0562i 0.699571 + 0.641466i
\(708\) 0 0
\(709\) −12.3735 + 7.14386i −0.464697 + 0.268293i −0.714017 0.700128i \(-0.753126\pi\)
0.249320 + 0.968421i \(0.419793\pi\)
\(710\) 15.0046 + 4.13852i 0.563113 + 0.155316i
\(711\) 0 0
\(712\) −7.57249 2.02904i −0.283791 0.0760416i
\(713\) −24.6657 + 24.6657i −0.923738 + 0.923738i
\(714\) 0 0
\(715\) 0.115333 + 0.443395i 0.00431320 + 0.0165820i
\(716\) −0.245070 + 0.141491i −0.00915870 + 0.00528778i
\(717\) 0 0
\(718\) 42.1234 11.2869i 1.57203 0.421225i
\(719\) −13.6899 23.7117i −0.510549 0.884297i −0.999925 0.0122240i \(-0.996109\pi\)
0.489376 0.872073i \(-0.337224\pi\)
\(720\) 0 0
\(721\) −10.1333 + 19.4501i −0.377384 + 0.724360i
\(722\) −13.4419 13.4419i −0.500257 0.500257i
\(723\) 0 0
\(724\) 0.0228212 + 0.0131758i 0.000848145 + 0.000489676i
\(725\) 24.8890 + 0.364702i 0.924355 + 0.0135447i
\(726\) 0 0
\(727\) 23.4350 23.4350i 0.869155 0.869155i −0.123224 0.992379i \(-0.539323\pi\)
0.992379 + 0.123224i \(0.0393235\pi\)
\(728\) 1.10304 + 0.244922i 0.0408813 + 0.00907741i
\(729\) 0 0
\(730\) −0.129804 + 17.7178i −0.00480426 + 0.655767i
\(731\) −22.9998 13.2789i −0.850677 0.491139i
\(732\) 0 0
\(733\) −12.4724 + 46.5476i −0.460678 + 1.71927i 0.210157 + 0.977668i \(0.432603\pi\)
−0.670835 + 0.741607i \(0.734064\pi\)
\(734\) −7.10703 −0.262325
\(735\) 0 0
\(736\) −0.488306 −0.0179992
\(737\) 4.31388 16.0996i 0.158904 0.593038i
\(738\) 0 0
\(739\) −28.9487 16.7136i −1.06490 0.614818i −0.138114 0.990416i \(-0.544104\pi\)
−0.926783 + 0.375598i \(0.877437\pi\)
\(740\) 0.271638 + 0.275648i 0.00998563 + 0.0101330i
\(741\) 0 0
\(742\) 22.8202 + 5.06706i 0.837756 + 0.186018i
\(743\) −4.26258 + 4.26258i −0.156379 + 0.156379i −0.780960 0.624581i \(-0.785270\pi\)
0.624581 + 0.780960i \(0.285270\pi\)
\(744\) 0 0
\(745\) −5.07975 8.94916i −0.186108 0.327872i
\(746\) 1.43248 + 0.827044i 0.0524469 + 0.0302802i
\(747\) 0 0
\(748\) 0.121829 + 0.121829i 0.00445451 + 0.00445451i
\(749\) −0.274330 + 0.526556i −0.0100238 + 0.0192399i
\(750\) 0 0
\(751\) −17.2308 29.8447i −0.628762 1.08905i −0.987800 0.155725i \(-0.950229\pi\)
0.359039 0.933323i \(-0.383105\pi\)
\(752\) −8.29533 + 2.22273i −0.302500 + 0.0810545i
\(753\) 0 0
\(754\) −0.912922 + 0.527075i −0.0332466 + 0.0191950i
\(755\) −0.536777 + 0.914193i −0.0195353 + 0.0332709i
\(756\) 0 0
\(757\) −13.7624 + 13.7624i −0.500202 + 0.500202i −0.911501 0.411299i \(-0.865075\pi\)
0.411299 + 0.911501i \(0.365075\pi\)
\(758\) −16.9971 4.55436i −0.617363 0.165422i
\(759\) 0 0
\(760\) −3.96059 + 14.3595i −0.143666 + 0.520874i
\(761\) 10.6969 6.17587i 0.387763 0.223875i −0.293427 0.955981i \(-0.594796\pi\)
0.681190 + 0.732106i \(0.261463\pi\)
\(762\) 0 0
\(763\) 10.5639 + 9.68648i 0.382439 + 0.350674i
\(764\) −0.434433 −0.0157172
\(765\) 0 0
\(766\) −13.7821 + 23.8714i −0.497969 + 0.862507i
\(767\) 0.385418 0.103272i 0.0139166 0.00372895i
\(768\) 0 0
\(769\) 6.22694i 0.224549i −0.993677 0.112275i \(-0.964186\pi\)
0.993677 0.112275i \(-0.0358136\pi\)
\(770\) 9.62107 6.02622i 0.346719 0.217170i
\(771\) 0 0
\(772\) 0.265990 + 0.0712719i 0.00957320 + 0.00256513i
\(773\) −2.27482 8.48975i −0.0818197 0.305355i 0.912873 0.408243i \(-0.133858\pi\)
−0.994693 + 0.102888i \(0.967192\pi\)
\(774\) 0 0
\(775\) −17.4538 + 29.2332i −0.626960 + 1.05009i
\(776\) 14.7896i 0.530917i
\(777\) 0 0
\(778\) −11.2832 11.2832i −0.404524 0.404524i
\(779\) 8.25175 + 14.2924i 0.295649 + 0.512080i
\(780\) 0 0
\(781\) 3.36771 5.83304i 0.120506 0.208723i
\(782\) 14.0094 52.2840i 0.500977 1.86967i
\(783\) 0 0
\(784\) −2.40127 27.6581i −0.0857595 0.987788i
\(785\) 6.22399 + 23.9281i 0.222144 + 0.854030i
\(786\) 0 0
\(787\) 9.63721 + 35.9666i 0.343530 + 1.28207i 0.894321 + 0.447427i \(0.147659\pi\)
−0.550791 + 0.834643i \(0.685674\pi\)
\(788\) −0.0312240 0.116530i −0.00111231 0.00415119i
\(789\) 0 0
\(790\) 9.59288 + 36.8797i 0.341299 + 1.31212i
\(791\) −24.3108 + 15.4764i −0.864393 + 0.550276i
\(792\) 0 0
\(793\) −0.455761 + 1.70092i −0.0161845 + 0.0604015i
\(794\) 8.60686 14.9075i 0.305446 0.529048i
\(795\) 0 0
\(796\) 0.122825 + 0.212739i 0.00435342 + 0.00754034i
\(797\) −15.8626 15.8626i −0.561880 0.561880i 0.367961 0.929841i \(-0.380056\pi\)
−0.929841 + 0.367961i \(0.880056\pi\)
\(798\) 0 0
\(799\) 16.2475i 0.574796i
\(800\) −0.462131 + 0.116598i −0.0163388 + 0.00412237i
\(801\) 0 0
\(802\) −7.38122 27.5471i −0.260640 0.972722i
\(803\) 7.40603 + 1.98444i 0.261353 + 0.0700293i
\(804\) 0 0
\(805\) 26.7739 + 14.1992i 0.943655 + 0.500457i
\(806\) 1.44189i 0.0507883i
\(807\) 0 0
\(808\) 26.1691 7.01199i 0.920626 0.246681i
\(809\) 20.0158 34.6684i 0.703718 1.21888i −0.263434 0.964678i \(-0.584855\pi\)
0.967152 0.254199i \(-0.0818117\pi\)
\(810\) 0 0
\(811\) 32.9623 1.15746 0.578732 0.815518i \(-0.303548\pi\)
0.578732 + 0.815518i \(0.303548\pi\)
\(812\) −0.163593 0.150005i −0.00574099 0.00526415i
\(813\) 0 0
\(814\) −17.0680 + 9.85423i −0.598234 + 0.345391i
\(815\) −11.3220 + 41.0490i −0.396592 + 1.43788i
\(816\) 0 0
\(817\) −8.01880 2.14863i −0.280542 0.0751711i
\(818\) −22.8835 + 22.8835i −0.800103 + 0.800103i
\(819\) 0 0
\(820\) −0.134247 + 0.228637i −0.00468810 + 0.00798437i
\(821\) −4.48457 + 2.58917i −0.156513 + 0.0903625i −0.576211 0.817301i \(-0.695469\pi\)
0.419698 + 0.907664i \(0.362136\pi\)
\(822\) 0 0
\(823\) −6.85811 + 1.83762i −0.239059 + 0.0640556i −0.376359 0.926474i \(-0.622824\pi\)
0.137300 + 0.990529i \(0.456157\pi\)
\(824\) 11.7717 + 20.3893i 0.410088 + 0.710294i
\(825\) 0 0
\(826\) −5.30963 8.34055i −0.184746 0.290205i
\(827\) −19.9878 19.9878i −0.695043 0.695043i 0.268294 0.963337i \(-0.413540\pi\)
−0.963337 + 0.268294i \(0.913540\pi\)
\(828\) 0 0
\(829\) −31.9596 18.4519i −1.11000 0.640860i −0.171173 0.985241i \(-0.554756\pi\)
−0.938830 + 0.344381i \(0.888089\pi\)
\(830\) 17.7373 + 31.2484i 0.615671 + 1.08465i
\(831\) 0 0
\(832\) 0.857627 0.857627i 0.0297329 0.0297329i
\(833\) −51.7190 9.15485i −1.79196 0.317197i
\(834\) 0 0
\(835\) −11.0941 11.2579i −0.383929 0.389596i
\(836\) 0.0466411 + 0.0269283i 0.00161312 + 0.000931334i
\(837\) 0 0
\(838\) 6.13731 22.9048i 0.212010 0.791232i
\(839\) −20.5318 −0.708836 −0.354418 0.935087i \(-0.615321\pi\)
−0.354418 + 0.935087i \(0.615321\pi\)
\(840\) 0 0
\(841\) −4.21616 −0.145385
\(842\) −12.2299 + 45.6424i −0.421469 + 1.57294i
\(843\) 0 0
\(844\) −0.0559238 0.0322876i −0.00192497 0.00111138i
\(845\) −0.212587 + 29.0175i −0.00731323 + 0.998234i
\(846\) 0 0
\(847\) 7.26661 + 23.0735i 0.249684 + 0.792813i
\(848\) 17.5947 17.5947i 0.604205 0.604205i
\(849\) 0 0
\(850\) 0.774074 52.8266i 0.0265505 1.81194i
\(851\) −45.5638 26.3063i −1.56191 0.901768i
\(852\) 0 0
\(853\) 8.22782 + 8.22782i 0.281715 + 0.281715i 0.833793 0.552078i \(-0.186165\pi\)
−0.552078 + 0.833793i \(0.686165\pi\)
\(854\) 43.5933 1.88883i 1.49173 0.0646343i
\(855\) 0 0
\(856\) 0.318686 + 0.551981i 0.0108925 + 0.0188663i
\(857\) 0.952220 0.255147i 0.0325272 0.00871564i −0.242519 0.970147i \(-0.577974\pi\)
0.275046 + 0.961431i \(0.411307\pi\)
\(858\) 0 0
\(859\) 29.3440 16.9418i 1.00121 0.578046i 0.0926009 0.995703i \(-0.470482\pi\)
0.908605 + 0.417657i \(0.137149\pi\)
\(860\) −0.0335741 0.129075i −0.00114487 0.00440143i
\(861\) 0 0
\(862\) 13.2648 13.2648i 0.451800 0.451800i
\(863\) 10.1675 + 2.72438i 0.346106 + 0.0927388i 0.427684 0.903928i \(-0.359329\pi\)
−0.0815784 + 0.996667i \(0.525996\pi\)
\(864\) 0 0
\(865\) 23.2999 + 6.42651i 0.792222 + 0.218508i
\(866\) −40.3480 + 23.2949i −1.37108 + 0.791593i
\(867\) 0 0
\(868\) 0.289574 0.0911966i 0.00982877 0.00309541i
\(869\) 16.4901 0.559388
\(870\) 0 0
\(871\) −0.919605 + 1.59280i −0.0311596 + 0.0539701i
\(872\) 14.8618 3.98221i 0.503284 0.134855i
\(873\) 0 0
\(874\) 16.9199i 0.572324i
\(875\) 28.7292 + 7.04502i 0.971225 + 0.238165i
\(876\) 0 0
\(877\) −21.2308 5.68877i −0.716912 0.192096i −0.118119 0.992999i \(-0.537686\pi\)
−0.598793 + 0.800904i \(0.704353\pi\)
\(878\) −1.04627 3.90473i −0.0353099 0.131778i
\(879\) 0 0
\(880\) 0.0885290 12.0840i 0.00298431 0.407350i
\(881\) 6.52365i 0.219787i −0.993943 0.109894i \(-0.964949\pi\)
0.993943 0.109894i \(-0.0350510\pi\)
\(882\) 0 0
\(883\) −10.6633 10.6633i −0.358849 0.358849i 0.504540 0.863388i \(-0.331662\pi\)
−0.863388 + 0.504540i \(0.831662\pi\)
\(884\) −0.00950593 0.0164648i −0.000319719 0.000553770i
\(885\) 0 0
\(886\) −12.1057 + 20.9676i −0.406698 + 0.704421i
\(887\) −5.81970 + 21.7194i −0.195406 + 0.729267i 0.796755 + 0.604303i \(0.206548\pi\)
−0.992161 + 0.124964i \(0.960118\pi\)
\(888\) 0 0
\(889\) 29.7308 18.9268i 0.997140 0.634783i
\(890\) 8.41182 2.18802i 0.281965 0.0733425i
\(891\) 0 0
\(892\) −0.00757331 0.0282640i −0.000253573 0.000946348i
\(893\) 1.31449 + 4.90573i 0.0439876 + 0.164164i
\(894\) 0 0
\(895\) 19.0128 32.3810i 0.635528 1.08238i
\(896\) −26.2061 13.6531i −0.875484 0.456118i
\(897\) 0 0
\(898\) −0.114649 + 0.427877i −0.00382589 + 0.0142784i
\(899\) −16.9499 + 29.3581i −0.565311 + 0.979147i
\(900\) 0 0
\(901\) −23.5377 40.7685i −0.784155 1.35820i
\(902\) −9.54764 9.54764i −0.317901 0.317901i
\(903\) 0 0
\(904\) 30.9372i 1.02896i
\(905\) −3.49663 0.0256169i −0.116232 0.000851533i
\(906\) 0 0
\(907\) −10.1119 37.7381i −0.335760 1.25307i −0.903043 0.429550i \(-0.858672\pi\)
0.567283 0.823523i \(-0.307994\pi\)
\(908\) 0.204872 + 0.0548953i 0.00679892 + 0.00182176i
\(909\) 0 0
\(910\) −1.19759 + 0.367539i −0.0396996 + 0.0121838i
\(911\) 45.1293i 1.49520i −0.664148 0.747601i \(-0.731206\pi\)
0.664148 0.747601i \(-0.268794\pi\)
\(912\) 0 0
\(913\) 15.0189 4.02430i 0.497053 0.133185i
\(914\) 12.8485 22.2543i 0.424991 0.736106i
\(915\) 0 0
\(916\) −0.442740 −0.0146285
\(917\) −18.6846 + 5.88443i −0.617022 + 0.194321i
\(918\) 0 0
\(919\) −11.3866 + 6.57407i −0.375610 + 0.216859i −0.675907 0.736987i \(-0.736248\pi\)
0.300296 + 0.953846i \(0.402914\pi\)
\(920\) 28.2934 16.0600i 0.932804 0.529481i
\(921\) 0 0
\(922\) −21.0695 5.64555i −0.693886 0.185926i
\(923\) −0.525544 + 0.525544i −0.0172985 + 0.0172985i
\(924\) 0 0
\(925\) −49.4029 14.0164i −1.62436 0.460856i
\(926\) −37.9399 + 21.9046i −1.24678 + 0.719830i
\(927\) 0 0
\(928\) −0.458378 + 0.122822i −0.0150470 + 0.00403183i
\(929\) −9.19334 15.9233i −0.301624 0.522428i 0.674880 0.737927i \(-0.264195\pi\)
−0.976504 + 0.215500i \(0.930862\pi\)
\(930\) 0 0
\(931\) −16.3565 + 1.42007i −0.536064 + 0.0465410i
\(932\) −0.0464938 0.0464938i −0.00152296 0.00152296i
\(933\) 0 0
\(934\) −39.0508 22.5460i −1.27778 0.737728i
\(935\) −22.0392 6.07879i −0.720760 0.198798i
\(936\) 0 0
\(937\) −12.8792 + 12.8792i −0.420745 + 0.420745i −0.885460 0.464715i \(-0.846157\pi\)
0.464715 + 0.885460i \(0.346157\pi\)
\(938\) 44.4905 + 9.87879i 1.45267 + 0.322554i
\(939\) 0 0
\(940\) −0.0581161 + 0.0572708i −0.00189554 + 0.00186797i
\(941\) 41.7477 + 24.1030i 1.36094 + 0.785736i 0.989748 0.142822i \(-0.0456176\pi\)
0.371187 + 0.928558i \(0.378951\pi\)
\(942\) 0 0
\(943\) 9.32919 34.8170i 0.303800 1.13380i
\(944\) −10.5245 −0.342543
\(945\) 0 0
\(946\) 6.79205 0.220829
\(947\) −10.2186 + 38.1363i −0.332059 + 1.23926i 0.574963 + 0.818179i \(0.305016\pi\)
−0.907022 + 0.421083i \(0.861650\pi\)
\(948\) 0 0
\(949\) −0.732709 0.423030i −0.0237847 0.0137321i
\(950\) −4.04015 16.0129i −0.131080 0.519528i
\(951\) 0 0
\(952\) −38.1059 + 41.5576i −1.23502 + 1.34689i
\(953\) −32.6743 + 32.6743i −1.05843 + 1.05843i −0.0602421 + 0.998184i \(0.519187\pi\)
−0.998184 + 0.0602421i \(0.980813\pi\)
\(954\) 0 0
\(955\) 50.1334 28.4569i 1.62228 0.920843i
\(956\) −0.276107 0.159411i −0.00892995 0.00515571i
\(957\) 0 0
\(958\) −10.9843 10.9843i −0.354887 0.354887i
\(959\) −23.4587 + 1.01643i −0.757522 + 0.0328222i
\(960\) 0 0
\(961\) −7.68437 13.3097i −0.247883 0.429346i
\(962\) 2.10066 0.562870i 0.0677280 0.0181477i
\(963\) 0 0
\(964\) 0.197646 0.114111i 0.00636576 0.00367528i
\(965\) −35.3637 + 9.19855i −1.13840 + 0.296112i
\(966\) 0 0
\(967\) 1.01300 1.01300i 0.0325759 0.0325759i −0.690631 0.723207i \(-0.742667\pi\)
0.723207 + 0.690631i \(0.242667\pi\)
\(968\) 25.0838 + 6.72119i 0.806225 + 0.216027i
\(969\) 0 0
\(970\) −8.09432 14.2600i −0.259893 0.457862i
\(971\) 50.0760 28.9114i 1.60702 0.927811i 0.616983 0.786976i \(-0.288355\pi\)
0.990033 0.140835i \(-0.0449787\pi\)
\(972\) 0 0
\(973\) −4.75538 + 21.4165i −0.152451 + 0.686581i
\(974\) 55.7954 1.78780
\(975\) 0 0
\(976\) 23.2233 40.2240i 0.743360 1.28754i
\(977\) 31.6484 8.48016i 1.01252 0.271304i 0.285839 0.958278i \(-0.407728\pi\)
0.726682 + 0.686973i \(0.241061\pi\)
\(978\) 0 0
\(979\) 3.76119i 0.120208i
\(980\) −0.149558 0.217265i −0.00477745 0.00694027i
\(981\) 0 0
\(982\) −49.8797 13.3652i −1.59173 0.426502i
\(983\) −10.1297 37.8045i −0.323087 1.20578i −0.916221 0.400672i \(-0.868777\pi\)
0.593135 0.805103i \(-0.297890\pi\)
\(984\) 0 0
\(985\) 11.2363 + 11.4022i 0.358019 + 0.363304i
\(986\) 52.6033i 1.67523i
\(987\) 0 0
\(988\) −0.00420226 0.00420226i −0.000133692 0.000133692i
\(989\) 9.06583 + 15.7025i 0.288276 + 0.499310i
\(990\) 0 0
\(991\) 6.11042 10.5836i 0.194104 0.336198i −0.752502 0.658589i \(-0.771153\pi\)
0.946606 + 0.322391i \(0.104487\pi\)
\(992\) 0.167998 0.626978i 0.00533395 0.0199066i
\(993\) 0 0
\(994\) 16.3329 + 8.50926i 0.518048 + 0.269897i
\(995\) −28.1091 16.5045i −0.891119 0.523229i
\(996\) 0 0
\(997\) −2.50867 9.36249i −0.0794504 0.296513i 0.914755 0.404009i \(-0.132383\pi\)
−0.994206 + 0.107496i \(0.965717\pi\)
\(998\) −6.74171 25.1604i −0.213405 0.796438i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.ce.a.53.5 64
3.2 odd 2 inner 315.2.ce.a.53.12 yes 64
5.2 odd 4 inner 315.2.ce.a.242.5 yes 64
7.2 even 3 inner 315.2.ce.a.233.12 yes 64
15.2 even 4 inner 315.2.ce.a.242.12 yes 64
21.2 odd 6 inner 315.2.ce.a.233.5 yes 64
35.2 odd 12 inner 315.2.ce.a.107.12 yes 64
105.2 even 12 inner 315.2.ce.a.107.5 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.ce.a.53.5 64 1.1 even 1 trivial
315.2.ce.a.53.12 yes 64 3.2 odd 2 inner
315.2.ce.a.107.5 yes 64 105.2 even 12 inner
315.2.ce.a.107.12 yes 64 35.2 odd 12 inner
315.2.ce.a.233.5 yes 64 21.2 odd 6 inner
315.2.ce.a.233.12 yes 64 7.2 even 3 inner
315.2.ce.a.242.5 yes 64 5.2 odd 4 inner
315.2.ce.a.242.12 yes 64 15.2 even 4 inner