Properties

Label 315.4.a.p.1.1
Level $315$
Weight $4$
Character 315.1
Self dual yes
Analytic conductor $18.586$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.14360.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.48565\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.48565 q^{2} +4.14976 q^{4} -5.00000 q^{5} +7.00000 q^{7} +13.4206 q^{8} +17.4283 q^{10} +6.90764 q^{11} -22.1364 q^{13} -24.3996 q^{14} -79.9776 q^{16} -88.3030 q^{17} +36.9560 q^{19} -20.7488 q^{20} -24.0776 q^{22} +95.5283 q^{23} +25.0000 q^{25} +77.1598 q^{26} +29.0483 q^{28} -269.029 q^{29} +197.114 q^{31} +171.409 q^{32} +307.793 q^{34} -35.0000 q^{35} +2.14546 q^{37} -128.816 q^{38} -67.1029 q^{40} -174.127 q^{41} -17.0345 q^{43} +28.6650 q^{44} -332.978 q^{46} +528.029 q^{47} +49.0000 q^{49} -87.1413 q^{50} -91.8608 q^{52} +641.114 q^{53} -34.5382 q^{55} +93.9441 q^{56} +937.742 q^{58} +642.975 q^{59} +142.967 q^{61} -687.070 q^{62} +42.3480 q^{64} +110.682 q^{65} +478.797 q^{67} -366.436 q^{68} +121.998 q^{70} -105.550 q^{71} +986.512 q^{73} -7.47834 q^{74} +153.358 q^{76} +48.3534 q^{77} -1099.86 q^{79} +399.888 q^{80} +606.947 q^{82} +1236.62 q^{83} +441.515 q^{85} +59.3763 q^{86} +92.7045 q^{88} +711.698 q^{89} -154.955 q^{91} +396.420 q^{92} -1840.52 q^{94} -184.780 q^{95} -636.553 q^{97} -170.797 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 13 q^{4} - 15 q^{5} + 21 q^{7} + 15 q^{8} - 15 q^{10} + 74 q^{11} + 44 q^{13} + 21 q^{14} - 79 q^{16} + 52 q^{17} + 168 q^{19} - 65 q^{20} + 184 q^{22} + 124 q^{23} + 75 q^{25} + 446 q^{26}+ \cdots + 147 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.48565 −1.23236 −0.616182 0.787604i \(-0.711321\pi\)
−0.616182 + 0.787604i \(0.711321\pi\)
\(3\) 0 0
\(4\) 4.14976 0.518720
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 13.4206 0.593112
\(9\) 0 0
\(10\) 17.4283 0.551130
\(11\) 6.90764 0.189339 0.0946696 0.995509i \(-0.469821\pi\)
0.0946696 + 0.995509i \(0.469821\pi\)
\(12\) 0 0
\(13\) −22.1364 −0.472272 −0.236136 0.971720i \(-0.575881\pi\)
−0.236136 + 0.971720i \(0.575881\pi\)
\(14\) −24.3996 −0.465790
\(15\) 0 0
\(16\) −79.9776 −1.24965
\(17\) −88.3030 −1.25980 −0.629901 0.776676i \(-0.716904\pi\)
−0.629901 + 0.776676i \(0.716904\pi\)
\(18\) 0 0
\(19\) 36.9560 0.446225 0.223113 0.974793i \(-0.428378\pi\)
0.223113 + 0.974793i \(0.428378\pi\)
\(20\) −20.7488 −0.231979
\(21\) 0 0
\(22\) −24.0776 −0.233335
\(23\) 95.5283 0.866045 0.433022 0.901383i \(-0.357447\pi\)
0.433022 + 0.901383i \(0.357447\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 77.1598 0.582010
\(27\) 0 0
\(28\) 29.0483 0.196058
\(29\) −269.029 −1.72267 −0.861336 0.508035i \(-0.830372\pi\)
−0.861336 + 0.508035i \(0.830372\pi\)
\(30\) 0 0
\(31\) 197.114 1.14202 0.571012 0.820942i \(-0.306551\pi\)
0.571012 + 0.820942i \(0.306551\pi\)
\(32\) 171.409 0.946911
\(33\) 0 0
\(34\) 307.793 1.55253
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) 2.14546 0.00953276 0.00476638 0.999989i \(-0.498483\pi\)
0.00476638 + 0.999989i \(0.498483\pi\)
\(38\) −128.816 −0.549912
\(39\) 0 0
\(40\) −67.1029 −0.265248
\(41\) −174.127 −0.663271 −0.331636 0.943408i \(-0.607600\pi\)
−0.331636 + 0.943408i \(0.607600\pi\)
\(42\) 0 0
\(43\) −17.0345 −0.0604125 −0.0302062 0.999544i \(-0.509616\pi\)
−0.0302062 + 0.999544i \(0.509616\pi\)
\(44\) 28.6650 0.0982140
\(45\) 0 0
\(46\) −332.978 −1.06728
\(47\) 528.029 1.63874 0.819371 0.573264i \(-0.194323\pi\)
0.819371 + 0.573264i \(0.194323\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −87.1413 −0.246473
\(51\) 0 0
\(52\) −91.8608 −0.244977
\(53\) 641.114 1.66158 0.830790 0.556586i \(-0.187889\pi\)
0.830790 + 0.556586i \(0.187889\pi\)
\(54\) 0 0
\(55\) −34.5382 −0.0846750
\(56\) 93.9441 0.224175
\(57\) 0 0
\(58\) 937.742 2.12296
\(59\) 642.975 1.41878 0.709391 0.704815i \(-0.248970\pi\)
0.709391 + 0.704815i \(0.248970\pi\)
\(60\) 0 0
\(61\) 142.967 0.300083 0.150042 0.988680i \(-0.452059\pi\)
0.150042 + 0.988680i \(0.452059\pi\)
\(62\) −687.070 −1.40739
\(63\) 0 0
\(64\) 42.3480 0.0827109
\(65\) 110.682 0.211206
\(66\) 0 0
\(67\) 478.797 0.873050 0.436525 0.899692i \(-0.356209\pi\)
0.436525 + 0.899692i \(0.356209\pi\)
\(68\) −366.436 −0.653484
\(69\) 0 0
\(70\) 121.998 0.208307
\(71\) −105.550 −0.176430 −0.0882150 0.996101i \(-0.528116\pi\)
−0.0882150 + 0.996101i \(0.528116\pi\)
\(72\) 0 0
\(73\) 986.512 1.58168 0.790839 0.612024i \(-0.209644\pi\)
0.790839 + 0.612024i \(0.209644\pi\)
\(74\) −7.47834 −0.0117478
\(75\) 0 0
\(76\) 153.358 0.231466
\(77\) 48.3534 0.0715635
\(78\) 0 0
\(79\) −1099.86 −1.56638 −0.783190 0.621783i \(-0.786409\pi\)
−0.783190 + 0.621783i \(0.786409\pi\)
\(80\) 399.888 0.558860
\(81\) 0 0
\(82\) 606.947 0.817391
\(83\) 1236.62 1.63538 0.817691 0.575657i \(-0.195254\pi\)
0.817691 + 0.575657i \(0.195254\pi\)
\(84\) 0 0
\(85\) 441.515 0.563400
\(86\) 59.3763 0.0744501
\(87\) 0 0
\(88\) 92.7045 0.112299
\(89\) 711.698 0.847638 0.423819 0.905747i \(-0.360689\pi\)
0.423819 + 0.905747i \(0.360689\pi\)
\(90\) 0 0
\(91\) −154.955 −0.178502
\(92\) 396.420 0.449235
\(93\) 0 0
\(94\) −1840.52 −2.01953
\(95\) −184.780 −0.199558
\(96\) 0 0
\(97\) −636.553 −0.666311 −0.333156 0.942872i \(-0.608113\pi\)
−0.333156 + 0.942872i \(0.608113\pi\)
\(98\) −170.797 −0.176052
\(99\) 0 0
\(100\) 103.744 0.103744
\(101\) −1742.05 −1.71624 −0.858121 0.513448i \(-0.828368\pi\)
−0.858121 + 0.513448i \(0.828368\pi\)
\(102\) 0 0
\(103\) 1454.62 1.39154 0.695769 0.718266i \(-0.255064\pi\)
0.695769 + 0.718266i \(0.255064\pi\)
\(104\) −297.083 −0.280110
\(105\) 0 0
\(106\) −2234.70 −2.04767
\(107\) 1181.67 1.06763 0.533813 0.845603i \(-0.320759\pi\)
0.533813 + 0.845603i \(0.320759\pi\)
\(108\) 0 0
\(109\) 2204.43 1.93712 0.968559 0.248784i \(-0.0800310\pi\)
0.968559 + 0.248784i \(0.0800310\pi\)
\(110\) 120.388 0.104350
\(111\) 0 0
\(112\) −559.843 −0.472323
\(113\) −236.886 −0.197207 −0.0986034 0.995127i \(-0.531438\pi\)
−0.0986034 + 0.995127i \(0.531438\pi\)
\(114\) 0 0
\(115\) −477.641 −0.387307
\(116\) −1116.41 −0.893585
\(117\) 0 0
\(118\) −2241.19 −1.74846
\(119\) −618.121 −0.476160
\(120\) 0 0
\(121\) −1283.28 −0.964151
\(122\) −498.334 −0.369811
\(123\) 0 0
\(124\) 817.976 0.592390
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1667.21 −1.16489 −0.582446 0.812869i \(-0.697904\pi\)
−0.582446 + 0.812869i \(0.697904\pi\)
\(128\) −1518.88 −1.04884
\(129\) 0 0
\(130\) −385.799 −0.260283
\(131\) −891.722 −0.594733 −0.297367 0.954763i \(-0.596108\pi\)
−0.297367 + 0.954763i \(0.596108\pi\)
\(132\) 0 0
\(133\) 258.692 0.168657
\(134\) −1668.92 −1.07591
\(135\) 0 0
\(136\) −1185.08 −0.747203
\(137\) 400.425 0.249713 0.124856 0.992175i \(-0.460153\pi\)
0.124856 + 0.992175i \(0.460153\pi\)
\(138\) 0 0
\(139\) 515.050 0.314287 0.157144 0.987576i \(-0.449771\pi\)
0.157144 + 0.987576i \(0.449771\pi\)
\(140\) −145.242 −0.0876797
\(141\) 0 0
\(142\) 367.912 0.217426
\(143\) −152.910 −0.0894195
\(144\) 0 0
\(145\) 1345.15 0.770403
\(146\) −3438.64 −1.94920
\(147\) 0 0
\(148\) 8.90316 0.00494483
\(149\) −218.374 −0.120066 −0.0600332 0.998196i \(-0.519121\pi\)
−0.0600332 + 0.998196i \(0.519121\pi\)
\(150\) 0 0
\(151\) −175.011 −0.0943190 −0.0471595 0.998887i \(-0.515017\pi\)
−0.0471595 + 0.998887i \(0.515017\pi\)
\(152\) 495.971 0.264661
\(153\) 0 0
\(154\) −168.543 −0.0881922
\(155\) −985.570 −0.510728
\(156\) 0 0
\(157\) −919.642 −0.467487 −0.233743 0.972298i \(-0.575098\pi\)
−0.233743 + 0.972298i \(0.575098\pi\)
\(158\) 3833.73 1.93035
\(159\) 0 0
\(160\) −857.046 −0.423471
\(161\) 668.698 0.327334
\(162\) 0 0
\(163\) 2368.51 1.13813 0.569067 0.822291i \(-0.307305\pi\)
0.569067 + 0.822291i \(0.307305\pi\)
\(164\) −722.587 −0.344052
\(165\) 0 0
\(166\) −4310.43 −2.01539
\(167\) −1079.37 −0.500144 −0.250072 0.968227i \(-0.580454\pi\)
−0.250072 + 0.968227i \(0.580454\pi\)
\(168\) 0 0
\(169\) −1706.98 −0.776959
\(170\) −1538.97 −0.694314
\(171\) 0 0
\(172\) −70.6891 −0.0313372
\(173\) 881.271 0.387294 0.193647 0.981071i \(-0.437968\pi\)
0.193647 + 0.981071i \(0.437968\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) −552.456 −0.236608
\(177\) 0 0
\(178\) −2480.73 −1.04460
\(179\) 3377.72 1.41041 0.705203 0.709006i \(-0.250856\pi\)
0.705203 + 0.709006i \(0.250856\pi\)
\(180\) 0 0
\(181\) 1435.58 0.589533 0.294767 0.955569i \(-0.404758\pi\)
0.294767 + 0.955569i \(0.404758\pi\)
\(182\) 540.118 0.219979
\(183\) 0 0
\(184\) 1282.05 0.513661
\(185\) −10.7273 −0.00426318
\(186\) 0 0
\(187\) −609.965 −0.238530
\(188\) 2191.19 0.850049
\(189\) 0 0
\(190\) 644.078 0.245928
\(191\) 1588.14 0.601642 0.300821 0.953681i \(-0.402739\pi\)
0.300821 + 0.953681i \(0.402739\pi\)
\(192\) 0 0
\(193\) −977.704 −0.364646 −0.182323 0.983239i \(-0.558362\pi\)
−0.182323 + 0.983239i \(0.558362\pi\)
\(194\) 2218.80 0.821138
\(195\) 0 0
\(196\) 203.338 0.0741029
\(197\) −359.682 −0.130083 −0.0650413 0.997883i \(-0.520718\pi\)
−0.0650413 + 0.997883i \(0.520718\pi\)
\(198\) 0 0
\(199\) 2818.38 1.00397 0.501983 0.864877i \(-0.332604\pi\)
0.501983 + 0.864877i \(0.332604\pi\)
\(200\) 335.515 0.118622
\(201\) 0 0
\(202\) 6072.18 2.11503
\(203\) −1883.21 −0.651109
\(204\) 0 0
\(205\) 870.637 0.296624
\(206\) −5070.31 −1.71488
\(207\) 0 0
\(208\) 1770.42 0.590174
\(209\) 255.278 0.0844879
\(210\) 0 0
\(211\) −1009.64 −0.329415 −0.164708 0.986342i \(-0.552668\pi\)
−0.164708 + 0.986342i \(0.552668\pi\)
\(212\) 2660.47 0.861895
\(213\) 0 0
\(214\) −4118.88 −1.31570
\(215\) 85.1725 0.0270173
\(216\) 0 0
\(217\) 1379.80 0.431644
\(218\) −7683.86 −2.38723
\(219\) 0 0
\(220\) −143.325 −0.0439226
\(221\) 1954.71 0.594969
\(222\) 0 0
\(223\) 1277.28 0.383555 0.191778 0.981438i \(-0.438575\pi\)
0.191778 + 0.981438i \(0.438575\pi\)
\(224\) 1199.86 0.357899
\(225\) 0 0
\(226\) 825.702 0.243030
\(227\) −1399.87 −0.409307 −0.204654 0.978834i \(-0.565607\pi\)
−0.204654 + 0.978834i \(0.565607\pi\)
\(228\) 0 0
\(229\) 3182.00 0.918222 0.459111 0.888379i \(-0.348168\pi\)
0.459111 + 0.888379i \(0.348168\pi\)
\(230\) 1664.89 0.477303
\(231\) 0 0
\(232\) −3610.53 −1.02174
\(233\) 3027.84 0.851332 0.425666 0.904880i \(-0.360040\pi\)
0.425666 + 0.904880i \(0.360040\pi\)
\(234\) 0 0
\(235\) −2640.14 −0.732868
\(236\) 2668.19 0.735951
\(237\) 0 0
\(238\) 2154.55 0.586802
\(239\) 4995.69 1.35207 0.676034 0.736870i \(-0.263697\pi\)
0.676034 + 0.736870i \(0.263697\pi\)
\(240\) 0 0
\(241\) −3756.52 −1.00406 −0.502030 0.864850i \(-0.667413\pi\)
−0.502030 + 0.864850i \(0.667413\pi\)
\(242\) 4473.08 1.18818
\(243\) 0 0
\(244\) 593.280 0.155659
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) −818.072 −0.210740
\(248\) 2645.39 0.677347
\(249\) 0 0
\(250\) 435.706 0.110226
\(251\) −6565.46 −1.65103 −0.825514 0.564381i \(-0.809115\pi\)
−0.825514 + 0.564381i \(0.809115\pi\)
\(252\) 0 0
\(253\) 659.875 0.163976
\(254\) 5811.33 1.43557
\(255\) 0 0
\(256\) 4955.51 1.20984
\(257\) 6879.44 1.66976 0.834879 0.550433i \(-0.185537\pi\)
0.834879 + 0.550433i \(0.185537\pi\)
\(258\) 0 0
\(259\) 15.0182 0.00360304
\(260\) 459.304 0.109557
\(261\) 0 0
\(262\) 3108.23 0.732928
\(263\) −3080.15 −0.722169 −0.361084 0.932533i \(-0.617593\pi\)
−0.361084 + 0.932533i \(0.617593\pi\)
\(264\) 0 0
\(265\) −3205.57 −0.743081
\(266\) −901.709 −0.207847
\(267\) 0 0
\(268\) 1986.89 0.452869
\(269\) −6710.33 −1.52095 −0.760476 0.649366i \(-0.775034\pi\)
−0.760476 + 0.649366i \(0.775034\pi\)
\(270\) 0 0
\(271\) 7842.95 1.75803 0.879014 0.476796i \(-0.158202\pi\)
0.879014 + 0.476796i \(0.158202\pi\)
\(272\) 7062.26 1.57431
\(273\) 0 0
\(274\) −1395.74 −0.307737
\(275\) 172.691 0.0378678
\(276\) 0 0
\(277\) 5446.87 1.18148 0.590742 0.806861i \(-0.298835\pi\)
0.590742 + 0.806861i \(0.298835\pi\)
\(278\) −1795.28 −0.387316
\(279\) 0 0
\(280\) −469.721 −0.100254
\(281\) −2126.76 −0.451501 −0.225751 0.974185i \(-0.572483\pi\)
−0.225751 + 0.974185i \(0.572483\pi\)
\(282\) 0 0
\(283\) −3426.38 −0.719707 −0.359853 0.933009i \(-0.617173\pi\)
−0.359853 + 0.933009i \(0.617173\pi\)
\(284\) −438.009 −0.0915178
\(285\) 0 0
\(286\) 532.991 0.110197
\(287\) −1218.89 −0.250693
\(288\) 0 0
\(289\) 2884.42 0.587099
\(290\) −4688.71 −0.949416
\(291\) 0 0
\(292\) 4093.79 0.820448
\(293\) 1749.82 0.348894 0.174447 0.984667i \(-0.444186\pi\)
0.174447 + 0.984667i \(0.444186\pi\)
\(294\) 0 0
\(295\) −3214.87 −0.634499
\(296\) 28.7934 0.00565399
\(297\) 0 0
\(298\) 761.176 0.147966
\(299\) −2114.65 −0.409008
\(300\) 0 0
\(301\) −119.241 −0.0228338
\(302\) 610.026 0.116235
\(303\) 0 0
\(304\) −2955.65 −0.557625
\(305\) −714.836 −0.134201
\(306\) 0 0
\(307\) 7970.33 1.48173 0.740864 0.671655i \(-0.234416\pi\)
0.740864 + 0.671655i \(0.234416\pi\)
\(308\) 200.655 0.0371214
\(309\) 0 0
\(310\) 3435.35 0.629403
\(311\) 2560.72 0.466898 0.233449 0.972369i \(-0.424999\pi\)
0.233449 + 0.972369i \(0.424999\pi\)
\(312\) 0 0
\(313\) −4861.11 −0.877848 −0.438924 0.898524i \(-0.644640\pi\)
−0.438924 + 0.898524i \(0.644640\pi\)
\(314\) 3205.55 0.576114
\(315\) 0 0
\(316\) −4564.16 −0.812513
\(317\) −8166.16 −1.44687 −0.723434 0.690394i \(-0.757437\pi\)
−0.723434 + 0.690394i \(0.757437\pi\)
\(318\) 0 0
\(319\) −1858.36 −0.326169
\(320\) −211.740 −0.0369894
\(321\) 0 0
\(322\) −2330.85 −0.403395
\(323\) −3263.32 −0.562155
\(324\) 0 0
\(325\) −553.410 −0.0944543
\(326\) −8255.79 −1.40259
\(327\) 0 0
\(328\) −2336.89 −0.393394
\(329\) 3696.20 0.619386
\(330\) 0 0
\(331\) 2974.89 0.494002 0.247001 0.969015i \(-0.420555\pi\)
0.247001 + 0.969015i \(0.420555\pi\)
\(332\) 5131.68 0.848306
\(333\) 0 0
\(334\) 3762.30 0.616359
\(335\) −2393.98 −0.390440
\(336\) 0 0
\(337\) 3496.34 0.565157 0.282578 0.959244i \(-0.408810\pi\)
0.282578 + 0.959244i \(0.408810\pi\)
\(338\) 5949.94 0.957497
\(339\) 0 0
\(340\) 1832.18 0.292247
\(341\) 1361.59 0.216230
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −228.613 −0.0358314
\(345\) 0 0
\(346\) −3071.80 −0.477287
\(347\) −3959.08 −0.612491 −0.306246 0.951953i \(-0.599073\pi\)
−0.306246 + 0.951953i \(0.599073\pi\)
\(348\) 0 0
\(349\) 5581.65 0.856099 0.428050 0.903755i \(-0.359201\pi\)
0.428050 + 0.903755i \(0.359201\pi\)
\(350\) −609.989 −0.0931579
\(351\) 0 0
\(352\) 1184.03 0.179287
\(353\) 9896.43 1.49216 0.746082 0.665854i \(-0.231933\pi\)
0.746082 + 0.665854i \(0.231933\pi\)
\(354\) 0 0
\(355\) 527.752 0.0789019
\(356\) 2953.38 0.439687
\(357\) 0 0
\(358\) −11773.5 −1.73813
\(359\) −11917.6 −1.75205 −0.876025 0.482265i \(-0.839814\pi\)
−0.876025 + 0.482265i \(0.839814\pi\)
\(360\) 0 0
\(361\) −5493.26 −0.800883
\(362\) −5003.92 −0.726519
\(363\) 0 0
\(364\) −643.025 −0.0925926
\(365\) −4932.56 −0.707348
\(366\) 0 0
\(367\) −7101.58 −1.01008 −0.505040 0.863096i \(-0.668522\pi\)
−0.505040 + 0.863096i \(0.668522\pi\)
\(368\) −7640.12 −1.08225
\(369\) 0 0
\(370\) 37.3917 0.00525379
\(371\) 4487.80 0.628018
\(372\) 0 0
\(373\) 294.316 0.0408555 0.0204277 0.999791i \(-0.493497\pi\)
0.0204277 + 0.999791i \(0.493497\pi\)
\(374\) 2126.12 0.293955
\(375\) 0 0
\(376\) 7086.45 0.971957
\(377\) 5955.34 0.813569
\(378\) 0 0
\(379\) −9436.57 −1.27896 −0.639478 0.768810i \(-0.720849\pi\)
−0.639478 + 0.768810i \(0.720849\pi\)
\(380\) −766.792 −0.103515
\(381\) 0 0
\(382\) −5535.70 −0.741442
\(383\) 3160.82 0.421699 0.210849 0.977519i \(-0.432377\pi\)
0.210849 + 0.977519i \(0.432377\pi\)
\(384\) 0 0
\(385\) −241.767 −0.0320042
\(386\) 3407.93 0.449376
\(387\) 0 0
\(388\) −2641.55 −0.345629
\(389\) −7822.76 −1.01961 −0.509807 0.860289i \(-0.670283\pi\)
−0.509807 + 0.860289i \(0.670283\pi\)
\(390\) 0 0
\(391\) −8435.43 −1.09104
\(392\) 657.609 0.0847302
\(393\) 0 0
\(394\) 1253.73 0.160309
\(395\) 5499.30 0.700506
\(396\) 0 0
\(397\) −7935.18 −1.00316 −0.501581 0.865111i \(-0.667248\pi\)
−0.501581 + 0.865111i \(0.667248\pi\)
\(398\) −9823.87 −1.23725
\(399\) 0 0
\(400\) −1999.44 −0.249930
\(401\) 488.380 0.0608193 0.0304097 0.999538i \(-0.490319\pi\)
0.0304097 + 0.999538i \(0.490319\pi\)
\(402\) 0 0
\(403\) −4363.39 −0.539345
\(404\) −7229.09 −0.890249
\(405\) 0 0
\(406\) 6564.20 0.802403
\(407\) 14.8201 0.00180492
\(408\) 0 0
\(409\) 11230.6 1.35775 0.678874 0.734254i \(-0.262468\pi\)
0.678874 + 0.734254i \(0.262468\pi\)
\(410\) −3034.74 −0.365549
\(411\) 0 0
\(412\) 6036.34 0.721818
\(413\) 4500.82 0.536249
\(414\) 0 0
\(415\) −6183.10 −0.731365
\(416\) −3794.38 −0.447199
\(417\) 0 0
\(418\) −889.811 −0.104120
\(419\) 7369.62 0.859259 0.429629 0.903005i \(-0.358644\pi\)
0.429629 + 0.903005i \(0.358644\pi\)
\(420\) 0 0
\(421\) 11972.5 1.38599 0.692997 0.720941i \(-0.256290\pi\)
0.692997 + 0.720941i \(0.256290\pi\)
\(422\) 3519.26 0.405959
\(423\) 0 0
\(424\) 8604.12 0.985503
\(425\) −2207.57 −0.251960
\(426\) 0 0
\(427\) 1000.77 0.113421
\(428\) 4903.63 0.553799
\(429\) 0 0
\(430\) −296.882 −0.0332951
\(431\) 3568.60 0.398825 0.199412 0.979916i \(-0.436097\pi\)
0.199412 + 0.979916i \(0.436097\pi\)
\(432\) 0 0
\(433\) 2291.60 0.254335 0.127168 0.991881i \(-0.459411\pi\)
0.127168 + 0.991881i \(0.459411\pi\)
\(434\) −4809.49 −0.531943
\(435\) 0 0
\(436\) 9147.85 1.00482
\(437\) 3530.34 0.386451
\(438\) 0 0
\(439\) −7329.66 −0.796870 −0.398435 0.917197i \(-0.630446\pi\)
−0.398435 + 0.917197i \(0.630446\pi\)
\(440\) −463.523 −0.0502218
\(441\) 0 0
\(442\) −6813.44 −0.733218
\(443\) −8297.38 −0.889889 −0.444944 0.895558i \(-0.646777\pi\)
−0.444944 + 0.895558i \(0.646777\pi\)
\(444\) 0 0
\(445\) −3558.49 −0.379075
\(446\) −4452.14 −0.472679
\(447\) 0 0
\(448\) 296.436 0.0312618
\(449\) −9758.62 −1.02570 −0.512848 0.858479i \(-0.671410\pi\)
−0.512848 + 0.858479i \(0.671410\pi\)
\(450\) 0 0
\(451\) −1202.81 −0.125583
\(452\) −983.021 −0.102295
\(453\) 0 0
\(454\) 4879.47 0.504416
\(455\) 774.774 0.0798285
\(456\) 0 0
\(457\) −11745.0 −1.20220 −0.601102 0.799172i \(-0.705272\pi\)
−0.601102 + 0.799172i \(0.705272\pi\)
\(458\) −11091.4 −1.13158
\(459\) 0 0
\(460\) −1982.10 −0.200904
\(461\) 10748.6 1.08593 0.542963 0.839756i \(-0.317302\pi\)
0.542963 + 0.839756i \(0.317302\pi\)
\(462\) 0 0
\(463\) −9862.51 −0.989957 −0.494978 0.868905i \(-0.664824\pi\)
−0.494978 + 0.868905i \(0.664824\pi\)
\(464\) 21516.3 2.15274
\(465\) 0 0
\(466\) −10554.0 −1.04915
\(467\) 4660.78 0.461831 0.230916 0.972974i \(-0.425828\pi\)
0.230916 + 0.972974i \(0.425828\pi\)
\(468\) 0 0
\(469\) 3351.58 0.329982
\(470\) 9202.62 0.903160
\(471\) 0 0
\(472\) 8629.10 0.841497
\(473\) −117.668 −0.0114384
\(474\) 0 0
\(475\) 923.899 0.0892451
\(476\) −2565.05 −0.246994
\(477\) 0 0
\(478\) −17413.2 −1.66624
\(479\) 16293.2 1.55419 0.777094 0.629385i \(-0.216693\pi\)
0.777094 + 0.629385i \(0.216693\pi\)
\(480\) 0 0
\(481\) −47.4928 −0.00450205
\(482\) 13093.9 1.23737
\(483\) 0 0
\(484\) −5325.33 −0.500124
\(485\) 3182.77 0.297984
\(486\) 0 0
\(487\) −3515.00 −0.327063 −0.163531 0.986538i \(-0.552289\pi\)
−0.163531 + 0.986538i \(0.552289\pi\)
\(488\) 1918.70 0.177983
\(489\) 0 0
\(490\) 853.984 0.0787328
\(491\) 2516.79 0.231326 0.115663 0.993288i \(-0.463101\pi\)
0.115663 + 0.993288i \(0.463101\pi\)
\(492\) 0 0
\(493\) 23756.1 2.17023
\(494\) 2851.51 0.259708
\(495\) 0 0
\(496\) −15764.7 −1.42713
\(497\) −738.853 −0.0666842
\(498\) 0 0
\(499\) −8747.48 −0.784751 −0.392376 0.919805i \(-0.628347\pi\)
−0.392376 + 0.919805i \(0.628347\pi\)
\(500\) −518.720 −0.0463957
\(501\) 0 0
\(502\) 22884.9 2.03467
\(503\) −11426.1 −1.01285 −0.506426 0.862284i \(-0.669034\pi\)
−0.506426 + 0.862284i \(0.669034\pi\)
\(504\) 0 0
\(505\) 8710.25 0.767526
\(506\) −2300.09 −0.202078
\(507\) 0 0
\(508\) −6918.54 −0.604254
\(509\) 8078.44 0.703478 0.351739 0.936098i \(-0.385590\pi\)
0.351739 + 0.936098i \(0.385590\pi\)
\(510\) 0 0
\(511\) 6905.58 0.597818
\(512\) −5122.12 −0.442125
\(513\) 0 0
\(514\) −23979.3 −2.05775
\(515\) −7273.12 −0.622314
\(516\) 0 0
\(517\) 3647.43 0.310278
\(518\) −52.3484 −0.00444026
\(519\) 0 0
\(520\) 1485.42 0.125269
\(521\) −7226.14 −0.607645 −0.303822 0.952729i \(-0.598263\pi\)
−0.303822 + 0.952729i \(0.598263\pi\)
\(522\) 0 0
\(523\) 9333.06 0.780318 0.390159 0.920748i \(-0.372420\pi\)
0.390159 + 0.920748i \(0.372420\pi\)
\(524\) −3700.43 −0.308500
\(525\) 0 0
\(526\) 10736.3 0.889974
\(527\) −17405.8 −1.43872
\(528\) 0 0
\(529\) −3041.35 −0.249967
\(530\) 11173.5 0.915746
\(531\) 0 0
\(532\) 1073.51 0.0874859
\(533\) 3854.55 0.313244
\(534\) 0 0
\(535\) −5908.33 −0.477457
\(536\) 6425.73 0.517816
\(537\) 0 0
\(538\) 23389.9 1.87437
\(539\) 338.474 0.0270484
\(540\) 0 0
\(541\) 15263.1 1.21296 0.606482 0.795097i \(-0.292580\pi\)
0.606482 + 0.795097i \(0.292580\pi\)
\(542\) −27337.8 −2.16653
\(543\) 0 0
\(544\) −15135.9 −1.19292
\(545\) −11022.1 −0.866305
\(546\) 0 0
\(547\) −13226.0 −1.03382 −0.516912 0.856039i \(-0.672918\pi\)
−0.516912 + 0.856039i \(0.672918\pi\)
\(548\) 1661.67 0.129531
\(549\) 0 0
\(550\) −601.940 −0.0466669
\(551\) −9942.24 −0.768700
\(552\) 0 0
\(553\) −7699.03 −0.592036
\(554\) −18985.9 −1.45602
\(555\) 0 0
\(556\) 2137.33 0.163027
\(557\) −6993.63 −0.532010 −0.266005 0.963972i \(-0.585704\pi\)
−0.266005 + 0.963972i \(0.585704\pi\)
\(558\) 0 0
\(559\) 377.082 0.0285311
\(560\) 2799.22 0.211229
\(561\) 0 0
\(562\) 7413.14 0.556413
\(563\) −392.197 −0.0293590 −0.0146795 0.999892i \(-0.504673\pi\)
−0.0146795 + 0.999892i \(0.504673\pi\)
\(564\) 0 0
\(565\) 1184.43 0.0881935
\(566\) 11943.2 0.886940
\(567\) 0 0
\(568\) −1416.55 −0.104643
\(569\) −8811.72 −0.649221 −0.324610 0.945848i \(-0.605233\pi\)
−0.324610 + 0.945848i \(0.605233\pi\)
\(570\) 0 0
\(571\) −24775.6 −1.81581 −0.907905 0.419175i \(-0.862319\pi\)
−0.907905 + 0.419175i \(0.862319\pi\)
\(572\) −634.541 −0.0463837
\(573\) 0 0
\(574\) 4248.63 0.308945
\(575\) 2388.21 0.173209
\(576\) 0 0
\(577\) −8850.62 −0.638572 −0.319286 0.947658i \(-0.603443\pi\)
−0.319286 + 0.947658i \(0.603443\pi\)
\(578\) −10054.1 −0.723520
\(579\) 0 0
\(580\) 5582.04 0.399623
\(581\) 8656.35 0.618117
\(582\) 0 0
\(583\) 4428.58 0.314602
\(584\) 13239.6 0.938112
\(585\) 0 0
\(586\) −6099.28 −0.429964
\(587\) 46.0232 0.00323608 0.00161804 0.999999i \(-0.499485\pi\)
0.00161804 + 0.999999i \(0.499485\pi\)
\(588\) 0 0
\(589\) 7284.54 0.509600
\(590\) 11205.9 0.781933
\(591\) 0 0
\(592\) −171.589 −0.0119126
\(593\) 2729.93 0.189047 0.0945235 0.995523i \(-0.469867\pi\)
0.0945235 + 0.995523i \(0.469867\pi\)
\(594\) 0 0
\(595\) 3090.60 0.212945
\(596\) −906.200 −0.0622809
\(597\) 0 0
\(598\) 7370.94 0.504047
\(599\) 5505.07 0.375511 0.187756 0.982216i \(-0.439879\pi\)
0.187756 + 0.982216i \(0.439879\pi\)
\(600\) 0 0
\(601\) −7446.97 −0.505438 −0.252719 0.967540i \(-0.581325\pi\)
−0.252719 + 0.967540i \(0.581325\pi\)
\(602\) 415.634 0.0281395
\(603\) 0 0
\(604\) −726.253 −0.0489252
\(605\) 6416.42 0.431181
\(606\) 0 0
\(607\) −24071.4 −1.60960 −0.804799 0.593547i \(-0.797727\pi\)
−0.804799 + 0.593547i \(0.797727\pi\)
\(608\) 6334.59 0.422536
\(609\) 0 0
\(610\) 2491.67 0.165385
\(611\) −11688.7 −0.773932
\(612\) 0 0
\(613\) −4108.61 −0.270710 −0.135355 0.990797i \(-0.543218\pi\)
−0.135355 + 0.990797i \(0.543218\pi\)
\(614\) −27781.8 −1.82603
\(615\) 0 0
\(616\) 648.932 0.0424451
\(617\) −3542.46 −0.231141 −0.115571 0.993299i \(-0.536870\pi\)
−0.115571 + 0.993299i \(0.536870\pi\)
\(618\) 0 0
\(619\) 6484.81 0.421077 0.210538 0.977586i \(-0.432478\pi\)
0.210538 + 0.977586i \(0.432478\pi\)
\(620\) −4089.88 −0.264925
\(621\) 0 0
\(622\) −8925.79 −0.575388
\(623\) 4981.88 0.320377
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 16944.1 1.08183
\(627\) 0 0
\(628\) −3816.29 −0.242495
\(629\) −189.451 −0.0120094
\(630\) 0 0
\(631\) 3250.84 0.205094 0.102547 0.994728i \(-0.467301\pi\)
0.102547 + 0.994728i \(0.467301\pi\)
\(632\) −14760.8 −0.929038
\(633\) 0 0
\(634\) 28464.4 1.78307
\(635\) 8336.07 0.520956
\(636\) 0 0
\(637\) −1084.68 −0.0674674
\(638\) 6477.58 0.401959
\(639\) 0 0
\(640\) 7594.42 0.469056
\(641\) −2800.61 −0.172570 −0.0862852 0.996270i \(-0.527500\pi\)
−0.0862852 + 0.996270i \(0.527500\pi\)
\(642\) 0 0
\(643\) 18910.6 1.15982 0.579908 0.814682i \(-0.303089\pi\)
0.579908 + 0.814682i \(0.303089\pi\)
\(644\) 2774.94 0.169795
\(645\) 0 0
\(646\) 11374.8 0.692780
\(647\) 24522.7 1.49009 0.745043 0.667016i \(-0.232429\pi\)
0.745043 + 0.667016i \(0.232429\pi\)
\(648\) 0 0
\(649\) 4441.43 0.268631
\(650\) 1928.99 0.116402
\(651\) 0 0
\(652\) 9828.74 0.590373
\(653\) 15299.6 0.916875 0.458438 0.888727i \(-0.348409\pi\)
0.458438 + 0.888727i \(0.348409\pi\)
\(654\) 0 0
\(655\) 4458.61 0.265973
\(656\) 13926.3 0.828857
\(657\) 0 0
\(658\) −12883.7 −0.763309
\(659\) 2203.13 0.130230 0.0651151 0.997878i \(-0.479259\pi\)
0.0651151 + 0.997878i \(0.479259\pi\)
\(660\) 0 0
\(661\) −3162.36 −0.186084 −0.0930421 0.995662i \(-0.529659\pi\)
−0.0930421 + 0.995662i \(0.529659\pi\)
\(662\) −10369.4 −0.608790
\(663\) 0 0
\(664\) 16596.2 0.969965
\(665\) −1293.46 −0.0754258
\(666\) 0 0
\(667\) −25699.9 −1.49191
\(668\) −4479.12 −0.259435
\(669\) 0 0
\(670\) 8344.59 0.481164
\(671\) 987.565 0.0568175
\(672\) 0 0
\(673\) −4443.07 −0.254484 −0.127242 0.991872i \(-0.540613\pi\)
−0.127242 + 0.991872i \(0.540613\pi\)
\(674\) −12187.0 −0.696479
\(675\) 0 0
\(676\) −7083.56 −0.403025
\(677\) −4456.32 −0.252984 −0.126492 0.991968i \(-0.540372\pi\)
−0.126492 + 0.991968i \(0.540372\pi\)
\(678\) 0 0
\(679\) −4455.87 −0.251842
\(680\) 5925.39 0.334159
\(681\) 0 0
\(682\) −4746.03 −0.266474
\(683\) 10046.8 0.562858 0.281429 0.959582i \(-0.409192\pi\)
0.281429 + 0.959582i \(0.409192\pi\)
\(684\) 0 0
\(685\) −2002.13 −0.111675
\(686\) −1195.58 −0.0665414
\(687\) 0 0
\(688\) 1362.38 0.0754944
\(689\) −14191.9 −0.784717
\(690\) 0 0
\(691\) 31811.2 1.75131 0.875655 0.482938i \(-0.160430\pi\)
0.875655 + 0.482938i \(0.160430\pi\)
\(692\) 3657.06 0.200897
\(693\) 0 0
\(694\) 13800.0 0.754812
\(695\) −2575.25 −0.140554
\(696\) 0 0
\(697\) 15376.0 0.835590
\(698\) −19455.7 −1.05503
\(699\) 0 0
\(700\) 726.208 0.0392116
\(701\) 13907.2 0.749312 0.374656 0.927164i \(-0.377761\pi\)
0.374656 + 0.927164i \(0.377761\pi\)
\(702\) 0 0
\(703\) 79.2877 0.00425376
\(704\) 292.524 0.0156604
\(705\) 0 0
\(706\) −34495.5 −1.83889
\(707\) −12194.3 −0.648678
\(708\) 0 0
\(709\) −228.952 −0.0121276 −0.00606381 0.999982i \(-0.501930\pi\)
−0.00606381 + 0.999982i \(0.501930\pi\)
\(710\) −1839.56 −0.0972358
\(711\) 0 0
\(712\) 9551.40 0.502744
\(713\) 18830.0 0.989043
\(714\) 0 0
\(715\) 764.551 0.0399896
\(716\) 14016.7 0.731606
\(717\) 0 0
\(718\) 41540.5 2.15916
\(719\) −36162.2 −1.87569 −0.937846 0.347052i \(-0.887183\pi\)
−0.937846 + 0.347052i \(0.887183\pi\)
\(720\) 0 0
\(721\) 10182.4 0.525952
\(722\) 19147.6 0.986979
\(723\) 0 0
\(724\) 5957.30 0.305803
\(725\) −6725.73 −0.344534
\(726\) 0 0
\(727\) 22268.3 1.13602 0.568010 0.823021i \(-0.307713\pi\)
0.568010 + 0.823021i \(0.307713\pi\)
\(728\) −2079.58 −0.105872
\(729\) 0 0
\(730\) 17193.2 0.871710
\(731\) 1504.20 0.0761077
\(732\) 0 0
\(733\) −2333.20 −0.117570 −0.0587848 0.998271i \(-0.518723\pi\)
−0.0587848 + 0.998271i \(0.518723\pi\)
\(734\) 24753.6 1.24479
\(735\) 0 0
\(736\) 16374.4 0.820067
\(737\) 3307.35 0.165302
\(738\) 0 0
\(739\) −4829.15 −0.240383 −0.120192 0.992751i \(-0.538351\pi\)
−0.120192 + 0.992751i \(0.538351\pi\)
\(740\) −44.5158 −0.00221140
\(741\) 0 0
\(742\) −15642.9 −0.773947
\(743\) 25459.0 1.25707 0.628533 0.777783i \(-0.283656\pi\)
0.628533 + 0.777783i \(0.283656\pi\)
\(744\) 0 0
\(745\) 1091.87 0.0536953
\(746\) −1025.88 −0.0503488
\(747\) 0 0
\(748\) −2531.21 −0.123730
\(749\) 8271.66 0.403525
\(750\) 0 0
\(751\) −5707.08 −0.277303 −0.138651 0.990341i \(-0.544277\pi\)
−0.138651 + 0.990341i \(0.544277\pi\)
\(752\) −42230.4 −2.04785
\(753\) 0 0
\(754\) −20758.2 −1.00261
\(755\) 875.054 0.0421808
\(756\) 0 0
\(757\) −1900.91 −0.0912677 −0.0456339 0.998958i \(-0.514531\pi\)
−0.0456339 + 0.998958i \(0.514531\pi\)
\(758\) 32892.6 1.57614
\(759\) 0 0
\(760\) −2479.85 −0.118360
\(761\) 11583.8 0.551791 0.275896 0.961188i \(-0.411026\pi\)
0.275896 + 0.961188i \(0.411026\pi\)
\(762\) 0 0
\(763\) 15431.0 0.732162
\(764\) 6590.40 0.312084
\(765\) 0 0
\(766\) −11017.5 −0.519686
\(767\) −14233.1 −0.670051
\(768\) 0 0
\(769\) −26059.7 −1.22202 −0.611012 0.791622i \(-0.709237\pi\)
−0.611012 + 0.791622i \(0.709237\pi\)
\(770\) 842.716 0.0394408
\(771\) 0 0
\(772\) −4057.24 −0.189149
\(773\) 16213.6 0.754413 0.377206 0.926129i \(-0.376885\pi\)
0.377206 + 0.926129i \(0.376885\pi\)
\(774\) 0 0
\(775\) 4927.85 0.228405
\(776\) −8542.92 −0.395197
\(777\) 0 0
\(778\) 27267.4 1.25653
\(779\) −6435.04 −0.295968
\(780\) 0 0
\(781\) −729.103 −0.0334051
\(782\) 29403.0 1.34456
\(783\) 0 0
\(784\) −3918.90 −0.178521
\(785\) 4598.21 0.209066
\(786\) 0 0
\(787\) −1371.34 −0.0621131 −0.0310565 0.999518i \(-0.509887\pi\)
−0.0310565 + 0.999518i \(0.509887\pi\)
\(788\) −1492.59 −0.0674765
\(789\) 0 0
\(790\) −19168.7 −0.863279
\(791\) −1658.20 −0.0745371
\(792\) 0 0
\(793\) −3164.78 −0.141721
\(794\) 27659.3 1.23626
\(795\) 0 0
\(796\) 11695.6 0.520778
\(797\) −7991.49 −0.355173 −0.177587 0.984105i \(-0.556829\pi\)
−0.177587 + 0.984105i \(0.556829\pi\)
\(798\) 0 0
\(799\) −46626.5 −2.06449
\(800\) 4285.23 0.189382
\(801\) 0 0
\(802\) −1702.32 −0.0749515
\(803\) 6814.47 0.299474
\(804\) 0 0
\(805\) −3343.49 −0.146388
\(806\) 15209.3 0.664669
\(807\) 0 0
\(808\) −23379.3 −1.01792
\(809\) 17661.4 0.767542 0.383771 0.923428i \(-0.374625\pi\)
0.383771 + 0.923428i \(0.374625\pi\)
\(810\) 0 0
\(811\) −24180.6 −1.04697 −0.523486 0.852034i \(-0.675369\pi\)
−0.523486 + 0.852034i \(0.675369\pi\)
\(812\) −7814.85 −0.337743
\(813\) 0 0
\(814\) −51.6576 −0.00222432
\(815\) −11842.5 −0.508989
\(816\) 0 0
\(817\) −629.526 −0.0269576
\(818\) −39146.1 −1.67324
\(819\) 0 0
\(820\) 3612.93 0.153865
\(821\) 23340.9 0.992208 0.496104 0.868263i \(-0.334763\pi\)
0.496104 + 0.868263i \(0.334763\pi\)
\(822\) 0 0
\(823\) 20630.4 0.873792 0.436896 0.899512i \(-0.356078\pi\)
0.436896 + 0.899512i \(0.356078\pi\)
\(824\) 19521.9 0.825337
\(825\) 0 0
\(826\) −15688.3 −0.660854
\(827\) −24113.7 −1.01393 −0.506963 0.861968i \(-0.669232\pi\)
−0.506963 + 0.861968i \(0.669232\pi\)
\(828\) 0 0
\(829\) 41738.9 1.74868 0.874338 0.485317i \(-0.161296\pi\)
0.874338 + 0.485317i \(0.161296\pi\)
\(830\) 21552.1 0.901308
\(831\) 0 0
\(832\) −937.432 −0.0390620
\(833\) −4326.85 −0.179972
\(834\) 0 0
\(835\) 5396.84 0.223671
\(836\) 1059.34 0.0438256
\(837\) 0 0
\(838\) −25687.9 −1.05892
\(839\) −30403.0 −1.25105 −0.625523 0.780205i \(-0.715114\pi\)
−0.625523 + 0.780205i \(0.715114\pi\)
\(840\) 0 0
\(841\) 47987.8 1.96760
\(842\) −41731.9 −1.70805
\(843\) 0 0
\(844\) −4189.77 −0.170874
\(845\) 8534.90 0.347467
\(846\) 0 0
\(847\) −8982.99 −0.364415
\(848\) −51274.7 −2.07639
\(849\) 0 0
\(850\) 7694.84 0.310507
\(851\) 204.952 0.00825579
\(852\) 0 0
\(853\) 5900.43 0.236843 0.118421 0.992963i \(-0.462217\pi\)
0.118421 + 0.992963i \(0.462217\pi\)
\(854\) −3488.33 −0.139776
\(855\) 0 0
\(856\) 15858.7 0.633221
\(857\) 18226.2 0.726480 0.363240 0.931696i \(-0.381670\pi\)
0.363240 + 0.931696i \(0.381670\pi\)
\(858\) 0 0
\(859\) −19944.2 −0.792186 −0.396093 0.918210i \(-0.629634\pi\)
−0.396093 + 0.918210i \(0.629634\pi\)
\(860\) 353.446 0.0140144
\(861\) 0 0
\(862\) −12438.9 −0.491497
\(863\) −30830.3 −1.21608 −0.608038 0.793908i \(-0.708043\pi\)
−0.608038 + 0.793908i \(0.708043\pi\)
\(864\) 0 0
\(865\) −4406.36 −0.173203
\(866\) −7987.70 −0.313433
\(867\) 0 0
\(868\) 5725.83 0.223903
\(869\) −7597.44 −0.296577
\(870\) 0 0
\(871\) −10598.8 −0.412317
\(872\) 29584.7 1.14893
\(873\) 0 0
\(874\) −12305.5 −0.476248
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −45885.6 −1.76676 −0.883379 0.468659i \(-0.844737\pi\)
−0.883379 + 0.468659i \(0.844737\pi\)
\(878\) 25548.6 0.982033
\(879\) 0 0
\(880\) 2762.28 0.105814
\(881\) −41132.6 −1.57298 −0.786489 0.617605i \(-0.788103\pi\)
−0.786489 + 0.617605i \(0.788103\pi\)
\(882\) 0 0
\(883\) 19850.0 0.756520 0.378260 0.925699i \(-0.376523\pi\)
0.378260 + 0.925699i \(0.376523\pi\)
\(884\) 8111.58 0.308622
\(885\) 0 0
\(886\) 28921.8 1.09667
\(887\) −29029.3 −1.09888 −0.549441 0.835532i \(-0.685159\pi\)
−0.549441 + 0.835532i \(0.685159\pi\)
\(888\) 0 0
\(889\) −11670.5 −0.440288
\(890\) 12403.6 0.467159
\(891\) 0 0
\(892\) 5300.40 0.198958
\(893\) 19513.8 0.731248
\(894\) 0 0
\(895\) −16888.6 −0.630752
\(896\) −10632.2 −0.396425
\(897\) 0 0
\(898\) 34015.2 1.26403
\(899\) −53029.4 −1.96733
\(900\) 0 0
\(901\) −56612.3 −2.09326
\(902\) 4192.57 0.154764
\(903\) 0 0
\(904\) −3179.15 −0.116966
\(905\) −7177.88 −0.263647
\(906\) 0 0
\(907\) −21029.1 −0.769856 −0.384928 0.922947i \(-0.625774\pi\)
−0.384928 + 0.922947i \(0.625774\pi\)
\(908\) −5809.14 −0.212316
\(909\) 0 0
\(910\) −2700.59 −0.0983777
\(911\) 19225.5 0.699198 0.349599 0.936899i \(-0.386318\pi\)
0.349599 + 0.936899i \(0.386318\pi\)
\(912\) 0 0
\(913\) 8542.13 0.309642
\(914\) 40938.9 1.48155
\(915\) 0 0
\(916\) 13204.6 0.476300
\(917\) −6242.05 −0.224788
\(918\) 0 0
\(919\) 21316.8 0.765154 0.382577 0.923924i \(-0.375037\pi\)
0.382577 + 0.923924i \(0.375037\pi\)
\(920\) −6410.23 −0.229716
\(921\) 0 0
\(922\) −37465.9 −1.33826
\(923\) 2336.50 0.0833229
\(924\) 0 0
\(925\) 53.6366 0.00190655
\(926\) 34377.3 1.21999
\(927\) 0 0
\(928\) −46114.1 −1.63122
\(929\) −19989.6 −0.705959 −0.352979 0.935631i \(-0.614831\pi\)
−0.352979 + 0.935631i \(0.614831\pi\)
\(930\) 0 0
\(931\) 1810.84 0.0637465
\(932\) 12564.8 0.441603
\(933\) 0 0
\(934\) −16245.9 −0.569144
\(935\) 3049.82 0.106674
\(936\) 0 0
\(937\) 55676.4 1.94116 0.970580 0.240779i \(-0.0774027\pi\)
0.970580 + 0.240779i \(0.0774027\pi\)
\(938\) −11682.4 −0.406658
\(939\) 0 0
\(940\) −10956.0 −0.380153
\(941\) 108.842 0.00377062 0.00188531 0.999998i \(-0.499400\pi\)
0.00188531 + 0.999998i \(0.499400\pi\)
\(942\) 0 0
\(943\) −16634.1 −0.574422
\(944\) −51423.6 −1.77298
\(945\) 0 0
\(946\) 410.150 0.0140963
\(947\) 7785.95 0.267169 0.133585 0.991037i \(-0.457351\pi\)
0.133585 + 0.991037i \(0.457351\pi\)
\(948\) 0 0
\(949\) −21837.8 −0.746982
\(950\) −3220.39 −0.109982
\(951\) 0 0
\(952\) −8295.55 −0.282416
\(953\) −41445.5 −1.40876 −0.704381 0.709822i \(-0.748776\pi\)
−0.704381 + 0.709822i \(0.748776\pi\)
\(954\) 0 0
\(955\) −7940.69 −0.269063
\(956\) 20730.9 0.701345
\(957\) 0 0
\(958\) −56792.5 −1.91532
\(959\) 2802.98 0.0943825
\(960\) 0 0
\(961\) 9062.92 0.304217
\(962\) 165.543 0.00554817
\(963\) 0 0
\(964\) −15588.7 −0.520826
\(965\) 4888.52 0.163075
\(966\) 0 0
\(967\) 39155.0 1.30211 0.651055 0.759030i \(-0.274327\pi\)
0.651055 + 0.759030i \(0.274327\pi\)
\(968\) −17222.4 −0.571849
\(969\) 0 0
\(970\) −11094.0 −0.367224
\(971\) 43440.8 1.43572 0.717859 0.696189i \(-0.245122\pi\)
0.717859 + 0.696189i \(0.245122\pi\)
\(972\) 0 0
\(973\) 3605.35 0.118789
\(974\) 12252.0 0.403061
\(975\) 0 0
\(976\) −11434.2 −0.374999
\(977\) −11297.8 −0.369957 −0.184978 0.982743i \(-0.559222\pi\)
−0.184978 + 0.982743i \(0.559222\pi\)
\(978\) 0 0
\(979\) 4916.15 0.160491
\(980\) −1016.69 −0.0331398
\(981\) 0 0
\(982\) −8772.66 −0.285078
\(983\) −10865.9 −0.352563 −0.176282 0.984340i \(-0.556407\pi\)
−0.176282 + 0.984340i \(0.556407\pi\)
\(984\) 0 0
\(985\) 1798.41 0.0581747
\(986\) −82805.5 −2.67451
\(987\) 0 0
\(988\) −3394.80 −0.109315
\(989\) −1627.28 −0.0523199
\(990\) 0 0
\(991\) 13884.1 0.445048 0.222524 0.974927i \(-0.428570\pi\)
0.222524 + 0.974927i \(0.428570\pi\)
\(992\) 33787.1 1.08139
\(993\) 0 0
\(994\) 2575.38 0.0821792
\(995\) −14091.9 −0.448987
\(996\) 0 0
\(997\) 31665.7 1.00588 0.502940 0.864321i \(-0.332252\pi\)
0.502940 + 0.864321i \(0.332252\pi\)
\(998\) 30490.7 0.967099
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.4.a.p.1.1 3
3.2 odd 2 35.4.a.c.1.3 3
5.4 even 2 1575.4.a.ba.1.3 3
7.6 odd 2 2205.4.a.bm.1.1 3
12.11 even 2 560.4.a.u.1.2 3
15.2 even 4 175.4.b.e.99.5 6
15.8 even 4 175.4.b.e.99.2 6
15.14 odd 2 175.4.a.f.1.1 3
21.2 odd 6 245.4.e.m.116.1 6
21.5 even 6 245.4.e.n.116.1 6
21.11 odd 6 245.4.e.m.226.1 6
21.17 even 6 245.4.e.n.226.1 6
21.20 even 2 245.4.a.l.1.3 3
24.5 odd 2 2240.4.a.bt.1.2 3
24.11 even 2 2240.4.a.bv.1.2 3
105.104 even 2 1225.4.a.y.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.3 3 3.2 odd 2
175.4.a.f.1.1 3 15.14 odd 2
175.4.b.e.99.2 6 15.8 even 4
175.4.b.e.99.5 6 15.2 even 4
245.4.a.l.1.3 3 21.20 even 2
245.4.e.m.116.1 6 21.2 odd 6
245.4.e.m.226.1 6 21.11 odd 6
245.4.e.n.116.1 6 21.5 even 6
245.4.e.n.226.1 6 21.17 even 6
315.4.a.p.1.1 3 1.1 even 1 trivial
560.4.a.u.1.2 3 12.11 even 2
1225.4.a.y.1.1 3 105.104 even 2
1575.4.a.ba.1.3 3 5.4 even 2
2205.4.a.bm.1.1 3 7.6 odd 2
2240.4.a.bt.1.2 3 24.5 odd 2
2240.4.a.bv.1.2 3 24.11 even 2