Properties

Label 35.4.a.c.1.3
Level $35$
Weight $4$
Character 35.1
Self dual yes
Analytic conductor $2.065$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,4,Mod(1,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.06506685020\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.14360.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.48565\) of defining polynomial
Character \(\chi\) \(=\) 35.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.48565 q^{2} +0.850238 q^{3} +4.14976 q^{4} +5.00000 q^{5} +2.96363 q^{6} +7.00000 q^{7} -13.4206 q^{8} -26.2771 q^{9} +17.4283 q^{10} -6.90764 q^{11} +3.52829 q^{12} -22.1364 q^{13} +24.3996 q^{14} +4.25119 q^{15} -79.9776 q^{16} +88.3030 q^{17} -91.5928 q^{18} +36.9560 q^{19} +20.7488 q^{20} +5.95167 q^{21} -24.0776 q^{22} -95.5283 q^{23} -11.4107 q^{24} +25.0000 q^{25} -77.1598 q^{26} -45.2982 q^{27} +29.0483 q^{28} +269.029 q^{29} +14.8182 q^{30} +197.114 q^{31} -171.409 q^{32} -5.87314 q^{33} +307.793 q^{34} +35.0000 q^{35} -109.044 q^{36} +2.14546 q^{37} +128.816 q^{38} -18.8212 q^{39} -67.1029 q^{40} +174.127 q^{41} +20.7454 q^{42} -17.0345 q^{43} -28.6650 q^{44} -131.385 q^{45} -332.978 q^{46} -528.029 q^{47} -68.0000 q^{48} +49.0000 q^{49} +87.1413 q^{50} +75.0786 q^{51} -91.8608 q^{52} -641.114 q^{53} -157.894 q^{54} -34.5382 q^{55} -93.9441 q^{56} +31.4214 q^{57} +937.742 q^{58} -642.975 q^{59} +17.6414 q^{60} +142.967 q^{61} +687.070 q^{62} -183.940 q^{63} +42.3480 q^{64} -110.682 q^{65} -20.4717 q^{66} +478.797 q^{67} +366.436 q^{68} -81.2218 q^{69} +121.998 q^{70} +105.550 q^{71} +352.654 q^{72} +986.512 q^{73} +7.47834 q^{74} +21.2560 q^{75} +153.358 q^{76} -48.3534 q^{77} -65.6042 q^{78} -1099.86 q^{79} -399.888 q^{80} +670.967 q^{81} +606.947 q^{82} -1236.62 q^{83} +24.6980 q^{84} +441.515 q^{85} -59.3763 q^{86} +228.739 q^{87} +92.7045 q^{88} -711.698 q^{89} -457.964 q^{90} -154.955 q^{91} -396.420 q^{92} +167.594 q^{93} -1840.52 q^{94} +184.780 q^{95} -145.739 q^{96} -636.553 q^{97} +170.797 q^{98} +181.513 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 2 q^{3} + 13 q^{4} + 15 q^{5} + 24 q^{6} + 21 q^{7} - 15 q^{8} + 81 q^{9} - 15 q^{10} - 74 q^{11} - 152 q^{12} + 44 q^{13} - 21 q^{14} + 10 q^{15} - 79 q^{16} - 52 q^{17} - 411 q^{18} + 168 q^{19}+ \cdots - 3488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.48565 1.23236 0.616182 0.787604i \(-0.288679\pi\)
0.616182 + 0.787604i \(0.288679\pi\)
\(3\) 0.850238 0.163628 0.0818142 0.996648i \(-0.473929\pi\)
0.0818142 + 0.996648i \(0.473929\pi\)
\(4\) 4.14976 0.518720
\(5\) 5.00000 0.447214
\(6\) 2.96363 0.201650
\(7\) 7.00000 0.377964
\(8\) −13.4206 −0.593112
\(9\) −26.2771 −0.973226
\(10\) 17.4283 0.551130
\(11\) −6.90764 −0.189339 −0.0946696 0.995509i \(-0.530179\pi\)
−0.0946696 + 0.995509i \(0.530179\pi\)
\(12\) 3.52829 0.0848774
\(13\) −22.1364 −0.472272 −0.236136 0.971720i \(-0.575881\pi\)
−0.236136 + 0.971720i \(0.575881\pi\)
\(14\) 24.3996 0.465790
\(15\) 4.25119 0.0731769
\(16\) −79.9776 −1.24965
\(17\) 88.3030 1.25980 0.629901 0.776676i \(-0.283096\pi\)
0.629901 + 0.776676i \(0.283096\pi\)
\(18\) −91.5928 −1.19937
\(19\) 36.9560 0.446225 0.223113 0.974793i \(-0.428378\pi\)
0.223113 + 0.974793i \(0.428378\pi\)
\(20\) 20.7488 0.231979
\(21\) 5.95167 0.0618457
\(22\) −24.0776 −0.233335
\(23\) −95.5283 −0.866045 −0.433022 0.901383i \(-0.642553\pi\)
−0.433022 + 0.901383i \(0.642553\pi\)
\(24\) −11.4107 −0.0970500
\(25\) 25.0000 0.200000
\(26\) −77.1598 −0.582010
\(27\) −45.2982 −0.322876
\(28\) 29.0483 0.196058
\(29\) 269.029 1.72267 0.861336 0.508035i \(-0.169628\pi\)
0.861336 + 0.508035i \(0.169628\pi\)
\(30\) 14.8182 0.0901805
\(31\) 197.114 1.14202 0.571012 0.820942i \(-0.306551\pi\)
0.571012 + 0.820942i \(0.306551\pi\)
\(32\) −171.409 −0.946911
\(33\) −5.87314 −0.0309813
\(34\) 307.793 1.55253
\(35\) 35.0000 0.169031
\(36\) −109.044 −0.504832
\(37\) 2.14546 0.00953276 0.00476638 0.999989i \(-0.498483\pi\)
0.00476638 + 0.999989i \(0.498483\pi\)
\(38\) 128.816 0.549912
\(39\) −18.8212 −0.0772771
\(40\) −67.1029 −0.265248
\(41\) 174.127 0.663271 0.331636 0.943408i \(-0.392400\pi\)
0.331636 + 0.943408i \(0.392400\pi\)
\(42\) 20.7454 0.0762164
\(43\) −17.0345 −0.0604125 −0.0302062 0.999544i \(-0.509616\pi\)
−0.0302062 + 0.999544i \(0.509616\pi\)
\(44\) −28.6650 −0.0982140
\(45\) −131.385 −0.435240
\(46\) −332.978 −1.06728
\(47\) −528.029 −1.63874 −0.819371 0.573264i \(-0.805677\pi\)
−0.819371 + 0.573264i \(0.805677\pi\)
\(48\) −68.0000 −0.204478
\(49\) 49.0000 0.142857
\(50\) 87.1413 0.246473
\(51\) 75.0786 0.206139
\(52\) −91.8608 −0.244977
\(53\) −641.114 −1.66158 −0.830790 0.556586i \(-0.812111\pi\)
−0.830790 + 0.556586i \(0.812111\pi\)
\(54\) −157.894 −0.397900
\(55\) −34.5382 −0.0846750
\(56\) −93.9441 −0.224175
\(57\) 31.4214 0.0730151
\(58\) 937.742 2.12296
\(59\) −642.975 −1.41878 −0.709391 0.704815i \(-0.751030\pi\)
−0.709391 + 0.704815i \(0.751030\pi\)
\(60\) 17.6414 0.0379583
\(61\) 142.967 0.300083 0.150042 0.988680i \(-0.452059\pi\)
0.150042 + 0.988680i \(0.452059\pi\)
\(62\) 687.070 1.40739
\(63\) −183.940 −0.367845
\(64\) 42.3480 0.0827109
\(65\) −110.682 −0.211206
\(66\) −20.4717 −0.0381802
\(67\) 478.797 0.873050 0.436525 0.899692i \(-0.356209\pi\)
0.436525 + 0.899692i \(0.356209\pi\)
\(68\) 366.436 0.653484
\(69\) −81.2218 −0.141710
\(70\) 121.998 0.208307
\(71\) 105.550 0.176430 0.0882150 0.996101i \(-0.471884\pi\)
0.0882150 + 0.996101i \(0.471884\pi\)
\(72\) 352.654 0.577232
\(73\) 986.512 1.58168 0.790839 0.612024i \(-0.209644\pi\)
0.790839 + 0.612024i \(0.209644\pi\)
\(74\) 7.47834 0.0117478
\(75\) 21.2560 0.0327257
\(76\) 153.358 0.231466
\(77\) −48.3534 −0.0715635
\(78\) −65.6042 −0.0952335
\(79\) −1099.86 −1.56638 −0.783190 0.621783i \(-0.786409\pi\)
−0.783190 + 0.621783i \(0.786409\pi\)
\(80\) −399.888 −0.558860
\(81\) 670.967 0.920394
\(82\) 606.947 0.817391
\(83\) −1236.62 −1.63538 −0.817691 0.575657i \(-0.804746\pi\)
−0.817691 + 0.575657i \(0.804746\pi\)
\(84\) 24.6980 0.0320806
\(85\) 441.515 0.563400
\(86\) −59.3763 −0.0744501
\(87\) 228.739 0.281878
\(88\) 92.7045 0.112299
\(89\) −711.698 −0.847638 −0.423819 0.905747i \(-0.639311\pi\)
−0.423819 + 0.905747i \(0.639311\pi\)
\(90\) −457.964 −0.536374
\(91\) −154.955 −0.178502
\(92\) −396.420 −0.449235
\(93\) 167.594 0.186867
\(94\) −1840.52 −2.01953
\(95\) 184.780 0.199558
\(96\) −145.739 −0.154942
\(97\) −636.553 −0.666311 −0.333156 0.942872i \(-0.608113\pi\)
−0.333156 + 0.942872i \(0.608113\pi\)
\(98\) 170.797 0.176052
\(99\) 181.513 0.184270
\(100\) 103.744 0.103744
\(101\) 1742.05 1.71624 0.858121 0.513448i \(-0.171632\pi\)
0.858121 + 0.513448i \(0.171632\pi\)
\(102\) 261.698 0.254039
\(103\) 1454.62 1.39154 0.695769 0.718266i \(-0.255064\pi\)
0.695769 + 0.718266i \(0.255064\pi\)
\(104\) 297.083 0.280110
\(105\) 29.7583 0.0276583
\(106\) −2234.70 −2.04767
\(107\) −1181.67 −1.06763 −0.533813 0.845603i \(-0.679241\pi\)
−0.533813 + 0.845603i \(0.679241\pi\)
\(108\) −187.977 −0.167482
\(109\) 2204.43 1.93712 0.968559 0.248784i \(-0.0800310\pi\)
0.968559 + 0.248784i \(0.0800310\pi\)
\(110\) −120.388 −0.104350
\(111\) 1.82416 0.00155983
\(112\) −559.843 −0.472323
\(113\) 236.886 0.197207 0.0986034 0.995127i \(-0.468562\pi\)
0.0986034 + 0.995127i \(0.468562\pi\)
\(114\) 109.524 0.0899812
\(115\) −477.641 −0.387307
\(116\) 1116.41 0.893585
\(117\) 581.680 0.459627
\(118\) −2241.19 −1.74846
\(119\) 618.121 0.476160
\(120\) −57.0535 −0.0434021
\(121\) −1283.28 −0.964151
\(122\) 498.334 0.369811
\(123\) 148.050 0.108530
\(124\) 817.976 0.592390
\(125\) 125.000 0.0894427
\(126\) −641.149 −0.453319
\(127\) −1667.21 −1.16489 −0.582446 0.812869i \(-0.697904\pi\)
−0.582446 + 0.812869i \(0.697904\pi\)
\(128\) 1518.88 1.04884
\(129\) −14.4834 −0.00988520
\(130\) −385.799 −0.260283
\(131\) 891.722 0.594733 0.297367 0.954763i \(-0.403892\pi\)
0.297367 + 0.954763i \(0.403892\pi\)
\(132\) −24.3721 −0.0160706
\(133\) 258.692 0.168657
\(134\) 1668.92 1.07591
\(135\) −226.491 −0.144394
\(136\) −1185.08 −0.747203
\(137\) −400.425 −0.249713 −0.124856 0.992175i \(-0.539847\pi\)
−0.124856 + 0.992175i \(0.539847\pi\)
\(138\) −283.111 −0.174638
\(139\) 515.050 0.314287 0.157144 0.987576i \(-0.449771\pi\)
0.157144 + 0.987576i \(0.449771\pi\)
\(140\) 145.242 0.0876797
\(141\) −448.950 −0.268145
\(142\) 367.912 0.217426
\(143\) 152.910 0.0894195
\(144\) 2101.58 1.21619
\(145\) 1345.15 0.770403
\(146\) 3438.64 1.94920
\(147\) 41.6617 0.0233755
\(148\) 8.90316 0.00494483
\(149\) 218.374 0.120066 0.0600332 0.998196i \(-0.480879\pi\)
0.0600332 + 0.998196i \(0.480879\pi\)
\(150\) 74.0909 0.0403300
\(151\) −175.011 −0.0943190 −0.0471595 0.998887i \(-0.515017\pi\)
−0.0471595 + 0.998887i \(0.515017\pi\)
\(152\) −495.971 −0.264661
\(153\) −2320.35 −1.22607
\(154\) −168.543 −0.0881922
\(155\) 985.570 0.510728
\(156\) −78.1036 −0.0400852
\(157\) −919.642 −0.467487 −0.233743 0.972298i \(-0.575098\pi\)
−0.233743 + 0.972298i \(0.575098\pi\)
\(158\) −3833.73 −1.93035
\(159\) −545.099 −0.271882
\(160\) −857.046 −0.423471
\(161\) −668.698 −0.327334
\(162\) 2338.76 1.13426
\(163\) 2368.51 1.13813 0.569067 0.822291i \(-0.307305\pi\)
0.569067 + 0.822291i \(0.307305\pi\)
\(164\) 722.587 0.344052
\(165\) −29.3657 −0.0138552
\(166\) −4310.43 −2.01539
\(167\) 1079.37 0.500144 0.250072 0.968227i \(-0.419546\pi\)
0.250072 + 0.968227i \(0.419546\pi\)
\(168\) −79.8749 −0.0366814
\(169\) −1706.98 −0.776959
\(170\) 1538.97 0.694314
\(171\) −971.095 −0.434278
\(172\) −70.6891 −0.0313372
\(173\) −881.271 −0.387294 −0.193647 0.981071i \(-0.562032\pi\)
−0.193647 + 0.981071i \(0.562032\pi\)
\(174\) 797.305 0.347376
\(175\) 175.000 0.0755929
\(176\) 552.456 0.236608
\(177\) −546.682 −0.232153
\(178\) −2480.73 −1.04460
\(179\) −3377.72 −1.41041 −0.705203 0.709006i \(-0.749144\pi\)
−0.705203 + 0.709006i \(0.749144\pi\)
\(180\) −545.218 −0.225768
\(181\) 1435.58 0.589533 0.294767 0.955569i \(-0.404758\pi\)
0.294767 + 0.955569i \(0.404758\pi\)
\(182\) −540.118 −0.219979
\(183\) 121.556 0.0491021
\(184\) 1282.05 0.513661
\(185\) 10.7273 0.00426318
\(186\) 584.174 0.230289
\(187\) −609.965 −0.238530
\(188\) −2191.19 −0.850049
\(189\) −317.088 −0.122036
\(190\) 644.078 0.245928
\(191\) −1588.14 −0.601642 −0.300821 0.953681i \(-0.597261\pi\)
−0.300821 + 0.953681i \(0.597261\pi\)
\(192\) 36.0059 0.0135339
\(193\) −977.704 −0.364646 −0.182323 0.983239i \(-0.558362\pi\)
−0.182323 + 0.983239i \(0.558362\pi\)
\(194\) −2218.80 −0.821138
\(195\) −94.1061 −0.0345594
\(196\) 203.338 0.0741029
\(197\) 359.682 0.130083 0.0650413 0.997883i \(-0.479282\pi\)
0.0650413 + 0.997883i \(0.479282\pi\)
\(198\) 632.689 0.227087
\(199\) 2818.38 1.00397 0.501983 0.864877i \(-0.332604\pi\)
0.501983 + 0.864877i \(0.332604\pi\)
\(200\) −335.515 −0.118622
\(201\) 407.091 0.142856
\(202\) 6072.18 2.11503
\(203\) 1883.21 0.651109
\(204\) 311.558 0.106929
\(205\) 870.637 0.296624
\(206\) 5070.31 1.71488
\(207\) 2510.21 0.842857
\(208\) 1770.42 0.590174
\(209\) −255.278 −0.0844879
\(210\) 103.727 0.0340850
\(211\) −1009.64 −0.329415 −0.164708 0.986342i \(-0.552668\pi\)
−0.164708 + 0.986342i \(0.552668\pi\)
\(212\) −2660.47 −0.861895
\(213\) 89.7430 0.0288690
\(214\) −4118.88 −1.31570
\(215\) −85.1725 −0.0270173
\(216\) 607.929 0.191501
\(217\) 1379.80 0.431644
\(218\) 7683.86 2.38723
\(219\) 838.770 0.258808
\(220\) −143.325 −0.0439226
\(221\) −1954.71 −0.594969
\(222\) 6.35837 0.00192228
\(223\) 1277.28 0.383555 0.191778 0.981438i \(-0.438575\pi\)
0.191778 + 0.981438i \(0.438575\pi\)
\(224\) −1199.86 −0.357899
\(225\) −656.927 −0.194645
\(226\) 825.702 0.243030
\(227\) 1399.87 0.409307 0.204654 0.978834i \(-0.434393\pi\)
0.204654 + 0.978834i \(0.434393\pi\)
\(228\) 130.391 0.0378744
\(229\) 3182.00 0.918222 0.459111 0.888379i \(-0.348168\pi\)
0.459111 + 0.888379i \(0.348168\pi\)
\(230\) −1664.89 −0.477303
\(231\) −41.1120 −0.0117098
\(232\) −3610.53 −1.02174
\(233\) −3027.84 −0.851332 −0.425666 0.904880i \(-0.639960\pi\)
−0.425666 + 0.904880i \(0.639960\pi\)
\(234\) 2027.53 0.566428
\(235\) −2640.14 −0.732868
\(236\) −2668.19 −0.735951
\(237\) −935.144 −0.256304
\(238\) 2154.55 0.586802
\(239\) −4995.69 −1.35207 −0.676034 0.736870i \(-0.736303\pi\)
−0.676034 + 0.736870i \(0.736303\pi\)
\(240\) −340.000 −0.0914454
\(241\) −3756.52 −1.00406 −0.502030 0.864850i \(-0.667413\pi\)
−0.502030 + 0.864850i \(0.667413\pi\)
\(242\) −4473.08 −1.18818
\(243\) 1793.53 0.473479
\(244\) 593.280 0.155659
\(245\) 245.000 0.0638877
\(246\) 516.050 0.133748
\(247\) −818.072 −0.210740
\(248\) −2645.39 −0.677347
\(249\) −1051.42 −0.267595
\(250\) 435.706 0.110226
\(251\) 6565.46 1.65103 0.825514 0.564381i \(-0.190885\pi\)
0.825514 + 0.564381i \(0.190885\pi\)
\(252\) −763.306 −0.190809
\(253\) 659.875 0.163976
\(254\) −5811.33 −1.43557
\(255\) 375.393 0.0921883
\(256\) 4955.51 1.20984
\(257\) −6879.44 −1.66976 −0.834879 0.550433i \(-0.814463\pi\)
−0.834879 + 0.550433i \(0.814463\pi\)
\(258\) −50.4840 −0.0121822
\(259\) 15.0182 0.00360304
\(260\) −459.304 −0.109557
\(261\) −7069.31 −1.67655
\(262\) 3108.23 0.732928
\(263\) 3080.15 0.722169 0.361084 0.932533i \(-0.382407\pi\)
0.361084 + 0.932533i \(0.382407\pi\)
\(264\) 78.8209 0.0183754
\(265\) −3205.57 −0.743081
\(266\) 901.709 0.207847
\(267\) −605.113 −0.138698
\(268\) 1986.89 0.452869
\(269\) 6710.33 1.52095 0.760476 0.649366i \(-0.224966\pi\)
0.760476 + 0.649366i \(0.224966\pi\)
\(270\) −789.469 −0.177947
\(271\) 7842.95 1.75803 0.879014 0.476796i \(-0.158202\pi\)
0.879014 + 0.476796i \(0.158202\pi\)
\(272\) −7062.26 −1.57431
\(273\) −131.749 −0.0292080
\(274\) −1395.74 −0.307737
\(275\) −172.691 −0.0378678
\(276\) −337.051 −0.0735076
\(277\) 5446.87 1.18148 0.590742 0.806861i \(-0.298835\pi\)
0.590742 + 0.806861i \(0.298835\pi\)
\(278\) 1795.28 0.387316
\(279\) −5179.58 −1.11145
\(280\) −469.721 −0.100254
\(281\) 2126.76 0.451501 0.225751 0.974185i \(-0.427517\pi\)
0.225751 + 0.974185i \(0.427517\pi\)
\(282\) −1564.88 −0.330452
\(283\) −3426.38 −0.719707 −0.359853 0.933009i \(-0.617173\pi\)
−0.359853 + 0.933009i \(0.617173\pi\)
\(284\) 438.009 0.0915178
\(285\) 157.107 0.0326534
\(286\) 532.991 0.110197
\(287\) 1218.89 0.250693
\(288\) 4504.14 0.921558
\(289\) 2884.42 0.587099
\(290\) 4688.71 0.949416
\(291\) −541.222 −0.109028
\(292\) 4093.79 0.820448
\(293\) −1749.82 −0.348894 −0.174447 0.984667i \(-0.555814\pi\)
−0.174447 + 0.984667i \(0.555814\pi\)
\(294\) 145.218 0.0288071
\(295\) −3214.87 −0.634499
\(296\) −28.7934 −0.00565399
\(297\) 312.904 0.0611330
\(298\) 761.176 0.147966
\(299\) 2114.65 0.409008
\(300\) 88.2072 0.0169755
\(301\) −119.241 −0.0228338
\(302\) −610.026 −0.116235
\(303\) 1481.16 0.280826
\(304\) −2955.65 −0.557625
\(305\) 714.836 0.134201
\(306\) −8087.92 −1.51097
\(307\) 7970.33 1.48173 0.740864 0.671655i \(-0.234416\pi\)
0.740864 + 0.671655i \(0.234416\pi\)
\(308\) −200.655 −0.0371214
\(309\) 1236.78 0.227695
\(310\) 3435.35 0.629403
\(311\) −2560.72 −0.466898 −0.233449 0.972369i \(-0.575001\pi\)
−0.233449 + 0.972369i \(0.575001\pi\)
\(312\) 252.592 0.0458339
\(313\) −4861.11 −0.877848 −0.438924 0.898524i \(-0.644640\pi\)
−0.438924 + 0.898524i \(0.644640\pi\)
\(314\) −3205.55 −0.576114
\(315\) −919.698 −0.164505
\(316\) −4564.16 −0.812513
\(317\) 8166.16 1.44687 0.723434 0.690394i \(-0.242563\pi\)
0.723434 + 0.690394i \(0.242563\pi\)
\(318\) −1900.03 −0.335057
\(319\) −1858.36 −0.326169
\(320\) 211.740 0.0369894
\(321\) −1004.70 −0.174694
\(322\) −2330.85 −0.403395
\(323\) 3263.32 0.562155
\(324\) 2784.35 0.477427
\(325\) −553.410 −0.0944543
\(326\) 8255.79 1.40259
\(327\) 1874.29 0.316968
\(328\) −2336.89 −0.393394
\(329\) −3696.20 −0.619386
\(330\) −102.359 −0.0170747
\(331\) 2974.89 0.494002 0.247001 0.969015i \(-0.420555\pi\)
0.247001 + 0.969015i \(0.420555\pi\)
\(332\) −5131.68 −0.848306
\(333\) −56.3766 −0.00927753
\(334\) 3762.30 0.616359
\(335\) 2393.98 0.390440
\(336\) −476.000 −0.0772855
\(337\) 3496.34 0.565157 0.282578 0.959244i \(-0.408810\pi\)
0.282578 + 0.959244i \(0.408810\pi\)
\(338\) −5949.94 −0.957497
\(339\) 201.410 0.0322686
\(340\) 1832.18 0.292247
\(341\) −1361.59 −0.216230
\(342\) −3384.90 −0.535188
\(343\) 343.000 0.0539949
\(344\) 228.613 0.0358314
\(345\) −406.109 −0.0633744
\(346\) −3071.80 −0.477287
\(347\) 3959.08 0.612491 0.306246 0.951953i \(-0.400927\pi\)
0.306246 + 0.951953i \(0.400927\pi\)
\(348\) 949.213 0.146216
\(349\) 5581.65 0.856099 0.428050 0.903755i \(-0.359201\pi\)
0.428050 + 0.903755i \(0.359201\pi\)
\(350\) 609.989 0.0931579
\(351\) 1002.74 0.152485
\(352\) 1184.03 0.179287
\(353\) −9896.43 −1.49216 −0.746082 0.665854i \(-0.768067\pi\)
−0.746082 + 0.665854i \(0.768067\pi\)
\(354\) −1905.54 −0.286097
\(355\) 527.752 0.0789019
\(356\) −2953.38 −0.439687
\(357\) 525.550 0.0779133
\(358\) −11773.5 −1.73813
\(359\) 11917.6 1.75205 0.876025 0.482265i \(-0.160186\pi\)
0.876025 + 0.482265i \(0.160186\pi\)
\(360\) 1763.27 0.258146
\(361\) −5493.26 −0.800883
\(362\) 5003.92 0.726519
\(363\) −1091.10 −0.157762
\(364\) −643.025 −0.0925926
\(365\) 4932.56 0.707348
\(366\) 423.702 0.0605117
\(367\) −7101.58 −1.01008 −0.505040 0.863096i \(-0.668522\pi\)
−0.505040 + 0.863096i \(0.668522\pi\)
\(368\) 7640.12 1.08225
\(369\) −4575.56 −0.645513
\(370\) 37.3917 0.00525379
\(371\) −4487.80 −0.628018
\(372\) 695.475 0.0969319
\(373\) 294.316 0.0408555 0.0204277 0.999791i \(-0.493497\pi\)
0.0204277 + 0.999791i \(0.493497\pi\)
\(374\) −2126.12 −0.293955
\(375\) 106.280 0.0146354
\(376\) 7086.45 0.971957
\(377\) −5955.34 −0.813569
\(378\) −1105.26 −0.150392
\(379\) −9436.57 −1.27896 −0.639478 0.768810i \(-0.720849\pi\)
−0.639478 + 0.768810i \(0.720849\pi\)
\(380\) 766.792 0.103515
\(381\) −1417.53 −0.190610
\(382\) −5535.70 −0.741442
\(383\) −3160.82 −0.421699 −0.210849 0.977519i \(-0.567623\pi\)
−0.210849 + 0.977519i \(0.567623\pi\)
\(384\) 1291.41 0.171620
\(385\) −241.767 −0.0320042
\(386\) −3407.93 −0.449376
\(387\) 447.617 0.0587950
\(388\) −2641.55 −0.345629
\(389\) 7822.76 1.01961 0.509807 0.860289i \(-0.329717\pi\)
0.509807 + 0.860289i \(0.329717\pi\)
\(390\) −328.021 −0.0425897
\(391\) −8435.43 −1.09104
\(392\) −657.609 −0.0847302
\(393\) 758.176 0.0973153
\(394\) 1253.73 0.160309
\(395\) −5499.30 −0.700506
\(396\) 753.234 0.0955844
\(397\) −7935.18 −1.00316 −0.501581 0.865111i \(-0.667248\pi\)
−0.501581 + 0.865111i \(0.667248\pi\)
\(398\) 9823.87 1.23725
\(399\) 219.950 0.0275971
\(400\) −1999.44 −0.249930
\(401\) −488.380 −0.0608193 −0.0304097 0.999538i \(-0.509681\pi\)
−0.0304097 + 0.999538i \(0.509681\pi\)
\(402\) 1418.98 0.176050
\(403\) −4363.39 −0.539345
\(404\) 7229.09 0.890249
\(405\) 3354.84 0.411613
\(406\) 6564.20 0.802403
\(407\) −14.8201 −0.00180492
\(408\) −1007.60 −0.122264
\(409\) 11230.6 1.35775 0.678874 0.734254i \(-0.262468\pi\)
0.678874 + 0.734254i \(0.262468\pi\)
\(410\) 3034.74 0.365549
\(411\) −340.457 −0.0408601
\(412\) 6036.34 0.721818
\(413\) −4500.82 −0.536249
\(414\) 8749.70 1.03871
\(415\) −6183.10 −0.731365
\(416\) 3794.38 0.447199
\(417\) 437.915 0.0514263
\(418\) −889.811 −0.104120
\(419\) −7369.62 −0.859259 −0.429629 0.903005i \(-0.641356\pi\)
−0.429629 + 0.903005i \(0.641356\pi\)
\(420\) 123.490 0.0143469
\(421\) 11972.5 1.38599 0.692997 0.720941i \(-0.256290\pi\)
0.692997 + 0.720941i \(0.256290\pi\)
\(422\) −3519.26 −0.405959
\(423\) 13875.1 1.59487
\(424\) 8604.12 0.985503
\(425\) 2207.57 0.251960
\(426\) 312.813 0.0355770
\(427\) 1000.77 0.113421
\(428\) −4903.63 −0.553799
\(429\) 130.010 0.0146316
\(430\) −296.882 −0.0332951
\(431\) −3568.60 −0.398825 −0.199412 0.979916i \(-0.563903\pi\)
−0.199412 + 0.979916i \(0.563903\pi\)
\(432\) 3622.84 0.403482
\(433\) 2291.60 0.254335 0.127168 0.991881i \(-0.459411\pi\)
0.127168 + 0.991881i \(0.459411\pi\)
\(434\) 4809.49 0.531943
\(435\) 1143.70 0.126060
\(436\) 9147.85 1.00482
\(437\) −3530.34 −0.386451
\(438\) 2923.66 0.318945
\(439\) −7329.66 −0.796870 −0.398435 0.917197i \(-0.630446\pi\)
−0.398435 + 0.917197i \(0.630446\pi\)
\(440\) 463.523 0.0502218
\(441\) −1287.58 −0.139032
\(442\) −6813.44 −0.733218
\(443\) 8297.38 0.889889 0.444944 0.895558i \(-0.353223\pi\)
0.444944 + 0.895558i \(0.353223\pi\)
\(444\) 7.56981 0.000809116 0
\(445\) −3558.49 −0.379075
\(446\) 4452.14 0.472679
\(447\) 185.670 0.0196463
\(448\) 296.436 0.0312618
\(449\) 9758.62 1.02570 0.512848 0.858479i \(-0.328590\pi\)
0.512848 + 0.858479i \(0.328590\pi\)
\(450\) −2289.82 −0.239874
\(451\) −1202.81 −0.125583
\(452\) 983.021 0.102295
\(453\) −148.801 −0.0154333
\(454\) 4879.47 0.504416
\(455\) −774.774 −0.0798285
\(456\) −421.693 −0.0433061
\(457\) −11745.0 −1.20220 −0.601102 0.799172i \(-0.705272\pi\)
−0.601102 + 0.799172i \(0.705272\pi\)
\(458\) 11091.4 1.13158
\(459\) −3999.97 −0.406759
\(460\) −1982.10 −0.200904
\(461\) −10748.6 −1.08593 −0.542963 0.839756i \(-0.682698\pi\)
−0.542963 + 0.839756i \(0.682698\pi\)
\(462\) −143.302 −0.0144308
\(463\) −9862.51 −0.989957 −0.494978 0.868905i \(-0.664824\pi\)
−0.494978 + 0.868905i \(0.664824\pi\)
\(464\) −21516.3 −2.15274
\(465\) 837.969 0.0835697
\(466\) −10554.0 −1.04915
\(467\) −4660.78 −0.461831 −0.230916 0.972974i \(-0.574172\pi\)
−0.230916 + 0.972974i \(0.574172\pi\)
\(468\) 2413.83 0.238418
\(469\) 3351.58 0.329982
\(470\) −9202.62 −0.903160
\(471\) −781.915 −0.0764941
\(472\) 8629.10 0.841497
\(473\) 117.668 0.0114384
\(474\) −3259.58 −0.315860
\(475\) 923.899 0.0892451
\(476\) 2565.05 0.246994
\(477\) 16846.6 1.61709
\(478\) −17413.2 −1.66624
\(479\) −16293.2 −1.55419 −0.777094 0.629385i \(-0.783307\pi\)
−0.777094 + 0.629385i \(0.783307\pi\)
\(480\) −728.693 −0.0692920
\(481\) −47.4928 −0.00450205
\(482\) −13093.9 −1.23737
\(483\) −568.553 −0.0535612
\(484\) −5325.33 −0.500124
\(485\) −3182.77 −0.297984
\(486\) 6251.63 0.583498
\(487\) −3515.00 −0.327063 −0.163531 0.986538i \(-0.552289\pi\)
−0.163531 + 0.986538i \(0.552289\pi\)
\(488\) −1918.70 −0.177983
\(489\) 2013.80 0.186231
\(490\) 853.984 0.0787328
\(491\) −2516.79 −0.231326 −0.115663 0.993288i \(-0.536899\pi\)
−0.115663 + 0.993288i \(0.536899\pi\)
\(492\) 614.371 0.0562967
\(493\) 23756.1 2.17023
\(494\) −2851.51 −0.259708
\(495\) 907.563 0.0824079
\(496\) −15764.7 −1.42713
\(497\) 738.853 0.0666842
\(498\) −3664.89 −0.329775
\(499\) −8747.48 −0.784751 −0.392376 0.919805i \(-0.628347\pi\)
−0.392376 + 0.919805i \(0.628347\pi\)
\(500\) 518.720 0.0463957
\(501\) 917.720 0.0818377
\(502\) 22884.9 2.03467
\(503\) 11426.1 1.01285 0.506426 0.862284i \(-0.330966\pi\)
0.506426 + 0.862284i \(0.330966\pi\)
\(504\) 2468.58 0.218173
\(505\) 8710.25 0.767526
\(506\) 2300.09 0.202078
\(507\) −1451.34 −0.127133
\(508\) −6918.54 −0.604254
\(509\) −8078.44 −0.703478 −0.351739 0.936098i \(-0.614410\pi\)
−0.351739 + 0.936098i \(0.614410\pi\)
\(510\) 1308.49 0.113610
\(511\) 6905.58 0.597818
\(512\) 5122.12 0.442125
\(513\) −1674.04 −0.144075
\(514\) −23979.3 −2.05775
\(515\) 7273.12 0.622314
\(516\) −60.1026 −0.00512765
\(517\) 3647.43 0.310278
\(518\) 52.3484 0.00444026
\(519\) −749.290 −0.0633723
\(520\) 1485.42 0.125269
\(521\) 7226.14 0.607645 0.303822 0.952729i \(-0.401737\pi\)
0.303822 + 0.952729i \(0.401737\pi\)
\(522\) −24641.1 −2.06612
\(523\) 9333.06 0.780318 0.390159 0.920748i \(-0.372420\pi\)
0.390159 + 0.920748i \(0.372420\pi\)
\(524\) 3700.43 0.308500
\(525\) 148.792 0.0123691
\(526\) 10736.3 0.889974
\(527\) 17405.8 1.43872
\(528\) 469.719 0.0387157
\(529\) −3041.35 −0.249967
\(530\) −11173.5 −0.915746
\(531\) 16895.5 1.38080
\(532\) 1073.51 0.0874859
\(533\) −3854.55 −0.313244
\(534\) −2109.21 −0.170926
\(535\) −5908.33 −0.477457
\(536\) −6425.73 −0.517816
\(537\) −2871.87 −0.230782
\(538\) 23389.9 1.87437
\(539\) −338.474 −0.0270484
\(540\) −939.884 −0.0749003
\(541\) 15263.1 1.21296 0.606482 0.795097i \(-0.292580\pi\)
0.606482 + 0.795097i \(0.292580\pi\)
\(542\) 27337.8 2.16653
\(543\) 1220.58 0.0964644
\(544\) −15135.9 −1.19292
\(545\) 11022.1 0.866305
\(546\) −459.229 −0.0359949
\(547\) −13226.0 −1.03382 −0.516912 0.856039i \(-0.672918\pi\)
−0.516912 + 0.856039i \(0.672918\pi\)
\(548\) −1661.67 −0.129531
\(549\) −3756.76 −0.292049
\(550\) −601.940 −0.0466669
\(551\) 9942.24 0.768700
\(552\) 1090.04 0.0840496
\(553\) −7699.03 −0.592036
\(554\) 18985.9 1.45602
\(555\) 9.12078 0.000697577 0
\(556\) 2137.33 0.163027
\(557\) 6993.63 0.532010 0.266005 0.963972i \(-0.414296\pi\)
0.266005 + 0.963972i \(0.414296\pi\)
\(558\) −18054.2 −1.36971
\(559\) 377.082 0.0285311
\(560\) −2799.22 −0.211229
\(561\) −518.616 −0.0390302
\(562\) 7413.14 0.556413
\(563\) 392.197 0.0293590 0.0146795 0.999892i \(-0.495327\pi\)
0.0146795 + 0.999892i \(0.495327\pi\)
\(564\) −1863.04 −0.139092
\(565\) 1184.43 0.0881935
\(566\) −11943.2 −0.886940
\(567\) 4696.77 0.347876
\(568\) −1416.55 −0.104643
\(569\) 8811.72 0.649221 0.324610 0.945848i \(-0.394767\pi\)
0.324610 + 0.945848i \(0.394767\pi\)
\(570\) 547.620 0.0402408
\(571\) −24775.6 −1.81581 −0.907905 0.419175i \(-0.862319\pi\)
−0.907905 + 0.419175i \(0.862319\pi\)
\(572\) 634.541 0.0463837
\(573\) −1350.30 −0.0984458
\(574\) 4248.63 0.308945
\(575\) −2388.21 −0.173209
\(576\) −1112.78 −0.0804964
\(577\) −8850.62 −0.638572 −0.319286 0.947658i \(-0.603443\pi\)
−0.319286 + 0.947658i \(0.603443\pi\)
\(578\) 10054.1 0.723520
\(579\) −831.281 −0.0596664
\(580\) 5582.04 0.399623
\(581\) −8656.35 −0.618117
\(582\) −1886.51 −0.134362
\(583\) 4428.58 0.314602
\(584\) −13239.6 −0.938112
\(585\) 2908.40 0.205551
\(586\) −6099.28 −0.429964
\(587\) −46.0232 −0.00323608 −0.00161804 0.999999i \(-0.500515\pi\)
−0.00161804 + 0.999999i \(0.500515\pi\)
\(588\) 172.886 0.0121253
\(589\) 7284.54 0.509600
\(590\) −11205.9 −0.781933
\(591\) 305.815 0.0212852
\(592\) −171.589 −0.0119126
\(593\) −2729.93 −0.189047 −0.0945235 0.995523i \(-0.530133\pi\)
−0.0945235 + 0.995523i \(0.530133\pi\)
\(594\) 1090.67 0.0753381
\(595\) 3090.60 0.212945
\(596\) 906.200 0.0622809
\(597\) 2396.29 0.164277
\(598\) 7370.94 0.504047
\(599\) −5505.07 −0.375511 −0.187756 0.982216i \(-0.560121\pi\)
−0.187756 + 0.982216i \(0.560121\pi\)
\(600\) −285.267 −0.0194100
\(601\) −7446.97 −0.505438 −0.252719 0.967540i \(-0.581325\pi\)
−0.252719 + 0.967540i \(0.581325\pi\)
\(602\) −415.634 −0.0281395
\(603\) −12581.4 −0.849674
\(604\) −726.253 −0.0489252
\(605\) −6416.42 −0.431181
\(606\) 5162.80 0.346080
\(607\) −24071.4 −1.60960 −0.804799 0.593547i \(-0.797727\pi\)
−0.804799 + 0.593547i \(0.797727\pi\)
\(608\) −6334.59 −0.422536
\(609\) 1601.17 0.106540
\(610\) 2491.67 0.165385
\(611\) 11688.7 0.773932
\(612\) −9628.88 −0.635988
\(613\) −4108.61 −0.270710 −0.135355 0.990797i \(-0.543218\pi\)
−0.135355 + 0.990797i \(0.543218\pi\)
\(614\) 27781.8 1.82603
\(615\) 740.249 0.0485361
\(616\) 648.932 0.0424451
\(617\) 3542.46 0.231141 0.115571 0.993299i \(-0.463130\pi\)
0.115571 + 0.993299i \(0.463130\pi\)
\(618\) 4310.97 0.280603
\(619\) 6484.81 0.421077 0.210538 0.977586i \(-0.432478\pi\)
0.210538 + 0.977586i \(0.432478\pi\)
\(620\) 4089.88 0.264925
\(621\) 4327.26 0.279625
\(622\) −8925.79 −0.575388
\(623\) −4981.88 −0.320377
\(624\) 1505.28 0.0965693
\(625\) 625.000 0.0400000
\(626\) −16944.1 −1.08183
\(627\) −217.047 −0.0138246
\(628\) −3816.29 −0.242495
\(629\) 189.451 0.0120094
\(630\) −3205.75 −0.202730
\(631\) 3250.84 0.205094 0.102547 0.994728i \(-0.467301\pi\)
0.102547 + 0.994728i \(0.467301\pi\)
\(632\) 14760.8 0.929038
\(633\) −858.436 −0.0539017
\(634\) 28464.4 1.78307
\(635\) −8336.07 −0.520956
\(636\) −2262.03 −0.141031
\(637\) −1084.68 −0.0674674
\(638\) −6477.58 −0.401959
\(639\) −2773.56 −0.171706
\(640\) 7594.42 0.469056
\(641\) 2800.61 0.172570 0.0862852 0.996270i \(-0.472500\pi\)
0.0862852 + 0.996270i \(0.472500\pi\)
\(642\) −3502.03 −0.215287
\(643\) 18910.6 1.15982 0.579908 0.814682i \(-0.303089\pi\)
0.579908 + 0.814682i \(0.303089\pi\)
\(644\) −2774.94 −0.169795
\(645\) −72.4169 −0.00442080
\(646\) 11374.8 0.692780
\(647\) −24522.7 −1.49009 −0.745043 0.667016i \(-0.767571\pi\)
−0.745043 + 0.667016i \(0.767571\pi\)
\(648\) −9004.77 −0.545897
\(649\) 4441.43 0.268631
\(650\) −1928.99 −0.116402
\(651\) 1173.16 0.0706293
\(652\) 9828.74 0.590373
\(653\) −15299.6 −0.916875 −0.458438 0.888727i \(-0.651591\pi\)
−0.458438 + 0.888727i \(0.651591\pi\)
\(654\) 6533.12 0.390619
\(655\) 4458.61 0.265973
\(656\) −13926.3 −0.828857
\(657\) −25922.7 −1.53933
\(658\) −12883.7 −0.763309
\(659\) −2203.13 −0.130230 −0.0651151 0.997878i \(-0.520741\pi\)
−0.0651151 + 0.997878i \(0.520741\pi\)
\(660\) −121.861 −0.00718699
\(661\) −3162.36 −0.186084 −0.0930421 0.995662i \(-0.529659\pi\)
−0.0930421 + 0.995662i \(0.529659\pi\)
\(662\) 10369.4 0.608790
\(663\) −1661.97 −0.0973538
\(664\) 16596.2 0.969965
\(665\) 1293.46 0.0754258
\(666\) −196.509 −0.0114333
\(667\) −25699.9 −1.49191
\(668\) 4479.12 0.259435
\(669\) 1085.99 0.0627605
\(670\) 8344.59 0.481164
\(671\) −987.565 −0.0568175
\(672\) −1020.17 −0.0585624
\(673\) −4443.07 −0.254484 −0.127242 0.991872i \(-0.540613\pi\)
−0.127242 + 0.991872i \(0.540613\pi\)
\(674\) 12187.0 0.696479
\(675\) −1132.46 −0.0645752
\(676\) −7083.56 −0.403025
\(677\) 4456.32 0.252984 0.126492 0.991968i \(-0.459628\pi\)
0.126492 + 0.991968i \(0.459628\pi\)
\(678\) 702.044 0.0397667
\(679\) −4455.87 −0.251842
\(680\) −5925.39 −0.334159
\(681\) 1190.23 0.0669743
\(682\) −4746.03 −0.266474
\(683\) −10046.8 −0.562858 −0.281429 0.959582i \(-0.590808\pi\)
−0.281429 + 0.959582i \(0.590808\pi\)
\(684\) −4029.81 −0.225269
\(685\) −2002.13 −0.111675
\(686\) 1195.58 0.0665414
\(687\) 2705.46 0.150247
\(688\) 1362.38 0.0754944
\(689\) 14191.9 0.784717
\(690\) −1415.55 −0.0781003
\(691\) 31811.2 1.75131 0.875655 0.482938i \(-0.160430\pi\)
0.875655 + 0.482938i \(0.160430\pi\)
\(692\) −3657.06 −0.200897
\(693\) 1270.59 0.0696474
\(694\) 13800.0 0.754812
\(695\) 2575.25 0.140554
\(696\) −3069.81 −0.167185
\(697\) 15376.0 0.835590
\(698\) 19455.7 1.05503
\(699\) −2574.39 −0.139302
\(700\) 726.208 0.0392116
\(701\) −13907.2 −0.749312 −0.374656 0.927164i \(-0.622239\pi\)
−0.374656 + 0.927164i \(0.622239\pi\)
\(702\) 3495.20 0.187917
\(703\) 79.2877 0.00425376
\(704\) −292.524 −0.0156604
\(705\) −2244.75 −0.119918
\(706\) −34495.5 −1.83889
\(707\) 12194.3 0.648678
\(708\) −2268.60 −0.120423
\(709\) −228.952 −0.0121276 −0.00606381 0.999982i \(-0.501930\pi\)
−0.00606381 + 0.999982i \(0.501930\pi\)
\(710\) 1839.56 0.0972358
\(711\) 28901.1 1.52444
\(712\) 9551.40 0.502744
\(713\) −18830.0 −0.989043
\(714\) 1831.88 0.0960176
\(715\) 764.551 0.0399896
\(716\) −14016.7 −0.731606
\(717\) −4247.53 −0.221237
\(718\) 41540.5 2.15916
\(719\) 36162.2 1.87569 0.937846 0.347052i \(-0.112817\pi\)
0.937846 + 0.347052i \(0.112817\pi\)
\(720\) 10507.9 0.543897
\(721\) 10182.4 0.525952
\(722\) −19147.6 −0.986979
\(723\) −3193.93 −0.164293
\(724\) 5957.30 0.305803
\(725\) 6725.73 0.344534
\(726\) −3803.19 −0.194421
\(727\) 22268.3 1.13602 0.568010 0.823021i \(-0.307713\pi\)
0.568010 + 0.823021i \(0.307713\pi\)
\(728\) 2079.58 0.105872
\(729\) −16591.2 −0.842919
\(730\) 17193.2 0.871710
\(731\) −1504.20 −0.0761077
\(732\) 504.429 0.0254703
\(733\) −2333.20 −0.117570 −0.0587848 0.998271i \(-0.518723\pi\)
−0.0587848 + 0.998271i \(0.518723\pi\)
\(734\) −24753.6 −1.24479
\(735\) 208.308 0.0104538
\(736\) 16374.4 0.820067
\(737\) −3307.35 −0.165302
\(738\) −15948.8 −0.795506
\(739\) −4829.15 −0.240383 −0.120192 0.992751i \(-0.538351\pi\)
−0.120192 + 0.992751i \(0.538351\pi\)
\(740\) 44.5158 0.00221140
\(741\) −695.556 −0.0344830
\(742\) −15642.9 −0.773947
\(743\) −25459.0 −1.25707 −0.628533 0.777783i \(-0.716344\pi\)
−0.628533 + 0.777783i \(0.716344\pi\)
\(744\) −2249.21 −0.110833
\(745\) 1091.87 0.0536953
\(746\) 1025.88 0.0503488
\(747\) 32494.8 1.59160
\(748\) −2531.21 −0.123730
\(749\) −8271.66 −0.403525
\(750\) 370.454 0.0180361
\(751\) −5707.08 −0.277303 −0.138651 0.990341i \(-0.544277\pi\)
−0.138651 + 0.990341i \(0.544277\pi\)
\(752\) 42230.4 2.04785
\(753\) 5582.21 0.270155
\(754\) −20758.2 −1.00261
\(755\) −875.054 −0.0421808
\(756\) −1315.84 −0.0633023
\(757\) −1900.91 −0.0912677 −0.0456339 0.998958i \(-0.514531\pi\)
−0.0456339 + 0.998958i \(0.514531\pi\)
\(758\) −32892.6 −1.57614
\(759\) 561.051 0.0268312
\(760\) −2479.85 −0.118360
\(761\) −11583.8 −0.551791 −0.275896 0.961188i \(-0.588974\pi\)
−0.275896 + 0.961188i \(0.588974\pi\)
\(762\) −4941.01 −0.234900
\(763\) 15431.0 0.732162
\(764\) −6590.40 −0.312084
\(765\) −11601.7 −0.548316
\(766\) −11017.5 −0.519686
\(767\) 14233.1 0.670051
\(768\) 4213.37 0.197965
\(769\) −26059.7 −1.22202 −0.611012 0.791622i \(-0.709237\pi\)
−0.611012 + 0.791622i \(0.709237\pi\)
\(770\) −842.716 −0.0394408
\(771\) −5849.17 −0.273220
\(772\) −4057.24 −0.189149
\(773\) −16213.6 −0.754413 −0.377206 0.926129i \(-0.623115\pi\)
−0.377206 + 0.926129i \(0.623115\pi\)
\(774\) 1560.24 0.0724568
\(775\) 4927.85 0.228405
\(776\) 8542.92 0.395197
\(777\) 12.7691 0.000589561 0
\(778\) 27267.4 1.25653
\(779\) 6435.04 0.295968
\(780\) −390.518 −0.0179266
\(781\) −729.103 −0.0334051
\(782\) −29403.0 −1.34456
\(783\) −12186.6 −0.556209
\(784\) −3918.90 −0.178521
\(785\) −4598.21 −0.209066
\(786\) 2642.74 0.119928
\(787\) −1371.34 −0.0621131 −0.0310565 0.999518i \(-0.509887\pi\)
−0.0310565 + 0.999518i \(0.509887\pi\)
\(788\) 1492.59 0.0674765
\(789\) 2618.86 0.118167
\(790\) −19168.7 −0.863279
\(791\) 1658.20 0.0745371
\(792\) −2436.01 −0.109293
\(793\) −3164.78 −0.141721
\(794\) −27659.3 −1.23626
\(795\) −2725.50 −0.121589
\(796\) 11695.6 0.520778
\(797\) 7991.49 0.355173 0.177587 0.984105i \(-0.443171\pi\)
0.177587 + 0.984105i \(0.443171\pi\)
\(798\) 766.668 0.0340097
\(799\) −46626.5 −2.06449
\(800\) −4285.23 −0.189382
\(801\) 18701.3 0.824943
\(802\) −1702.32 −0.0749515
\(803\) −6814.47 −0.299474
\(804\) 1689.33 0.0741022
\(805\) −3343.49 −0.146388
\(806\) −15209.3 −0.664669
\(807\) 5705.38 0.248871
\(808\) −23379.3 −1.01792
\(809\) −17661.4 −0.767542 −0.383771 0.923428i \(-0.625375\pi\)
−0.383771 + 0.923428i \(0.625375\pi\)
\(810\) 11693.8 0.507257
\(811\) −24180.6 −1.04697 −0.523486 0.852034i \(-0.675369\pi\)
−0.523486 + 0.852034i \(0.675369\pi\)
\(812\) 7814.85 0.337743
\(813\) 6668.38 0.287663
\(814\) −51.6576 −0.00222432
\(815\) 11842.5 0.508989
\(816\) −6004.60 −0.257602
\(817\) −629.526 −0.0269576
\(818\) 39146.1 1.67324
\(819\) 4071.76 0.173723
\(820\) 3612.93 0.153865
\(821\) −23340.9 −0.992208 −0.496104 0.868263i \(-0.665237\pi\)
−0.496104 + 0.868263i \(0.665237\pi\)
\(822\) −1186.71 −0.0503545
\(823\) 20630.4 0.873792 0.436896 0.899512i \(-0.356078\pi\)
0.436896 + 0.899512i \(0.356078\pi\)
\(824\) −19521.9 −0.825337
\(825\) −146.828 −0.00619625
\(826\) −15688.3 −0.660854
\(827\) 24113.7 1.01393 0.506963 0.861968i \(-0.330768\pi\)
0.506963 + 0.861968i \(0.330768\pi\)
\(828\) 10416.8 0.437207
\(829\) 41738.9 1.74868 0.874338 0.485317i \(-0.161296\pi\)
0.874338 + 0.485317i \(0.161296\pi\)
\(830\) −21552.1 −0.901308
\(831\) 4631.14 0.193324
\(832\) −937.432 −0.0390620
\(833\) 4326.85 0.179972
\(834\) 1526.42 0.0633760
\(835\) 5396.84 0.223671
\(836\) −1059.34 −0.0438256
\(837\) −8928.91 −0.368732
\(838\) −25687.9 −1.05892
\(839\) 30403.0 1.25105 0.625523 0.780205i \(-0.284886\pi\)
0.625523 + 0.780205i \(0.284886\pi\)
\(840\) −399.374 −0.0164044
\(841\) 47987.8 1.96760
\(842\) 41731.9 1.70805
\(843\) 1808.25 0.0738784
\(844\) −4189.77 −0.170874
\(845\) −8534.90 −0.347467
\(846\) 48363.6 1.96545
\(847\) −8982.99 −0.364415
\(848\) 51274.7 2.07639
\(849\) −2913.24 −0.117764
\(850\) 7694.84 0.310507
\(851\) −204.952 −0.00825579
\(852\) 372.412 0.0149749
\(853\) 5900.43 0.236843 0.118421 0.992963i \(-0.462217\pi\)
0.118421 + 0.992963i \(0.462217\pi\)
\(854\) 3488.33 0.139776
\(855\) −4855.48 −0.194215
\(856\) 15858.7 0.633221
\(857\) −18226.2 −0.726480 −0.363240 0.931696i \(-0.618330\pi\)
−0.363240 + 0.931696i \(0.618330\pi\)
\(858\) 453.170 0.0180314
\(859\) −19944.2 −0.792186 −0.396093 0.918210i \(-0.629634\pi\)
−0.396093 + 0.918210i \(0.629634\pi\)
\(860\) −353.446 −0.0140144
\(861\) 1036.35 0.0410205
\(862\) −12438.9 −0.491497
\(863\) 30830.3 1.21608 0.608038 0.793908i \(-0.291957\pi\)
0.608038 + 0.793908i \(0.291957\pi\)
\(864\) 7764.53 0.305735
\(865\) −4406.36 −0.173203
\(866\) 7987.70 0.313433
\(867\) 2452.44 0.0960662
\(868\) 5725.83 0.223903
\(869\) 7597.44 0.296577
\(870\) 3986.52 0.155351
\(871\) −10598.8 −0.412317
\(872\) −29584.7 −1.14893
\(873\) 16726.8 0.648471
\(874\) −12305.5 −0.476248
\(875\) 875.000 0.0338062
\(876\) 3480.70 0.134249
\(877\) −45885.6 −1.76676 −0.883379 0.468659i \(-0.844737\pi\)
−0.883379 + 0.468659i \(0.844737\pi\)
\(878\) −25548.6 −0.982033
\(879\) −1487.77 −0.0570889
\(880\) 2762.28 0.105814
\(881\) 41132.6 1.57298 0.786489 0.617605i \(-0.211897\pi\)
0.786489 + 0.617605i \(0.211897\pi\)
\(882\) −4488.05 −0.171338
\(883\) 19850.0 0.756520 0.378260 0.925699i \(-0.376523\pi\)
0.378260 + 0.925699i \(0.376523\pi\)
\(884\) −8111.58 −0.308622
\(885\) −2733.41 −0.103822
\(886\) 28921.8 1.09667
\(887\) 29029.3 1.09888 0.549441 0.835532i \(-0.314841\pi\)
0.549441 + 0.835532i \(0.314841\pi\)
\(888\) −24.4812 −0.000925154 0
\(889\) −11670.5 −0.440288
\(890\) −12403.6 −0.467159
\(891\) −4634.80 −0.174267
\(892\) 5300.40 0.198958
\(893\) −19513.8 −0.731248
\(894\) 647.181 0.0242114
\(895\) −16888.6 −0.630752
\(896\) 10632.2 0.396425
\(897\) 1797.96 0.0669254
\(898\) 34015.2 1.26403
\(899\) 53029.4 1.96733
\(900\) −2726.09 −0.100966
\(901\) −56612.3 −2.09326
\(902\) −4192.57 −0.154764
\(903\) −101.384 −0.00373625
\(904\) −3179.15 −0.116966
\(905\) 7177.88 0.263647
\(906\) −518.668 −0.0190194
\(907\) −21029.1 −0.769856 −0.384928 0.922947i \(-0.625774\pi\)
−0.384928 + 0.922947i \(0.625774\pi\)
\(908\) 5809.14 0.212316
\(909\) −45776.0 −1.67029
\(910\) −2700.59 −0.0983777
\(911\) −19225.5 −0.699198 −0.349599 0.936899i \(-0.613682\pi\)
−0.349599 + 0.936899i \(0.613682\pi\)
\(912\) −2513.01 −0.0912433
\(913\) 8542.13 0.309642
\(914\) −40938.9 −1.48155
\(915\) 607.781 0.0219591
\(916\) 13204.6 0.476300
\(917\) 6242.05 0.224788
\(918\) −13942.5 −0.501276
\(919\) 21316.8 0.765154 0.382577 0.923924i \(-0.375037\pi\)
0.382577 + 0.923924i \(0.375037\pi\)
\(920\) 6410.23 0.229716
\(921\) 6776.68 0.242453
\(922\) −37465.9 −1.33826
\(923\) −2336.50 −0.0833229
\(924\) −170.605 −0.00607412
\(925\) 53.6366 0.00190655
\(926\) −34377.3 −1.21999
\(927\) −38223.3 −1.35428
\(928\) −46114.1 −1.63122
\(929\) 19989.6 0.705959 0.352979 0.935631i \(-0.385169\pi\)
0.352979 + 0.935631i \(0.385169\pi\)
\(930\) 2920.87 0.102988
\(931\) 1810.84 0.0637465
\(932\) −12564.8 −0.441603
\(933\) −2177.23 −0.0763978
\(934\) −16245.9 −0.569144
\(935\) −3049.82 −0.106674
\(936\) −7806.49 −0.272610
\(937\) 55676.4 1.94116 0.970580 0.240779i \(-0.0774027\pi\)
0.970580 + 0.240779i \(0.0774027\pi\)
\(938\) 11682.4 0.406658
\(939\) −4133.10 −0.143641
\(940\) −10956.0 −0.380153
\(941\) −108.842 −0.00377062 −0.00188531 0.999998i \(-0.500600\pi\)
−0.00188531 + 0.999998i \(0.500600\pi\)
\(942\) −2725.48 −0.0942686
\(943\) −16634.1 −0.574422
\(944\) 51423.6 1.77298
\(945\) −1585.44 −0.0545760
\(946\) 410.150 0.0140963
\(947\) −7785.95 −0.267169 −0.133585 0.991037i \(-0.542649\pi\)
−0.133585 + 0.991037i \(0.542649\pi\)
\(948\) −3880.62 −0.132950
\(949\) −21837.8 −0.746982
\(950\) 3220.39 0.109982
\(951\) 6943.18 0.236749
\(952\) −8295.55 −0.282416
\(953\) 41445.5 1.40876 0.704381 0.709822i \(-0.251224\pi\)
0.704381 + 0.709822i \(0.251224\pi\)
\(954\) 58721.4 1.99285
\(955\) −7940.69 −0.269063
\(956\) −20730.9 −0.701345
\(957\) −1580.05 −0.0533706
\(958\) −56792.5 −1.91532
\(959\) −2802.98 −0.0943825
\(960\) 180.029 0.00605252
\(961\) 9062.92 0.304217
\(962\) −165.543 −0.00554817
\(963\) 31050.8 1.03904
\(964\) −15588.7 −0.520826
\(965\) −4888.52 −0.163075
\(966\) −1981.78 −0.0660068
\(967\) 39155.0 1.30211 0.651055 0.759030i \(-0.274327\pi\)
0.651055 + 0.759030i \(0.274327\pi\)
\(968\) 17222.4 0.571849
\(969\) 2774.60 0.0919846
\(970\) −11094.0 −0.367224
\(971\) −43440.8 −1.43572 −0.717859 0.696189i \(-0.754878\pi\)
−0.717859 + 0.696189i \(0.754878\pi\)
\(972\) 7442.74 0.245603
\(973\) 3605.35 0.118789
\(974\) −12252.0 −0.403061
\(975\) −470.530 −0.0154554
\(976\) −11434.2 −0.374999
\(977\) 11297.8 0.369957 0.184978 0.982743i \(-0.440778\pi\)
0.184978 + 0.982743i \(0.440778\pi\)
\(978\) 7019.39 0.229504
\(979\) 4916.15 0.160491
\(980\) 1016.69 0.0331398
\(981\) −57925.9 −1.88525
\(982\) −8772.66 −0.285078
\(983\) 10865.9 0.352563 0.176282 0.984340i \(-0.443593\pi\)
0.176282 + 0.984340i \(0.443593\pi\)
\(984\) −1986.91 −0.0643704
\(985\) 1798.41 0.0581747
\(986\) 82805.5 2.67451
\(987\) −3142.65 −0.101349
\(988\) −3394.80 −0.109315
\(989\) 1627.28 0.0523199
\(990\) 3163.45 0.101557
\(991\) 13884.1 0.445048 0.222524 0.974927i \(-0.428570\pi\)
0.222524 + 0.974927i \(0.428570\pi\)
\(992\) −33787.1 −1.08139
\(993\) 2529.36 0.0808328
\(994\) 2575.38 0.0821792
\(995\) 14091.9 0.448987
\(996\) −4363.15 −0.138807
\(997\) 31665.7 1.00588 0.502940 0.864321i \(-0.332252\pi\)
0.502940 + 0.864321i \(0.332252\pi\)
\(998\) −30490.7 −0.967099
\(999\) −97.1857 −0.00307790
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.4.a.c.1.3 3
3.2 odd 2 315.4.a.p.1.1 3
4.3 odd 2 560.4.a.u.1.2 3
5.2 odd 4 175.4.b.e.99.5 6
5.3 odd 4 175.4.b.e.99.2 6
5.4 even 2 175.4.a.f.1.1 3
7.2 even 3 245.4.e.m.116.1 6
7.3 odd 6 245.4.e.n.226.1 6
7.4 even 3 245.4.e.m.226.1 6
7.5 odd 6 245.4.e.n.116.1 6
7.6 odd 2 245.4.a.l.1.3 3
8.3 odd 2 2240.4.a.bv.1.2 3
8.5 even 2 2240.4.a.bt.1.2 3
15.14 odd 2 1575.4.a.ba.1.3 3
21.20 even 2 2205.4.a.bm.1.1 3
35.34 odd 2 1225.4.a.y.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.3 3 1.1 even 1 trivial
175.4.a.f.1.1 3 5.4 even 2
175.4.b.e.99.2 6 5.3 odd 4
175.4.b.e.99.5 6 5.2 odd 4
245.4.a.l.1.3 3 7.6 odd 2
245.4.e.m.116.1 6 7.2 even 3
245.4.e.m.226.1 6 7.4 even 3
245.4.e.n.116.1 6 7.5 odd 6
245.4.e.n.226.1 6 7.3 odd 6
315.4.a.p.1.1 3 3.2 odd 2
560.4.a.u.1.2 3 4.3 odd 2
1225.4.a.y.1.1 3 35.34 odd 2
1575.4.a.ba.1.3 3 15.14 odd 2
2205.4.a.bm.1.1 3 21.20 even 2
2240.4.a.bt.1.2 3 8.5 even 2
2240.4.a.bv.1.2 3 8.3 odd 2