Properties

Label 315.4.d.c.64.9
Level $315$
Weight $4$
Character 315.64
Analytic conductor $18.586$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,4,Mod(64,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.64");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 315.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.5856016518\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 64.9
Root \(5.04851i\) of defining polynomial
Character \(\chi\) \(=\) 315.64
Dual form 315.4.d.c.64.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.04851i q^{2} -8.39045 q^{4} +(-6.15172 - 9.33576i) q^{5} +7.00000i q^{7} -1.58074i q^{8} +(37.7959 - 24.9053i) q^{10} -6.78210 q^{11} -48.9221i q^{13} -28.3396 q^{14} -60.7239 q^{16} -92.4381i q^{17} +125.574 q^{19} +(51.6157 + 78.3312i) q^{20} -27.4574i q^{22} -32.2681i q^{23} +(-49.3128 + 114.862i) q^{25} +198.062 q^{26} -58.7332i q^{28} +282.778 q^{29} +205.434 q^{31} -258.488i q^{32} +374.237 q^{34} +(65.3503 - 43.0620i) q^{35} +190.627i q^{37} +508.388i q^{38} +(-14.7574 + 9.72429i) q^{40} -123.269 q^{41} -35.0202i q^{43} +56.9049 q^{44} +130.638 q^{46} -419.030i q^{47} -49.0000 q^{49} +(-465.020 - 199.643i) q^{50} +410.478i q^{52} -0.365379i q^{53} +(41.7215 + 63.3160i) q^{55} +11.0652 q^{56} +1144.83i q^{58} +328.317 q^{59} -515.707 q^{61} +831.704i q^{62} +560.699 q^{64} +(-456.725 + 300.955i) q^{65} -828.957i q^{67} +775.597i q^{68} +(174.337 + 264.572i) q^{70} +496.231 q^{71} -701.132i q^{73} -771.757 q^{74} -1053.62 q^{76} -47.4747i q^{77} -199.388 q^{79} +(373.556 + 566.904i) q^{80} -499.056i q^{82} -194.923i q^{83} +(-862.980 + 568.653i) q^{85} +141.780 q^{86} +10.7208i q^{88} +137.406 q^{89} +342.454 q^{91} +270.744i q^{92} +1696.45 q^{94} +(-772.496 - 1172.33i) q^{95} +220.440i q^{97} -198.377i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 36 q^{4} - 6 q^{5} - 16 q^{10} - 84 q^{11} + 56 q^{14} + 148 q^{16} + 72 q^{19} + 68 q^{20} - 362 q^{25} + 620 q^{26} - 88 q^{29} + 120 q^{31} + 964 q^{34} + 28 q^{35} + 1396 q^{40} + 852 q^{41}+ \cdots + 1628 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.04851i 1.43137i 0.698426 + 0.715683i \(0.253884\pi\)
−0.698426 + 0.715683i \(0.746116\pi\)
\(3\) 0 0
\(4\) −8.39045 −1.04881
\(5\) −6.15172 9.33576i −0.550226 0.835016i
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 1.58074i 0.0698597i
\(9\) 0 0
\(10\) 37.7959 24.9053i 1.19521 0.787575i
\(11\) −6.78210 −0.185898 −0.0929491 0.995671i \(-0.529629\pi\)
−0.0929491 + 0.995671i \(0.529629\pi\)
\(12\) 0 0
\(13\) 48.9221i 1.04373i −0.853027 0.521867i \(-0.825236\pi\)
0.853027 0.521867i \(-0.174764\pi\)
\(14\) −28.3396 −0.541005
\(15\) 0 0
\(16\) −60.7239 −0.948812
\(17\) 92.4381i 1.31880i −0.751794 0.659398i \(-0.770811\pi\)
0.751794 0.659398i \(-0.229189\pi\)
\(18\) 0 0
\(19\) 125.574 1.51625 0.758123 0.652112i \(-0.226117\pi\)
0.758123 + 0.652112i \(0.226117\pi\)
\(20\) 51.6157 + 78.3312i 0.577081 + 0.875770i
\(21\) 0 0
\(22\) 27.4574i 0.266088i
\(23\) 32.2681i 0.292538i −0.989245 0.146269i \(-0.953274\pi\)
0.989245 0.146269i \(-0.0467265\pi\)
\(24\) 0 0
\(25\) −49.3128 + 114.862i −0.394502 + 0.918895i
\(26\) 198.062 1.49396
\(27\) 0 0
\(28\) 58.7332i 0.396412i
\(29\) 282.778 1.81071 0.905354 0.424659i \(-0.139606\pi\)
0.905354 + 0.424659i \(0.139606\pi\)
\(30\) 0 0
\(31\) 205.434 1.19023 0.595115 0.803641i \(-0.297107\pi\)
0.595115 + 0.803641i \(0.297107\pi\)
\(32\) 258.488i 1.42796i
\(33\) 0 0
\(34\) 374.237 1.88768
\(35\) 65.3503 43.0620i 0.315606 0.207966i
\(36\) 0 0
\(37\) 190.627i 0.846998i 0.905897 + 0.423499i \(0.139198\pi\)
−0.905897 + 0.423499i \(0.860802\pi\)
\(38\) 508.388i 2.17030i
\(39\) 0 0
\(40\) −14.7574 + 9.72429i −0.0583339 + 0.0384386i
\(41\) −123.269 −0.469546 −0.234773 0.972050i \(-0.575435\pi\)
−0.234773 + 0.972050i \(0.575435\pi\)
\(42\) 0 0
\(43\) 35.0202i 0.124198i −0.998070 0.0620991i \(-0.980221\pi\)
0.998070 0.0620991i \(-0.0197795\pi\)
\(44\) 56.9049 0.194971
\(45\) 0 0
\(46\) 130.638 0.418728
\(47\) 419.030i 1.30046i −0.759736 0.650231i \(-0.774672\pi\)
0.759736 0.650231i \(-0.225328\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) −465.020 199.643i −1.31527 0.564677i
\(51\) 0 0
\(52\) 410.478i 1.09467i
\(53\) 0.365379i 0.000946956i −1.00000 0.000473478i \(-0.999849\pi\)
1.00000 0.000473478i \(-0.000150713\pi\)
\(54\) 0 0
\(55\) 41.7215 + 63.3160i 0.102286 + 0.155228i
\(56\) 11.0652 0.0264045
\(57\) 0 0
\(58\) 1144.83i 2.59178i
\(59\) 328.317 0.724461 0.362231 0.932088i \(-0.382015\pi\)
0.362231 + 0.932088i \(0.382015\pi\)
\(60\) 0 0
\(61\) −515.707 −1.08245 −0.541226 0.840877i \(-0.682040\pi\)
−0.541226 + 0.840877i \(0.682040\pi\)
\(62\) 831.704i 1.70365i
\(63\) 0 0
\(64\) 560.699 1.09511
\(65\) −456.725 + 300.955i −0.871534 + 0.574290i
\(66\) 0 0
\(67\) 828.957i 1.51154i −0.654837 0.755770i \(-0.727263\pi\)
0.654837 0.755770i \(-0.272737\pi\)
\(68\) 775.597i 1.38316i
\(69\) 0 0
\(70\) 174.337 + 264.572i 0.297675 + 0.451748i
\(71\) 496.231 0.829462 0.414731 0.909944i \(-0.363876\pi\)
0.414731 + 0.909944i \(0.363876\pi\)
\(72\) 0 0
\(73\) 701.132i 1.12413i −0.827094 0.562064i \(-0.810008\pi\)
0.827094 0.562064i \(-0.189992\pi\)
\(74\) −771.757 −1.21236
\(75\) 0 0
\(76\) −1053.62 −1.59025
\(77\) 47.4747i 0.0702629i
\(78\) 0 0
\(79\) −199.388 −0.283961 −0.141981 0.989869i \(-0.545347\pi\)
−0.141981 + 0.989869i \(0.545347\pi\)
\(80\) 373.556 + 566.904i 0.522061 + 0.792273i
\(81\) 0 0
\(82\) 499.056i 0.672092i
\(83\) 194.923i 0.257778i −0.991659 0.128889i \(-0.958859\pi\)
0.991659 0.128889i \(-0.0411411\pi\)
\(84\) 0 0
\(85\) −862.980 + 568.653i −1.10122 + 0.725636i
\(86\) 141.780 0.177773
\(87\) 0 0
\(88\) 10.7208i 0.0129868i
\(89\) 137.406 0.163651 0.0818257 0.996647i \(-0.473925\pi\)
0.0818257 + 0.996647i \(0.473925\pi\)
\(90\) 0 0
\(91\) 342.454 0.394494
\(92\) 270.744i 0.306815i
\(93\) 0 0
\(94\) 1696.45 1.86144
\(95\) −772.496 1172.33i −0.834278 1.26609i
\(96\) 0 0
\(97\) 220.440i 0.230745i 0.993322 + 0.115372i \(0.0368062\pi\)
−0.993322 + 0.115372i \(0.963194\pi\)
\(98\) 198.377i 0.204481i
\(99\) 0 0
\(100\) 413.756 963.743i 0.413756 0.963743i
\(101\) 591.358 0.582597 0.291298 0.956632i \(-0.405913\pi\)
0.291298 + 0.956632i \(0.405913\pi\)
\(102\) 0 0
\(103\) 476.494i 0.455829i 0.973681 + 0.227914i \(0.0731906\pi\)
−0.973681 + 0.227914i \(0.926809\pi\)
\(104\) −77.3332 −0.0729149
\(105\) 0 0
\(106\) 1.47924 0.00135544
\(107\) 225.584i 0.203813i 0.994794 + 0.101907i \(0.0324943\pi\)
−0.994794 + 0.101907i \(0.967506\pi\)
\(108\) 0 0
\(109\) 1627.65 1.43028 0.715142 0.698979i \(-0.246362\pi\)
0.715142 + 0.698979i \(0.246362\pi\)
\(110\) −256.336 + 168.910i −0.222188 + 0.146409i
\(111\) 0 0
\(112\) 425.068i 0.358617i
\(113\) 357.040i 0.297235i 0.988895 + 0.148617i \(0.0474823\pi\)
−0.988895 + 0.148617i \(0.952518\pi\)
\(114\) 0 0
\(115\) −301.247 + 198.504i −0.244274 + 0.160962i
\(116\) −2372.63 −1.89908
\(117\) 0 0
\(118\) 1329.19i 1.03697i
\(119\) 647.067 0.498458
\(120\) 0 0
\(121\) −1285.00 −0.965442
\(122\) 2087.85i 1.54938i
\(123\) 0 0
\(124\) −1723.69 −1.24832
\(125\) 1375.68 246.225i 0.984357 0.176185i
\(126\) 0 0
\(127\) 1728.25i 1.20754i −0.797158 0.603771i \(-0.793664\pi\)
0.797158 0.603771i \(-0.206336\pi\)
\(128\) 202.094i 0.139553i
\(129\) 0 0
\(130\) −1218.42 1849.06i −0.822018 1.24748i
\(131\) −1461.19 −0.974543 −0.487272 0.873250i \(-0.662008\pi\)
−0.487272 + 0.873250i \(0.662008\pi\)
\(132\) 0 0
\(133\) 879.018i 0.573087i
\(134\) 3356.04 2.16357
\(135\) 0 0
\(136\) −146.121 −0.0921306
\(137\) 1892.96i 1.18049i −0.807226 0.590243i \(-0.799032\pi\)
0.807226 0.590243i \(-0.200968\pi\)
\(138\) 0 0
\(139\) 1715.03 1.04652 0.523262 0.852172i \(-0.324715\pi\)
0.523262 + 0.852172i \(0.324715\pi\)
\(140\) −548.319 + 361.310i −0.331010 + 0.218116i
\(141\) 0 0
\(142\) 2009.00i 1.18726i
\(143\) 331.794i 0.194028i
\(144\) 0 0
\(145\) −1739.57 2639.94i −0.996299 1.51197i
\(146\) 2838.54 1.60904
\(147\) 0 0
\(148\) 1599.45i 0.888337i
\(149\) −2798.32 −1.53857 −0.769286 0.638904i \(-0.779388\pi\)
−0.769286 + 0.638904i \(0.779388\pi\)
\(150\) 0 0
\(151\) −2867.49 −1.54538 −0.772692 0.634781i \(-0.781090\pi\)
−0.772692 + 0.634781i \(0.781090\pi\)
\(152\) 198.500i 0.105924i
\(153\) 0 0
\(154\) 192.202 0.100572
\(155\) −1263.77 1917.89i −0.654896 0.993860i
\(156\) 0 0
\(157\) 783.696i 0.398381i −0.979961 0.199190i \(-0.936169\pi\)
0.979961 0.199190i \(-0.0638312\pi\)
\(158\) 807.226i 0.406452i
\(159\) 0 0
\(160\) −2413.18 + 1590.14i −1.19237 + 0.785699i
\(161\) 225.877 0.110569
\(162\) 0 0
\(163\) 2416.93i 1.16140i −0.814116 0.580702i \(-0.802778\pi\)
0.814116 0.580702i \(-0.197222\pi\)
\(164\) 1034.28 0.492463
\(165\) 0 0
\(166\) 789.149 0.368975
\(167\) 704.424i 0.326407i 0.986592 + 0.163204i \(0.0521827\pi\)
−0.986592 + 0.163204i \(0.947817\pi\)
\(168\) 0 0
\(169\) −196.369 −0.0893803
\(170\) −2302.20 3493.78i −1.03865 1.57624i
\(171\) 0 0
\(172\) 293.835i 0.130260i
\(173\) 1398.49i 0.614598i −0.951613 0.307299i \(-0.900575\pi\)
0.951613 0.307299i \(-0.0994252\pi\)
\(174\) 0 0
\(175\) −804.033 345.189i −0.347310 0.149108i
\(176\) 411.836 0.176382
\(177\) 0 0
\(178\) 556.289i 0.234245i
\(179\) 368.688 0.153950 0.0769749 0.997033i \(-0.475474\pi\)
0.0769749 + 0.997033i \(0.475474\pi\)
\(180\) 0 0
\(181\) −315.621 −0.129613 −0.0648064 0.997898i \(-0.520643\pi\)
−0.0648064 + 0.997898i \(0.520643\pi\)
\(182\) 1386.43i 0.564665i
\(183\) 0 0
\(184\) −51.0076 −0.0204366
\(185\) 1779.65 1172.69i 0.707257 0.466041i
\(186\) 0 0
\(187\) 626.924i 0.245162i
\(188\) 3515.85i 1.36393i
\(189\) 0 0
\(190\) 4746.19 3127.46i 1.81224 1.19416i
\(191\) 151.629 0.0574424 0.0287212 0.999587i \(-0.490857\pi\)
0.0287212 + 0.999587i \(0.490857\pi\)
\(192\) 0 0
\(193\) 690.689i 0.257600i 0.991671 + 0.128800i \(0.0411126\pi\)
−0.991671 + 0.128800i \(0.958887\pi\)
\(194\) −892.453 −0.330280
\(195\) 0 0
\(196\) 411.132 0.149829
\(197\) 834.136i 0.301674i 0.988559 + 0.150837i \(0.0481968\pi\)
−0.988559 + 0.150837i \(0.951803\pi\)
\(198\) 0 0
\(199\) −387.269 −0.137954 −0.0689769 0.997618i \(-0.521973\pi\)
−0.0689769 + 0.997618i \(0.521973\pi\)
\(200\) 181.567 + 77.9509i 0.0641937 + 0.0275598i
\(201\) 0 0
\(202\) 2394.12i 0.833909i
\(203\) 1979.44i 0.684383i
\(204\) 0 0
\(205\) 758.316 + 1150.81i 0.258357 + 0.392078i
\(206\) −1929.09 −0.652457
\(207\) 0 0
\(208\) 2970.74i 0.990307i
\(209\) −851.656 −0.281867
\(210\) 0 0
\(211\) 3070.54 1.00182 0.500912 0.865498i \(-0.332998\pi\)
0.500912 + 0.865498i \(0.332998\pi\)
\(212\) 3.06570i 0.000993174i
\(213\) 0 0
\(214\) −913.278 −0.291731
\(215\) −326.940 + 215.434i −0.103707 + 0.0683371i
\(216\) 0 0
\(217\) 1438.04i 0.449865i
\(218\) 6589.58i 2.04726i
\(219\) 0 0
\(220\) −350.063 531.250i −0.107278 0.162804i
\(221\) −4522.26 −1.37647
\(222\) 0 0
\(223\) 1004.46i 0.301631i −0.988562 0.150816i \(-0.951810\pi\)
0.988562 0.150816i \(-0.0481900\pi\)
\(224\) 1809.41 0.539716
\(225\) 0 0
\(226\) −1445.48 −0.425451
\(227\) 5374.22i 1.57136i 0.618631 + 0.785681i \(0.287687\pi\)
−0.618631 + 0.785681i \(0.712313\pi\)
\(228\) 0 0
\(229\) −3650.97 −1.05355 −0.526775 0.850005i \(-0.676599\pi\)
−0.526775 + 0.850005i \(0.676599\pi\)
\(230\) −803.647 1219.60i −0.230395 0.349645i
\(231\) 0 0
\(232\) 446.999i 0.126495i
\(233\) 4582.88i 1.28856i 0.764789 + 0.644280i \(0.222843\pi\)
−0.764789 + 0.644280i \(0.777157\pi\)
\(234\) 0 0
\(235\) −3911.96 + 2577.75i −1.08591 + 0.715549i
\(236\) −2754.73 −0.759820
\(237\) 0 0
\(238\) 2619.66i 0.713476i
\(239\) 696.769 0.188578 0.0942892 0.995545i \(-0.469942\pi\)
0.0942892 + 0.995545i \(0.469942\pi\)
\(240\) 0 0
\(241\) 5082.82 1.35856 0.679281 0.733878i \(-0.262292\pi\)
0.679281 + 0.733878i \(0.262292\pi\)
\(242\) 5202.35i 1.38190i
\(243\) 0 0
\(244\) 4327.02 1.13528
\(245\) 301.434 + 457.452i 0.0786037 + 0.119288i
\(246\) 0 0
\(247\) 6143.34i 1.58256i
\(248\) 324.739i 0.0831490i
\(249\) 0 0
\(250\) 996.847 + 5569.46i 0.252185 + 1.40897i
\(251\) 1207.32 0.303606 0.151803 0.988411i \(-0.451492\pi\)
0.151803 + 0.988411i \(0.451492\pi\)
\(252\) 0 0
\(253\) 218.846i 0.0543822i
\(254\) 6996.86 1.72843
\(255\) 0 0
\(256\) 3667.41 0.895363
\(257\) 510.936i 0.124013i −0.998076 0.0620064i \(-0.980250\pi\)
0.998076 0.0620064i \(-0.0197499\pi\)
\(258\) 0 0
\(259\) −1334.39 −0.320135
\(260\) 3832.13 2525.15i 0.914070 0.602319i
\(261\) 0 0
\(262\) 5915.67i 1.39493i
\(263\) 2269.04i 0.531997i 0.963974 + 0.265998i \(0.0857015\pi\)
−0.963974 + 0.265998i \(0.914298\pi\)
\(264\) 0 0
\(265\) −3.41109 + 2.24771i −0.000790723 + 0.000521040i
\(266\) −3558.72 −0.820297
\(267\) 0 0
\(268\) 6955.32i 1.58531i
\(269\) −7836.10 −1.77612 −0.888058 0.459731i \(-0.847946\pi\)
−0.888058 + 0.459731i \(0.847946\pi\)
\(270\) 0 0
\(271\) 1466.28 0.328673 0.164336 0.986404i \(-0.447452\pi\)
0.164336 + 0.986404i \(0.447452\pi\)
\(272\) 5613.21i 1.25129i
\(273\) 0 0
\(274\) 7663.67 1.68971
\(275\) 334.444 779.005i 0.0733372 0.170821i
\(276\) 0 0
\(277\) 4154.17i 0.901083i 0.892755 + 0.450542i \(0.148769\pi\)
−0.892755 + 0.450542i \(0.851231\pi\)
\(278\) 6943.32i 1.49796i
\(279\) 0 0
\(280\) −68.0700 103.302i −0.0145284 0.0220481i
\(281\) 3490.40 0.740996 0.370498 0.928833i \(-0.379187\pi\)
0.370498 + 0.928833i \(0.379187\pi\)
\(282\) 0 0
\(283\) 3125.29i 0.656464i 0.944597 + 0.328232i \(0.106453\pi\)
−0.944597 + 0.328232i \(0.893547\pi\)
\(284\) −4163.60 −0.869945
\(285\) 0 0
\(286\) −1343.27 −0.277725
\(287\) 862.883i 0.177472i
\(288\) 0 0
\(289\) −3631.80 −0.739223
\(290\) 10687.8 7042.66i 2.16418 1.42607i
\(291\) 0 0
\(292\) 5882.81i 1.17899i
\(293\) 1447.69i 0.288652i −0.989530 0.144326i \(-0.953899\pi\)
0.989530 0.144326i \(-0.0461014\pi\)
\(294\) 0 0
\(295\) −2019.71 3065.09i −0.398618 0.604936i
\(296\) 301.333 0.0591710
\(297\) 0 0
\(298\) 11329.0i 2.20226i
\(299\) −1578.62 −0.305332
\(300\) 0 0
\(301\) 245.141 0.0469425
\(302\) 11609.1i 2.21201i
\(303\) 0 0
\(304\) −7625.35 −1.43863
\(305\) 3172.48 + 4814.52i 0.595593 + 0.903864i
\(306\) 0 0
\(307\) 1591.43i 0.295856i 0.988998 + 0.147928i \(0.0472603\pi\)
−0.988998 + 0.147928i \(0.952740\pi\)
\(308\) 398.334i 0.0736922i
\(309\) 0 0
\(310\) 7764.59 5116.41i 1.42258 0.937395i
\(311\) 8584.92 1.56529 0.782647 0.622466i \(-0.213869\pi\)
0.782647 + 0.622466i \(0.213869\pi\)
\(312\) 0 0
\(313\) 7210.05i 1.30203i 0.759064 + 0.651016i \(0.225657\pi\)
−0.759064 + 0.651016i \(0.774343\pi\)
\(314\) 3172.80 0.570228
\(315\) 0 0
\(316\) 1672.96 0.297820
\(317\) 7787.24i 1.37973i −0.723938 0.689865i \(-0.757670\pi\)
0.723938 0.689865i \(-0.242330\pi\)
\(318\) 0 0
\(319\) −1917.83 −0.336607
\(320\) −3449.26 5234.55i −0.602561 0.914438i
\(321\) 0 0
\(322\) 914.465i 0.158264i
\(323\) 11607.8i 1.99962i
\(324\) 0 0
\(325\) 5619.28 + 2412.48i 0.959082 + 0.411755i
\(326\) 9784.98 1.66239
\(327\) 0 0
\(328\) 194.857i 0.0328023i
\(329\) 2933.21 0.491529
\(330\) 0 0
\(331\) −1729.78 −0.287243 −0.143621 0.989633i \(-0.545875\pi\)
−0.143621 + 0.989633i \(0.545875\pi\)
\(332\) 1635.49i 0.270359i
\(333\) 0 0
\(334\) −2851.87 −0.467208
\(335\) −7738.94 + 5099.51i −1.26216 + 0.831689i
\(336\) 0 0
\(337\) 7815.06i 1.26325i −0.775276 0.631623i \(-0.782389\pi\)
0.775276 0.631623i \(-0.217611\pi\)
\(338\) 795.000i 0.127936i
\(339\) 0 0
\(340\) 7240.79 4771.26i 1.15496 0.761052i
\(341\) −1393.28 −0.221262
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) −55.3579 −0.00867645
\(345\) 0 0
\(346\) 5661.82 0.879714
\(347\) 2359.77i 0.365070i 0.983199 + 0.182535i \(0.0584303\pi\)
−0.983199 + 0.182535i \(0.941570\pi\)
\(348\) 0 0
\(349\) −3212.73 −0.492761 −0.246380 0.969173i \(-0.579241\pi\)
−0.246380 + 0.969173i \(0.579241\pi\)
\(350\) 1397.50 3255.14i 0.213428 0.497127i
\(351\) 0 0
\(352\) 1753.09i 0.265454i
\(353\) 5582.04i 0.841649i 0.907142 + 0.420824i \(0.138259\pi\)
−0.907142 + 0.420824i \(0.861741\pi\)
\(354\) 0 0
\(355\) −3052.67 4632.69i −0.456392 0.692614i
\(356\) −1152.90 −0.171639
\(357\) 0 0
\(358\) 1492.64i 0.220358i
\(359\) −10630.6 −1.56285 −0.781425 0.623999i \(-0.785507\pi\)
−0.781425 + 0.623999i \(0.785507\pi\)
\(360\) 0 0
\(361\) 8909.84 1.29900
\(362\) 1277.80i 0.185523i
\(363\) 0 0
\(364\) −2873.35 −0.413748
\(365\) −6545.60 + 4313.17i −0.938664 + 0.618524i
\(366\) 0 0
\(367\) 4514.69i 0.642139i −0.947056 0.321070i \(-0.895958\pi\)
0.947056 0.321070i \(-0.104042\pi\)
\(368\) 1959.45i 0.277563i
\(369\) 0 0
\(370\) 4747.63 + 7204.94i 0.667074 + 1.01234i
\(371\) 2.55765 0.000357916
\(372\) 0 0
\(373\) 11445.8i 1.58885i 0.607361 + 0.794426i \(0.292228\pi\)
−0.607361 + 0.794426i \(0.707772\pi\)
\(374\) −2538.11 −0.350916
\(375\) 0 0
\(376\) −662.378 −0.0908499
\(377\) 13834.1i 1.88990i
\(378\) 0 0
\(379\) −8146.48 −1.10411 −0.552054 0.833809i \(-0.686156\pi\)
−0.552054 + 0.833809i \(0.686156\pi\)
\(380\) 6481.59 + 9836.37i 0.874996 + 1.32788i
\(381\) 0 0
\(382\) 613.872i 0.0822210i
\(383\) 5261.56i 0.701967i 0.936382 + 0.350983i \(0.114153\pi\)
−0.936382 + 0.350983i \(0.885847\pi\)
\(384\) 0 0
\(385\) −443.212 + 292.051i −0.0586706 + 0.0386605i
\(386\) −2796.26 −0.368720
\(387\) 0 0
\(388\) 1849.59i 0.242007i
\(389\) 13207.1 1.72141 0.860706 0.509103i \(-0.170023\pi\)
0.860706 + 0.509103i \(0.170023\pi\)
\(390\) 0 0
\(391\) −2982.80 −0.385798
\(392\) 77.4564i 0.00997995i
\(393\) 0 0
\(394\) −3377.01 −0.431805
\(395\) 1226.58 + 1861.44i 0.156243 + 0.237112i
\(396\) 0 0
\(397\) 5663.15i 0.715933i 0.933734 + 0.357967i \(0.116530\pi\)
−0.933734 + 0.357967i \(0.883470\pi\)
\(398\) 1567.86i 0.197462i
\(399\) 0 0
\(400\) 2994.47 6974.87i 0.374308 0.871858i
\(401\) 11989.0 1.49302 0.746512 0.665372i \(-0.231727\pi\)
0.746512 + 0.665372i \(0.231727\pi\)
\(402\) 0 0
\(403\) 10050.3i 1.24228i
\(404\) −4961.76 −0.611031
\(405\) 0 0
\(406\) −8013.80 −0.979602
\(407\) 1292.85i 0.157455i
\(408\) 0 0
\(409\) −5249.67 −0.634669 −0.317334 0.948314i \(-0.602788\pi\)
−0.317334 + 0.948314i \(0.602788\pi\)
\(410\) −4659.07 + 3070.05i −0.561207 + 0.369803i
\(411\) 0 0
\(412\) 3998.00i 0.478076i
\(413\) 2298.22i 0.273821i
\(414\) 0 0
\(415\) −1819.76 + 1199.11i −0.215249 + 0.141836i
\(416\) −12645.7 −1.49041
\(417\) 0 0
\(418\) 3447.94i 0.403455i
\(419\) −14948.9 −1.74297 −0.871484 0.490424i \(-0.836842\pi\)
−0.871484 + 0.490424i \(0.836842\pi\)
\(420\) 0 0
\(421\) 5840.31 0.676103 0.338051 0.941128i \(-0.390232\pi\)
0.338051 + 0.941128i \(0.390232\pi\)
\(422\) 12431.1i 1.43398i
\(423\) 0 0
\(424\) −0.577571 −6.61540e−5
\(425\) 10617.6 + 4558.38i 1.21184 + 0.520268i
\(426\) 0 0
\(427\) 3609.95i 0.409128i
\(428\) 1892.75i 0.213760i
\(429\) 0 0
\(430\) −872.188 1323.62i −0.0978154 0.148443i
\(431\) −7439.21 −0.831402 −0.415701 0.909501i \(-0.636464\pi\)
−0.415701 + 0.909501i \(0.636464\pi\)
\(432\) 0 0
\(433\) 877.657i 0.0974077i −0.998813 0.0487038i \(-0.984491\pi\)
0.998813 0.0487038i \(-0.0155090\pi\)
\(434\) −5821.93 −0.643920
\(435\) 0 0
\(436\) −13656.8 −1.50009
\(437\) 4052.04i 0.443559i
\(438\) 0 0
\(439\) 10855.8 1.18023 0.590114 0.807320i \(-0.299083\pi\)
0.590114 + 0.807320i \(0.299083\pi\)
\(440\) 100.086 65.9511i 0.0108442 0.00714567i
\(441\) 0 0
\(442\) 18308.4i 1.97023i
\(443\) 10797.0i 1.15798i 0.815336 + 0.578988i \(0.196552\pi\)
−0.815336 + 0.578988i \(0.803448\pi\)
\(444\) 0 0
\(445\) −845.281 1282.79i −0.0900453 0.136651i
\(446\) 4066.58 0.431745
\(447\) 0 0
\(448\) 3924.89i 0.413914i
\(449\) 8621.70 0.906198 0.453099 0.891460i \(-0.350318\pi\)
0.453099 + 0.891460i \(0.350318\pi\)
\(450\) 0 0
\(451\) 836.023 0.0872878
\(452\) 2995.73i 0.311742i
\(453\) 0 0
\(454\) −21757.6 −2.24919
\(455\) −2106.68 3197.07i −0.217061 0.329409i
\(456\) 0 0
\(457\) 3785.90i 0.387520i 0.981049 + 0.193760i \(0.0620684\pi\)
−0.981049 + 0.193760i \(0.937932\pi\)
\(458\) 14781.0i 1.50801i
\(459\) 0 0
\(460\) 2527.60 1665.54i 0.256196 0.168818i
\(461\) −5760.18 −0.581948 −0.290974 0.956731i \(-0.593979\pi\)
−0.290974 + 0.956731i \(0.593979\pi\)
\(462\) 0 0
\(463\) 10760.9i 1.08014i 0.841621 + 0.540068i \(0.181602\pi\)
−0.841621 + 0.540068i \(0.818398\pi\)
\(464\) −17171.4 −1.71802
\(465\) 0 0
\(466\) −18553.9 −1.84440
\(467\) 2153.58i 0.213395i 0.994292 + 0.106698i \(0.0340277\pi\)
−0.994292 + 0.106698i \(0.965972\pi\)
\(468\) 0 0
\(469\) 5802.70 0.571309
\(470\) −10436.1 15837.6i −1.02421 1.55433i
\(471\) 0 0
\(472\) 518.985i 0.0506106i
\(473\) 237.510i 0.0230882i
\(474\) 0 0
\(475\) −6192.40 + 14423.7i −0.598162 + 1.39327i
\(476\) −5429.18 −0.522786
\(477\) 0 0
\(478\) 2820.88i 0.269924i
\(479\) −6890.26 −0.657253 −0.328626 0.944460i \(-0.606586\pi\)
−0.328626 + 0.944460i \(0.606586\pi\)
\(480\) 0 0
\(481\) 9325.88 0.884041
\(482\) 20577.9i 1.94460i
\(483\) 0 0
\(484\) 10781.8 1.01256
\(485\) 2057.97 1356.08i 0.192676 0.126962i
\(486\) 0 0
\(487\) 19006.4i 1.76850i 0.467011 + 0.884251i \(0.345331\pi\)
−0.467011 + 0.884251i \(0.654669\pi\)
\(488\) 815.201i 0.0756197i
\(489\) 0 0
\(490\) −1852.00 + 1220.36i −0.170745 + 0.112511i
\(491\) −4530.05 −0.416371 −0.208186 0.978089i \(-0.566756\pi\)
−0.208186 + 0.978089i \(0.566756\pi\)
\(492\) 0 0
\(493\) 26139.4i 2.38795i
\(494\) 24871.4 2.26522
\(495\) 0 0
\(496\) −12474.8 −1.12930
\(497\) 3473.62i 0.313507i
\(498\) 0 0
\(499\) −3620.18 −0.324773 −0.162386 0.986727i \(-0.551919\pi\)
−0.162386 + 0.986727i \(0.551919\pi\)
\(500\) −11542.6 + 2065.94i −1.03240 + 0.184784i
\(501\) 0 0
\(502\) 4887.84i 0.434571i
\(503\) 11761.8i 1.04261i −0.853372 0.521303i \(-0.825446\pi\)
0.853372 0.521303i \(-0.174554\pi\)
\(504\) 0 0
\(505\) −3637.86 5520.77i −0.320560 0.486478i
\(506\) −885.999 −0.0778408
\(507\) 0 0
\(508\) 14500.8i 1.26648i
\(509\) −5254.47 −0.457564 −0.228782 0.973478i \(-0.573474\pi\)
−0.228782 + 0.973478i \(0.573474\pi\)
\(510\) 0 0
\(511\) 4907.92 0.424880
\(512\) 16464.3i 1.42114i
\(513\) 0 0
\(514\) 2068.53 0.177508
\(515\) 4448.43 2931.26i 0.380624 0.250809i
\(516\) 0 0
\(517\) 2841.90i 0.241754i
\(518\) 5402.30i 0.458230i
\(519\) 0 0
\(520\) 475.732 + 721.964i 0.0401197 + 0.0608851i
\(521\) 15511.8 1.30439 0.652193 0.758053i \(-0.273849\pi\)
0.652193 + 0.758053i \(0.273849\pi\)
\(522\) 0 0
\(523\) 3814.73i 0.318942i 0.987203 + 0.159471i \(0.0509788\pi\)
−0.987203 + 0.159471i \(0.949021\pi\)
\(524\) 12260.1 1.02211
\(525\) 0 0
\(526\) −9186.24 −0.761481
\(527\) 18990.0i 1.56967i
\(528\) 0 0
\(529\) 11125.8 0.914422
\(530\) −9.09988 13.8098i −0.000745799 0.00113181i
\(531\) 0 0
\(532\) 7375.36i 0.601057i
\(533\) 6030.58i 0.490081i
\(534\) 0 0
\(535\) 2106.00 1387.73i 0.170187 0.112143i
\(536\) −1310.37 −0.105596
\(537\) 0 0
\(538\) 31724.5i 2.54227i
\(539\) 332.323 0.0265569
\(540\) 0 0
\(541\) −4573.77 −0.363478 −0.181739 0.983347i \(-0.558173\pi\)
−0.181739 + 0.983347i \(0.558173\pi\)
\(542\) 5936.26i 0.470451i
\(543\) 0 0
\(544\) −23894.1 −1.88318
\(545\) −10012.9 15195.4i −0.786980 1.19431i
\(546\) 0 0
\(547\) 13327.6i 1.04177i −0.853627 0.520885i \(-0.825602\pi\)
0.853627 0.520885i \(-0.174398\pi\)
\(548\) 15882.8i 1.23810i
\(549\) 0 0
\(550\) 3153.81 + 1354.00i 0.244507 + 0.104972i
\(551\) 35509.5 2.74548
\(552\) 0 0
\(553\) 1395.72i 0.107327i
\(554\) −16818.2 −1.28978
\(555\) 0 0
\(556\) −14389.9 −1.09760
\(557\) 12096.1i 0.920155i 0.887879 + 0.460077i \(0.152178\pi\)
−0.887879 + 0.460077i \(0.847822\pi\)
\(558\) 0 0
\(559\) −1713.26 −0.129630
\(560\) −3968.33 + 2614.90i −0.299451 + 0.197321i
\(561\) 0 0
\(562\) 14130.9i 1.06064i
\(563\) 22943.6i 1.71751i −0.512387 0.858755i \(-0.671239\pi\)
0.512387 0.858755i \(-0.328761\pi\)
\(564\) 0 0
\(565\) 3333.24 2196.41i 0.248196 0.163546i
\(566\) −12652.8 −0.939639
\(567\) 0 0
\(568\) 784.414i 0.0579459i
\(569\) 485.307 0.0357560 0.0178780 0.999840i \(-0.494309\pi\)
0.0178780 + 0.999840i \(0.494309\pi\)
\(570\) 0 0
\(571\) 12271.8 0.899401 0.449701 0.893179i \(-0.351531\pi\)
0.449701 + 0.893179i \(0.351531\pi\)
\(572\) 2783.90i 0.203498i
\(573\) 0 0
\(574\) 3493.39 0.254027
\(575\) 3706.38 + 1591.23i 0.268811 + 0.115407i
\(576\) 0 0
\(577\) 14122.8i 1.01896i 0.860484 + 0.509478i \(0.170162\pi\)
−0.860484 + 0.509478i \(0.829838\pi\)
\(578\) 14703.4i 1.05810i
\(579\) 0 0
\(580\) 14595.8 + 22150.3i 1.04492 + 1.58576i
\(581\) 1364.46 0.0974310
\(582\) 0 0
\(583\) 2.47804i 0.000176037i
\(584\) −1108.31 −0.0785312
\(585\) 0 0
\(586\) 5861.00 0.413167
\(587\) 11005.3i 0.773826i 0.922116 + 0.386913i \(0.126459\pi\)
−0.922116 + 0.386913i \(0.873541\pi\)
\(588\) 0 0
\(589\) 25797.2 1.80468
\(590\) 12409.0 8176.83i 0.865885 0.570567i
\(591\) 0 0
\(592\) 11575.6i 0.803642i
\(593\) 11233.1i 0.777889i 0.921261 + 0.388944i \(0.127160\pi\)
−0.921261 + 0.388944i \(0.872840\pi\)
\(594\) 0 0
\(595\) −3980.57 6040.86i −0.274265 0.416220i
\(596\) 23479.2 1.61366
\(597\) 0 0
\(598\) 6391.08i 0.437041i
\(599\) 14855.4 1.01331 0.506656 0.862149i \(-0.330882\pi\)
0.506656 + 0.862149i \(0.330882\pi\)
\(600\) 0 0
\(601\) 25358.8 1.72115 0.860573 0.509327i \(-0.170106\pi\)
0.860573 + 0.509327i \(0.170106\pi\)
\(602\) 992.457i 0.0671919i
\(603\) 0 0
\(604\) 24059.5 1.62081
\(605\) 7904.97 + 11996.5i 0.531211 + 0.806159i
\(606\) 0 0
\(607\) 14393.9i 0.962487i −0.876587 0.481243i \(-0.840185\pi\)
0.876587 0.481243i \(-0.159815\pi\)
\(608\) 32459.3i 2.16513i
\(609\) 0 0
\(610\) −19491.6 + 12843.8i −1.29376 + 0.852511i
\(611\) −20499.8 −1.35734
\(612\) 0 0
\(613\) 4769.94i 0.314284i 0.987576 + 0.157142i \(0.0502280\pi\)
−0.987576 + 0.157142i \(0.949772\pi\)
\(614\) −6442.92 −0.423477
\(615\) 0 0
\(616\) −75.0453 −0.00490854
\(617\) 7769.86i 0.506974i −0.967339 0.253487i \(-0.918423\pi\)
0.967339 0.253487i \(-0.0815775\pi\)
\(618\) 0 0
\(619\) 5680.75 0.368867 0.184433 0.982845i \(-0.440955\pi\)
0.184433 + 0.982845i \(0.440955\pi\)
\(620\) 10603.6 + 16091.9i 0.686859 + 1.04237i
\(621\) 0 0
\(622\) 34756.2i 2.24051i
\(623\) 961.840i 0.0618544i
\(624\) 0 0
\(625\) −10761.5 11328.3i −0.688736 0.725012i
\(626\) −29190.0 −1.86368
\(627\) 0 0
\(628\) 6575.56i 0.417824i
\(629\) 17621.2 1.11702
\(630\) 0 0
\(631\) −10395.8 −0.655864 −0.327932 0.944701i \(-0.606352\pi\)
−0.327932 + 0.944701i \(0.606352\pi\)
\(632\) 315.182i 0.0198374i
\(633\) 0 0
\(634\) 31526.7 1.97490
\(635\) −16134.6 + 10631.7i −1.00832 + 0.664421i
\(636\) 0 0
\(637\) 2397.18i 0.149105i
\(638\) 7764.34i 0.481808i
\(639\) 0 0
\(640\) 1886.70 1243.23i 0.116529 0.0767857i
\(641\) 8194.28 0.504921 0.252461 0.967607i \(-0.418760\pi\)
0.252461 + 0.967607i \(0.418760\pi\)
\(642\) 0 0
\(643\) 32118.2i 1.96985i −0.172970 0.984927i \(-0.555336\pi\)
0.172970 0.984927i \(-0.444664\pi\)
\(644\) −1895.21 −0.115965
\(645\) 0 0
\(646\) 46994.4 2.86218
\(647\) 22299.0i 1.35496i −0.735539 0.677482i \(-0.763071\pi\)
0.735539 0.677482i \(-0.236929\pi\)
\(648\) 0 0
\(649\) −2226.68 −0.134676
\(650\) −9766.97 + 22749.7i −0.589372 + 1.37280i
\(651\) 0 0
\(652\) 20279.1i 1.21809i
\(653\) 920.410i 0.0551584i −0.999620 0.0275792i \(-0.991220\pi\)
0.999620 0.0275792i \(-0.00877984\pi\)
\(654\) 0 0
\(655\) 8988.86 + 13641.4i 0.536219 + 0.813759i
\(656\) 7485.38 0.445511
\(657\) 0 0
\(658\) 11875.1i 0.703557i
\(659\) 17824.3 1.05362 0.526812 0.849982i \(-0.323387\pi\)
0.526812 + 0.849982i \(0.323387\pi\)
\(660\) 0 0
\(661\) 11343.8 0.667510 0.333755 0.942660i \(-0.391684\pi\)
0.333755 + 0.942660i \(0.391684\pi\)
\(662\) 7003.03i 0.411149i
\(663\) 0 0
\(664\) −308.123 −0.0180083
\(665\) 8206.30 5407.47i 0.478536 0.315327i
\(666\) 0 0
\(667\) 9124.71i 0.529700i
\(668\) 5910.44i 0.342338i
\(669\) 0 0
\(670\) −20645.4 31331.2i −1.19045 1.80661i
\(671\) 3497.58 0.201226
\(672\) 0 0
\(673\) 13422.9i 0.768816i −0.923163 0.384408i \(-0.874406\pi\)
0.923163 0.384408i \(-0.125594\pi\)
\(674\) 31639.4 1.80817
\(675\) 0 0
\(676\) 1647.62 0.0937426
\(677\) 1066.77i 0.0605602i −0.999541 0.0302801i \(-0.990360\pi\)
0.999541 0.0302801i \(-0.00963993\pi\)
\(678\) 0 0
\(679\) −1543.08 −0.0872134
\(680\) 898.895 + 1364.15i 0.0506927 + 0.0769305i
\(681\) 0 0
\(682\) 5640.70i 0.316706i
\(683\) 19090.6i 1.06952i 0.845005 + 0.534759i \(0.179598\pi\)
−0.845005 + 0.534759i \(0.820402\pi\)
\(684\) 0 0
\(685\) −17672.2 + 11645.0i −0.985724 + 0.649534i
\(686\) 1388.64 0.0772865
\(687\) 0 0
\(688\) 2126.56i 0.117841i
\(689\) −17.8751 −0.000988370
\(690\) 0 0
\(691\) −16878.4 −0.929208 −0.464604 0.885518i \(-0.653803\pi\)
−0.464604 + 0.885518i \(0.653803\pi\)
\(692\) 11734.0i 0.644594i
\(693\) 0 0
\(694\) −9553.57 −0.522549
\(695\) −10550.4 16011.1i −0.575825 0.873864i
\(696\) 0 0
\(697\) 11394.8i 0.619236i
\(698\) 13006.8i 0.705321i
\(699\) 0 0
\(700\) 6746.20 + 2896.29i 0.364261 + 0.156385i
\(701\) −30272.6 −1.63107 −0.815535 0.578707i \(-0.803557\pi\)
−0.815535 + 0.578707i \(0.803557\pi\)
\(702\) 0 0
\(703\) 23937.8i 1.28426i
\(704\) −3802.71 −0.203580
\(705\) 0 0
\(706\) −22599.0 −1.20471
\(707\) 4139.50i 0.220201i
\(708\) 0 0
\(709\) 6593.32 0.349248 0.174624 0.984635i \(-0.444129\pi\)
0.174624 + 0.984635i \(0.444129\pi\)
\(710\) 18755.5 12358.8i 0.991383 0.653263i
\(711\) 0 0
\(712\) 217.203i 0.0114326i
\(713\) 6628.99i 0.348187i
\(714\) 0 0
\(715\) 3097.55 2041.10i 0.162017 0.106759i
\(716\) −3093.46 −0.161464
\(717\) 0 0
\(718\) 43038.2i 2.23701i
\(719\) 3293.72 0.170842 0.0854208 0.996345i \(-0.472777\pi\)
0.0854208 + 0.996345i \(0.472777\pi\)
\(720\) 0 0
\(721\) −3335.46 −0.172287
\(722\) 36071.6i 1.85934i
\(723\) 0 0
\(724\) 2648.20 0.135939
\(725\) −13944.6 + 32480.4i −0.714328 + 1.66385i
\(726\) 0 0
\(727\) 27757.8i 1.41606i −0.706181 0.708032i \(-0.749583\pi\)
0.706181 0.708032i \(-0.250417\pi\)
\(728\) 541.333i 0.0275592i
\(729\) 0 0
\(730\) −17461.9 26499.9i −0.885334 1.34357i
\(731\) −3237.20 −0.163792
\(732\) 0 0
\(733\) 38324.6i 1.93117i 0.260080 + 0.965587i \(0.416251\pi\)
−0.260080 + 0.965587i \(0.583749\pi\)
\(734\) 18277.8 0.919136
\(735\) 0 0
\(736\) −8340.91 −0.417731
\(737\) 5622.07i 0.280993i
\(738\) 0 0
\(739\) −21957.3 −1.09298 −0.546490 0.837466i \(-0.684036\pi\)
−0.546490 + 0.837466i \(0.684036\pi\)
\(740\) −14932.1 + 9839.36i −0.741775 + 0.488786i
\(741\) 0 0
\(742\) 10.3547i 0.000512308i
\(743\) 14695.0i 0.725580i 0.931871 + 0.362790i \(0.118176\pi\)
−0.931871 + 0.362790i \(0.881824\pi\)
\(744\) 0 0
\(745\) 17214.5 + 26124.4i 0.846563 + 1.28473i
\(746\) −46338.5 −2.27423
\(747\) 0 0
\(748\) 5260.18i 0.257127i
\(749\) −1579.09 −0.0770341
\(750\) 0 0
\(751\) −21439.1 −1.04171 −0.520855 0.853645i \(-0.674387\pi\)
−0.520855 + 0.853645i \(0.674387\pi\)
\(752\) 25445.1i 1.23389i
\(753\) 0 0
\(754\) 56007.4 2.70513
\(755\) 17640.0 + 26770.2i 0.850311 + 1.29042i
\(756\) 0 0
\(757\) 23896.8i 1.14735i 0.819083 + 0.573675i \(0.194483\pi\)
−0.819083 + 0.573675i \(0.805517\pi\)
\(758\) 32981.1i 1.58038i
\(759\) 0 0
\(760\) −1853.15 + 1221.12i −0.0884485 + 0.0582824i
\(761\) 24436.9 1.16404 0.582022 0.813173i \(-0.302262\pi\)
0.582022 + 0.813173i \(0.302262\pi\)
\(762\) 0 0
\(763\) 11393.6i 0.540597i
\(764\) −1272.24 −0.0602459
\(765\) 0 0
\(766\) −21301.5 −1.00477
\(767\) 16061.9i 0.756145i
\(768\) 0 0
\(769\) 30689.3 1.43912 0.719560 0.694430i \(-0.244343\pi\)
0.719560 + 0.694430i \(0.244343\pi\)
\(770\) −1182.37 1794.35i −0.0553373 0.0839791i
\(771\) 0 0
\(772\) 5795.19i 0.270173i
\(773\) 5110.74i 0.237801i 0.992906 + 0.118901i \(0.0379370\pi\)
−0.992906 + 0.118901i \(0.962063\pi\)
\(774\) 0 0
\(775\) −10130.5 + 23596.6i −0.469548 + 1.09370i
\(776\) 348.459 0.0161198
\(777\) 0 0
\(778\) 53469.3i 2.46397i
\(779\) −15479.4 −0.711947
\(780\) 0 0
\(781\) −3365.49 −0.154195
\(782\) 12075.9i 0.552217i
\(783\) 0 0
\(784\) 2975.47 0.135545
\(785\) −7316.40 + 4821.08i −0.332654 + 0.219199i
\(786\) 0 0
\(787\) 6991.30i 0.316662i −0.987386 0.158331i \(-0.949389\pi\)
0.987386 0.158331i \(-0.0506113\pi\)
\(788\) 6998.78i 0.316397i
\(789\) 0 0
\(790\) −7536.06 + 4965.82i −0.339394 + 0.223641i
\(791\) −2499.28 −0.112344
\(792\) 0 0
\(793\) 25229.5i 1.12979i
\(794\) −22927.3 −1.02476
\(795\) 0 0
\(796\) 3249.36 0.144687
\(797\) 4020.31i 0.178678i 0.996001 + 0.0893392i \(0.0284755\pi\)
−0.996001 + 0.0893392i \(0.971524\pi\)
\(798\) 0 0
\(799\) −38734.3 −1.71505
\(800\) 29690.4 + 12746.7i 1.31214 + 0.563332i
\(801\) 0 0
\(802\) 48537.7i 2.13706i
\(803\) 4755.15i 0.208973i
\(804\) 0 0
\(805\) −1389.53 2108.73i −0.0608379 0.0923267i
\(806\) 40688.7 1.77816
\(807\) 0 0
\(808\) 934.785i 0.0407000i
\(809\) −41608.1 −1.80824 −0.904119 0.427281i \(-0.859472\pi\)
−0.904119 + 0.427281i \(0.859472\pi\)
\(810\) 0 0
\(811\) 42271.3 1.83027 0.915133 0.403152i \(-0.132086\pi\)
0.915133 + 0.403152i \(0.132086\pi\)
\(812\) 16608.4i 0.717785i
\(813\) 0 0
\(814\) 5234.13 0.225376
\(815\) −22563.9 + 14868.3i −0.969790 + 0.639035i
\(816\) 0 0
\(817\) 4397.62i 0.188315i
\(818\) 21253.4i 0.908443i
\(819\) 0 0
\(820\) −6362.62 9655.82i −0.270966 0.411214i
\(821\) −27184.7 −1.15561 −0.577804 0.816176i \(-0.696090\pi\)
−0.577804 + 0.816176i \(0.696090\pi\)
\(822\) 0 0
\(823\) 12967.9i 0.549250i −0.961551 0.274625i \(-0.911446\pi\)
0.961551 0.274625i \(-0.0885538\pi\)
\(824\) 753.215 0.0318440
\(825\) 0 0
\(826\) −9304.36 −0.391937
\(827\) 33111.2i 1.39225i −0.717921 0.696124i \(-0.754906\pi\)
0.717921 0.696124i \(-0.245094\pi\)
\(828\) 0 0
\(829\) −3715.75 −0.155673 −0.0778367 0.996966i \(-0.524801\pi\)
−0.0778367 + 0.996966i \(0.524801\pi\)
\(830\) −4854.62 7367.30i −0.203020 0.308100i
\(831\) 0 0
\(832\) 27430.5i 1.14301i
\(833\) 4529.47i 0.188399i
\(834\) 0 0
\(835\) 6576.33 4333.42i 0.272555 0.179598i
\(836\) 7145.77 0.295624
\(837\) 0 0
\(838\) 60521.0i 2.49482i
\(839\) −1460.56 −0.0601005 −0.0300502 0.999548i \(-0.509567\pi\)
−0.0300502 + 0.999548i \(0.509567\pi\)
\(840\) 0 0
\(841\) 55574.2 2.27866
\(842\) 23644.6i 0.967750i
\(843\) 0 0
\(844\) −25763.2 −1.05072
\(845\) 1208.00 + 1833.25i 0.0491794 + 0.0746339i
\(846\) 0 0
\(847\) 8995.02i 0.364903i
\(848\) 22.1873i 0.000898483i
\(849\) 0 0
\(850\) −18454.7 + 42985.5i −0.744694 + 1.73458i
\(851\) 6151.19 0.247779
\(852\) 0 0
\(853\) 36027.4i 1.44613i −0.690777 0.723067i \(-0.742732\pi\)
0.690777 0.723067i \(-0.257268\pi\)
\(854\) 14614.9 0.585612
\(855\) 0 0
\(856\) 356.590 0.0142383
\(857\) 23500.7i 0.936719i 0.883538 + 0.468359i \(0.155155\pi\)
−0.883538 + 0.468359i \(0.844845\pi\)
\(858\) 0 0
\(859\) −5551.11 −0.220491 −0.110245 0.993904i \(-0.535164\pi\)
−0.110245 + 0.993904i \(0.535164\pi\)
\(860\) 2743.17 1807.59i 0.108769 0.0716724i
\(861\) 0 0
\(862\) 30117.7i 1.19004i
\(863\) 27721.4i 1.09345i −0.837312 0.546725i \(-0.815874\pi\)
0.837312 0.546725i \(-0.184126\pi\)
\(864\) 0 0
\(865\) −13056.0 + 8603.13i −0.513199 + 0.338168i
\(866\) 3553.21 0.139426
\(867\) 0 0
\(868\) 12065.8i 0.471821i
\(869\) 1352.27 0.0527878
\(870\) 0 0
\(871\) −40554.3 −1.57765
\(872\) 2572.90i 0.0999192i
\(873\) 0 0
\(874\) 16404.7 0.634895
\(875\) 1723.58 + 9629.77i 0.0665915 + 0.372052i
\(876\) 0 0
\(877\) 47255.6i 1.81951i −0.415149 0.909754i \(-0.636270\pi\)
0.415149 0.909754i \(-0.363730\pi\)
\(878\) 43950.0i 1.68934i
\(879\) 0 0
\(880\) −2533.50 3844.80i −0.0970502 0.147282i
\(881\) −32267.0 −1.23394 −0.616972 0.786985i \(-0.711641\pi\)
−0.616972 + 0.786985i \(0.711641\pi\)
\(882\) 0 0
\(883\) 5062.08i 0.192925i 0.995337 + 0.0964623i \(0.0307527\pi\)
−0.995337 + 0.0964623i \(0.969247\pi\)
\(884\) 37943.8 1.44365
\(885\) 0 0
\(886\) −43712.0 −1.65749
\(887\) 7626.08i 0.288679i 0.989528 + 0.144340i \(0.0461058\pi\)
−0.989528 + 0.144340i \(0.953894\pi\)
\(888\) 0 0
\(889\) 12097.8 0.456408
\(890\) 5193.38 3422.13i 0.195598 0.128888i
\(891\) 0 0
\(892\) 8427.89i 0.316353i
\(893\) 52619.2i 1.97182i
\(894\) 0 0
\(895\) −2268.06 3441.98i −0.0847072 0.128550i
\(896\) −1414.66 −0.0527460
\(897\) 0 0
\(898\) 34905.0i 1.29710i
\(899\) 58092.3 2.15516
\(900\) 0 0
\(901\) −33.7750 −0.00124884
\(902\) 3384.65i 0.124941i
\(903\) 0 0
\(904\) 564.389 0.0207647
\(905\) 1941.61 + 2946.56i 0.0713164 + 0.108229i
\(906\) 0 0
\(907\) 8546.31i 0.312873i 0.987688 + 0.156436i \(0.0500006\pi\)
−0.987688 + 0.156436i \(0.949999\pi\)
\(908\) 45092.1i 1.64806i
\(909\) 0 0
\(910\) 12943.4 8528.93i 0.471504 0.310694i
\(911\) −8778.92 −0.319274 −0.159637 0.987176i \(-0.551032\pi\)
−0.159637 + 0.987176i \(0.551032\pi\)
\(912\) 0 0
\(913\) 1321.99i 0.0479205i
\(914\) −15327.3 −0.554683
\(915\) 0 0
\(916\) 30633.3 1.10497
\(917\) 10228.4i 0.368343i
\(918\) 0 0
\(919\) −21626.0 −0.776253 −0.388126 0.921606i \(-0.626878\pi\)
−0.388126 + 0.921606i \(0.626878\pi\)
\(920\) 313.784 + 476.195i 0.0112447 + 0.0170649i
\(921\) 0 0
\(922\) 23320.1i 0.832981i
\(923\) 24276.7i 0.865738i
\(924\) 0 0
\(925\) −21895.8 9400.36i −0.778302 0.334143i
\(926\) −43565.8 −1.54607
\(927\) 0 0
\(928\) 73094.5i 2.58561i
\(929\) 12262.6 0.433073 0.216536 0.976275i \(-0.430524\pi\)
0.216536 + 0.976275i \(0.430524\pi\)
\(930\) 0 0
\(931\) −6153.13 −0.216606
\(932\) 38452.5i 1.35145i
\(933\) 0 0
\(934\) −8718.78 −0.305447
\(935\) 5852.82 3856.66i 0.204714 0.134894i
\(936\) 0 0
\(937\) 13362.6i 0.465889i 0.972490 + 0.232945i \(0.0748361\pi\)
−0.972490 + 0.232945i \(0.925164\pi\)
\(938\) 23492.3i 0.817751i
\(939\) 0 0
\(940\) 32823.1 21628.5i 1.13891 0.750472i
\(941\) 46330.1 1.60501 0.802506 0.596643i \(-0.203499\pi\)
0.802506 + 0.596643i \(0.203499\pi\)
\(942\) 0 0
\(943\) 3977.66i 0.137360i
\(944\) −19936.7 −0.687377
\(945\) 0 0
\(946\) −961.563 −0.0330477
\(947\) 17387.6i 0.596643i −0.954465 0.298321i \(-0.903573\pi\)
0.954465 0.298321i \(-0.0964267\pi\)
\(948\) 0 0
\(949\) −34300.8 −1.17329
\(950\) −58394.4 25070.0i −1.99428 0.856188i
\(951\) 0 0
\(952\) 1022.85i 0.0348221i
\(953\) 42384.6i 1.44068i 0.693619 + 0.720342i \(0.256015\pi\)
−0.693619 + 0.720342i \(0.743985\pi\)
\(954\) 0 0
\(955\) −932.779 1415.57i −0.0316063 0.0479653i
\(956\) −5846.20 −0.197782
\(957\) 0 0
\(958\) 27895.3i 0.940769i
\(959\) 13250.7 0.446182
\(960\) 0 0
\(961\) 12412.3 0.416647
\(962\) 37755.9i 1.26539i
\(963\) 0 0
\(964\) −42647.2 −1.42487
\(965\) 6448.10 4248.92i 0.215100 0.141738i
\(966\) 0 0
\(967\) 15771.6i 0.524489i 0.965001 + 0.262245i \(0.0844627\pi\)
−0.965001 + 0.262245i \(0.915537\pi\)
\(968\) 2031.26i 0.0674454i
\(969\) 0 0
\(970\) 5490.12 + 8331.72i 0.181729 + 0.275789i
\(971\) −36370.5 −1.20204 −0.601022 0.799232i \(-0.705240\pi\)
−0.601022 + 0.799232i \(0.705240\pi\)
\(972\) 0 0
\(973\) 12005.2i 0.395549i
\(974\) −76947.5 −2.53137
\(975\) 0 0
\(976\) 31315.8 1.02704
\(977\) 35122.8i 1.15013i −0.818108 0.575065i \(-0.804977\pi\)
0.818108 0.575065i \(-0.195023\pi\)
\(978\) 0 0
\(979\) −931.899 −0.0304225
\(980\) −2529.17 3838.23i −0.0824401 0.125110i
\(981\) 0 0
\(982\) 18340.0i 0.595979i
\(983\) 12798.9i 0.415282i 0.978205 + 0.207641i \(0.0665785\pi\)
−0.978205 + 0.207641i \(0.933421\pi\)
\(984\) 0 0
\(985\) 7787.30 5131.37i 0.251902 0.165989i
\(986\) 105826. 3.41803
\(987\) 0 0
\(988\) 51545.4i 1.65980i
\(989\) −1130.03 −0.0363327
\(990\) 0 0
\(991\) −46594.9 −1.49358 −0.746789 0.665061i \(-0.768406\pi\)
−0.746789 + 0.665061i \(0.768406\pi\)
\(992\) 53102.3i 1.69960i
\(993\) 0 0
\(994\) −14063.0 −0.448743
\(995\) 2382.37 + 3615.45i 0.0759058 + 0.115194i
\(996\) 0 0
\(997\) 47534.1i 1.50995i −0.655753 0.754975i \(-0.727649\pi\)
0.655753 0.754975i \(-0.272351\pi\)
\(998\) 14656.4i 0.464869i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.4.d.c.64.9 10
3.2 odd 2 35.4.b.a.29.2 10
5.2 odd 4 1575.4.a.bq.1.1 5
5.3 odd 4 1575.4.a.bn.1.5 5
5.4 even 2 inner 315.4.d.c.64.2 10
12.11 even 2 560.4.g.f.449.9 10
15.2 even 4 175.4.a.i.1.5 5
15.8 even 4 175.4.a.j.1.1 5
15.14 odd 2 35.4.b.a.29.9 yes 10
21.2 odd 6 245.4.j.e.214.2 20
21.5 even 6 245.4.j.f.214.2 20
21.11 odd 6 245.4.j.e.79.9 20
21.17 even 6 245.4.j.f.79.9 20
21.20 even 2 245.4.b.d.99.2 10
60.59 even 2 560.4.g.f.449.2 10
105.44 odd 6 245.4.j.e.214.9 20
105.59 even 6 245.4.j.f.79.2 20
105.62 odd 4 1225.4.a.be.1.5 5
105.74 odd 6 245.4.j.e.79.2 20
105.83 odd 4 1225.4.a.bh.1.1 5
105.89 even 6 245.4.j.f.214.9 20
105.104 even 2 245.4.b.d.99.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.2 10 3.2 odd 2
35.4.b.a.29.9 yes 10 15.14 odd 2
175.4.a.i.1.5 5 15.2 even 4
175.4.a.j.1.1 5 15.8 even 4
245.4.b.d.99.2 10 21.20 even 2
245.4.b.d.99.9 10 105.104 even 2
245.4.j.e.79.2 20 105.74 odd 6
245.4.j.e.79.9 20 21.11 odd 6
245.4.j.e.214.2 20 21.2 odd 6
245.4.j.e.214.9 20 105.44 odd 6
245.4.j.f.79.2 20 105.59 even 6
245.4.j.f.79.9 20 21.17 even 6
245.4.j.f.214.2 20 21.5 even 6
245.4.j.f.214.9 20 105.89 even 6
315.4.d.c.64.2 10 5.4 even 2 inner
315.4.d.c.64.9 10 1.1 even 1 trivial
560.4.g.f.449.2 10 60.59 even 2
560.4.g.f.449.9 10 12.11 even 2
1225.4.a.be.1.5 5 105.62 odd 4
1225.4.a.bh.1.1 5 105.83 odd 4
1575.4.a.bn.1.5 5 5.3 odd 4
1575.4.a.bq.1.1 5 5.2 odd 4