Properties

Label 560.4.g.f.449.9
Level $560$
Weight $4$
Character 560.449
Analytic conductor $33.041$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(449,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.449");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.9
Root \(5.04851i\) of defining polynomial
Character \(\chi\) \(=\) 560.449
Dual form 560.4.g.f.449.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.52749i q^{3} +(6.15172 + 9.33576i) q^{5} -7.00000i q^{7} -15.6081 q^{9} -6.78210 q^{11} -48.9221i q^{13} +(-60.9390 + 40.1552i) q^{15} +92.4381i q^{17} -125.574 q^{19} +45.6924 q^{21} -32.2681i q^{23} +(-49.3128 + 114.862i) q^{25} +74.3607i q^{27} -282.778 q^{29} -205.434 q^{31} -44.2701i q^{33} +(65.3503 - 43.0620i) q^{35} +190.627i q^{37} +319.338 q^{39} +123.269 q^{41} +35.0202i q^{43} +(-96.0164 - 145.713i) q^{45} -419.030i q^{47} -49.0000 q^{49} -603.388 q^{51} +0.365379i q^{53} +(-41.7215 - 63.3160i) q^{55} -819.683i q^{57} +328.317 q^{59} -515.707 q^{61} +109.256i q^{63} +(456.725 - 300.955i) q^{65} +828.957i q^{67} +210.630 q^{69} +496.231 q^{71} -701.132i q^{73} +(-749.759 - 321.888i) q^{75} +47.4747i q^{77} +199.388 q^{79} -906.806 q^{81} -194.923i q^{83} +(-862.980 + 568.653i) q^{85} -1845.83i q^{87} -137.406 q^{89} -342.454 q^{91} -1340.97i q^{93} +(-772.496 - 1172.33i) q^{95} +220.440i q^{97} +105.855 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 6 q^{5} - 46 q^{9} - 84 q^{11} - 8 q^{15} - 72 q^{19} + 140 q^{21} - 362 q^{25} + 88 q^{29} - 120 q^{31} + 28 q^{35} - 212 q^{39} - 852 q^{41} - 510 q^{45} - 490 q^{49} - 1276 q^{51} + 1136 q^{55}+ \cdots + 5304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 6.52749i 1.25622i 0.778127 + 0.628108i \(0.216170\pi\)
−0.778127 + 0.628108i \(0.783830\pi\)
\(4\) 0 0
\(5\) 6.15172 + 9.33576i 0.550226 + 0.835016i
\(6\) 0 0
\(7\) 7.00000i 0.377964i
\(8\) 0 0
\(9\) −15.6081 −0.578076
\(10\) 0 0
\(11\) −6.78210 −0.185898 −0.0929491 0.995671i \(-0.529629\pi\)
−0.0929491 + 0.995671i \(0.529629\pi\)
\(12\) 0 0
\(13\) 48.9221i 1.04373i −0.853027 0.521867i \(-0.825236\pi\)
0.853027 0.521867i \(-0.174764\pi\)
\(14\) 0 0
\(15\) −60.9390 + 40.1552i −1.04896 + 0.691202i
\(16\) 0 0
\(17\) 92.4381i 1.31880i 0.751794 + 0.659398i \(0.229189\pi\)
−0.751794 + 0.659398i \(0.770811\pi\)
\(18\) 0 0
\(19\) −125.574 −1.51625 −0.758123 0.652112i \(-0.773883\pi\)
−0.758123 + 0.652112i \(0.773883\pi\)
\(20\) 0 0
\(21\) 45.6924 0.474805
\(22\) 0 0
\(23\) 32.2681i 0.292538i −0.989245 0.146269i \(-0.953274\pi\)
0.989245 0.146269i \(-0.0467265\pi\)
\(24\) 0 0
\(25\) −49.3128 + 114.862i −0.394502 + 0.918895i
\(26\) 0 0
\(27\) 74.3607i 0.530027i
\(28\) 0 0
\(29\) −282.778 −1.81071 −0.905354 0.424659i \(-0.860394\pi\)
−0.905354 + 0.424659i \(0.860394\pi\)
\(30\) 0 0
\(31\) −205.434 −1.19023 −0.595115 0.803641i \(-0.702893\pi\)
−0.595115 + 0.803641i \(0.702893\pi\)
\(32\) 0 0
\(33\) 44.2701i 0.233528i
\(34\) 0 0
\(35\) 65.3503 43.0620i 0.315606 0.207966i
\(36\) 0 0
\(37\) 190.627i 0.846998i 0.905897 + 0.423499i \(0.139198\pi\)
−0.905897 + 0.423499i \(0.860802\pi\)
\(38\) 0 0
\(39\) 319.338 1.31115
\(40\) 0 0
\(41\) 123.269 0.469546 0.234773 0.972050i \(-0.424565\pi\)
0.234773 + 0.972050i \(0.424565\pi\)
\(42\) 0 0
\(43\) 35.0202i 0.124198i 0.998070 + 0.0620991i \(0.0197795\pi\)
−0.998070 + 0.0620991i \(0.980221\pi\)
\(44\) 0 0
\(45\) −96.0164 145.713i −0.318073 0.482703i
\(46\) 0 0
\(47\) 419.030i 1.30046i −0.759736 0.650231i \(-0.774672\pi\)
0.759736 0.650231i \(-0.225328\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −603.388 −1.65669
\(52\) 0 0
\(53\) 0.365379i 0.000946956i 1.00000 0.000473478i \(0.000150713\pi\)
−1.00000 0.000473478i \(0.999849\pi\)
\(54\) 0 0
\(55\) −41.7215 63.3160i −0.102286 0.155228i
\(56\) 0 0
\(57\) 819.683i 1.90473i
\(58\) 0 0
\(59\) 328.317 0.724461 0.362231 0.932088i \(-0.382015\pi\)
0.362231 + 0.932088i \(0.382015\pi\)
\(60\) 0 0
\(61\) −515.707 −1.08245 −0.541226 0.840877i \(-0.682040\pi\)
−0.541226 + 0.840877i \(0.682040\pi\)
\(62\) 0 0
\(63\) 109.256i 0.218492i
\(64\) 0 0
\(65\) 456.725 300.955i 0.871534 0.574290i
\(66\) 0 0
\(67\) 828.957i 1.51154i 0.654837 + 0.755770i \(0.272737\pi\)
−0.654837 + 0.755770i \(0.727263\pi\)
\(68\) 0 0
\(69\) 210.630 0.367490
\(70\) 0 0
\(71\) 496.231 0.829462 0.414731 0.909944i \(-0.363876\pi\)
0.414731 + 0.909944i \(0.363876\pi\)
\(72\) 0 0
\(73\) 701.132i 1.12413i −0.827094 0.562064i \(-0.810008\pi\)
0.827094 0.562064i \(-0.189992\pi\)
\(74\) 0 0
\(75\) −749.759 321.888i −1.15433 0.495580i
\(76\) 0 0
\(77\) 47.4747i 0.0702629i
\(78\) 0 0
\(79\) 199.388 0.283961 0.141981 0.989869i \(-0.454653\pi\)
0.141981 + 0.989869i \(0.454653\pi\)
\(80\) 0 0
\(81\) −906.806 −1.24390
\(82\) 0 0
\(83\) 194.923i 0.257778i −0.991659 0.128889i \(-0.958859\pi\)
0.991659 0.128889i \(-0.0411411\pi\)
\(84\) 0 0
\(85\) −862.980 + 568.653i −1.10122 + 0.725636i
\(86\) 0 0
\(87\) 1845.83i 2.27464i
\(88\) 0 0
\(89\) −137.406 −0.163651 −0.0818257 0.996647i \(-0.526075\pi\)
−0.0818257 + 0.996647i \(0.526075\pi\)
\(90\) 0 0
\(91\) −342.454 −0.394494
\(92\) 0 0
\(93\) 1340.97i 1.49518i
\(94\) 0 0
\(95\) −772.496 1172.33i −0.834278 1.26609i
\(96\) 0 0
\(97\) 220.440i 0.230745i 0.993322 + 0.115372i \(0.0368062\pi\)
−0.993322 + 0.115372i \(0.963194\pi\)
\(98\) 0 0
\(99\) 105.855 0.107463
\(100\) 0 0
\(101\) −591.358 −0.582597 −0.291298 0.956632i \(-0.594087\pi\)
−0.291298 + 0.956632i \(0.594087\pi\)
\(102\) 0 0
\(103\) 476.494i 0.455829i −0.973681 0.227914i \(-0.926809\pi\)
0.973681 0.227914i \(-0.0731906\pi\)
\(104\) 0 0
\(105\) 281.087 + 426.573i 0.261250 + 0.396469i
\(106\) 0 0
\(107\) 225.584i 0.203813i 0.994794 + 0.101907i \(0.0324943\pi\)
−0.994794 + 0.101907i \(0.967506\pi\)
\(108\) 0 0
\(109\) 1627.65 1.43028 0.715142 0.698979i \(-0.246362\pi\)
0.715142 + 0.698979i \(0.246362\pi\)
\(110\) 0 0
\(111\) −1244.32 −1.06401
\(112\) 0 0
\(113\) 357.040i 0.297235i −0.988895 0.148617i \(-0.952518\pi\)
0.988895 0.148617i \(-0.0474823\pi\)
\(114\) 0 0
\(115\) 301.247 198.504i 0.244274 0.160962i
\(116\) 0 0
\(117\) 763.579i 0.603358i
\(118\) 0 0
\(119\) 647.067 0.498458
\(120\) 0 0
\(121\) −1285.00 −0.965442
\(122\) 0 0
\(123\) 804.637i 0.589851i
\(124\) 0 0
\(125\) −1375.68 + 246.225i −0.984357 + 0.176185i
\(126\) 0 0
\(127\) 1728.25i 1.20754i 0.797158 + 0.603771i \(0.206336\pi\)
−0.797158 + 0.603771i \(0.793664\pi\)
\(128\) 0 0
\(129\) −228.594 −0.156020
\(130\) 0 0
\(131\) −1461.19 −0.974543 −0.487272 0.873250i \(-0.662008\pi\)
−0.487272 + 0.873250i \(0.662008\pi\)
\(132\) 0 0
\(133\) 879.018i 0.573087i
\(134\) 0 0
\(135\) −694.214 + 457.446i −0.442581 + 0.291635i
\(136\) 0 0
\(137\) 1892.96i 1.18049i 0.807226 + 0.590243i \(0.200968\pi\)
−0.807226 + 0.590243i \(0.799032\pi\)
\(138\) 0 0
\(139\) −1715.03 −1.04652 −0.523262 0.852172i \(-0.675285\pi\)
−0.523262 + 0.852172i \(0.675285\pi\)
\(140\) 0 0
\(141\) 2735.21 1.63366
\(142\) 0 0
\(143\) 331.794i 0.194028i
\(144\) 0 0
\(145\) −1739.57 2639.94i −0.996299 1.51197i
\(146\) 0 0
\(147\) 319.847i 0.179459i
\(148\) 0 0
\(149\) 2798.32 1.53857 0.769286 0.638904i \(-0.220612\pi\)
0.769286 + 0.638904i \(0.220612\pi\)
\(150\) 0 0
\(151\) 2867.49 1.54538 0.772692 0.634781i \(-0.218910\pi\)
0.772692 + 0.634781i \(0.218910\pi\)
\(152\) 0 0
\(153\) 1442.78i 0.762365i
\(154\) 0 0
\(155\) −1263.77 1917.89i −0.654896 0.993860i
\(156\) 0 0
\(157\) 783.696i 0.398381i −0.979961 0.199190i \(-0.936169\pi\)
0.979961 0.199190i \(-0.0638312\pi\)
\(158\) 0 0
\(159\) −2.38501 −0.00118958
\(160\) 0 0
\(161\) −225.877 −0.110569
\(162\) 0 0
\(163\) 2416.93i 1.16140i 0.814116 + 0.580702i \(0.197222\pi\)
−0.814116 + 0.580702i \(0.802778\pi\)
\(164\) 0 0
\(165\) 413.295 272.337i 0.195000 0.128493i
\(166\) 0 0
\(167\) 704.424i 0.326407i 0.986592 + 0.163204i \(0.0521827\pi\)
−0.986592 + 0.163204i \(0.947817\pi\)
\(168\) 0 0
\(169\) −196.369 −0.0893803
\(170\) 0 0
\(171\) 1959.97 0.876506
\(172\) 0 0
\(173\) 1398.49i 0.614598i 0.951613 + 0.307299i \(0.0994252\pi\)
−0.951613 + 0.307299i \(0.900575\pi\)
\(174\) 0 0
\(175\) 804.033 + 345.189i 0.347310 + 0.149108i
\(176\) 0 0
\(177\) 2143.08i 0.910079i
\(178\) 0 0
\(179\) 368.688 0.153950 0.0769749 0.997033i \(-0.475474\pi\)
0.0769749 + 0.997033i \(0.475474\pi\)
\(180\) 0 0
\(181\) −315.621 −0.129613 −0.0648064 0.997898i \(-0.520643\pi\)
−0.0648064 + 0.997898i \(0.520643\pi\)
\(182\) 0 0
\(183\) 3366.27i 1.35979i
\(184\) 0 0
\(185\) −1779.65 + 1172.69i −0.707257 + 0.466041i
\(186\) 0 0
\(187\) 626.924i 0.245162i
\(188\) 0 0
\(189\) 520.525 0.200331
\(190\) 0 0
\(191\) 151.629 0.0574424 0.0287212 0.999587i \(-0.490857\pi\)
0.0287212 + 0.999587i \(0.490857\pi\)
\(192\) 0 0
\(193\) 690.689i 0.257600i 0.991671 + 0.128800i \(0.0411126\pi\)
−0.991671 + 0.128800i \(0.958887\pi\)
\(194\) 0 0
\(195\) 1964.48 + 2981.26i 0.721431 + 1.09483i
\(196\) 0 0
\(197\) 834.136i 0.301674i −0.988559 0.150837i \(-0.951803\pi\)
0.988559 0.150837i \(-0.0481968\pi\)
\(198\) 0 0
\(199\) 387.269 0.137954 0.0689769 0.997618i \(-0.478027\pi\)
0.0689769 + 0.997618i \(0.478027\pi\)
\(200\) 0 0
\(201\) −5411.00 −1.89882
\(202\) 0 0
\(203\) 1979.44i 0.684383i
\(204\) 0 0
\(205\) 758.316 + 1150.81i 0.258357 + 0.392078i
\(206\) 0 0
\(207\) 503.643i 0.169109i
\(208\) 0 0
\(209\) 851.656 0.281867
\(210\) 0 0
\(211\) −3070.54 −1.00182 −0.500912 0.865498i \(-0.667002\pi\)
−0.500912 + 0.865498i \(0.667002\pi\)
\(212\) 0 0
\(213\) 3239.14i 1.04198i
\(214\) 0 0
\(215\) −326.940 + 215.434i −0.103707 + 0.0683371i
\(216\) 0 0
\(217\) 1438.04i 0.449865i
\(218\) 0 0
\(219\) 4576.63 1.41215
\(220\) 0 0
\(221\) 4522.26 1.37647
\(222\) 0 0
\(223\) 1004.46i 0.301631i 0.988562 + 0.150816i \(0.0481900\pi\)
−0.988562 + 0.150816i \(0.951810\pi\)
\(224\) 0 0
\(225\) 769.677 1792.77i 0.228052 0.531192i
\(226\) 0 0
\(227\) 5374.22i 1.57136i 0.618631 + 0.785681i \(0.287687\pi\)
−0.618631 + 0.785681i \(0.712313\pi\)
\(228\) 0 0
\(229\) −3650.97 −1.05355 −0.526775 0.850005i \(-0.676599\pi\)
−0.526775 + 0.850005i \(0.676599\pi\)
\(230\) 0 0
\(231\) −309.890 −0.0882653
\(232\) 0 0
\(233\) 4582.88i 1.28856i −0.764789 0.644280i \(-0.777157\pi\)
0.764789 0.644280i \(-0.222843\pi\)
\(234\) 0 0
\(235\) 3911.96 2577.75i 1.08591 0.715549i
\(236\) 0 0
\(237\) 1301.50i 0.356716i
\(238\) 0 0
\(239\) 696.769 0.188578 0.0942892 0.995545i \(-0.469942\pi\)
0.0942892 + 0.995545i \(0.469942\pi\)
\(240\) 0 0
\(241\) 5082.82 1.35856 0.679281 0.733878i \(-0.262292\pi\)
0.679281 + 0.733878i \(0.262292\pi\)
\(242\) 0 0
\(243\) 3911.42i 1.03258i
\(244\) 0 0
\(245\) −301.434 457.452i −0.0786037 0.119288i
\(246\) 0 0
\(247\) 6143.34i 1.58256i
\(248\) 0 0
\(249\) 1272.36 0.323825
\(250\) 0 0
\(251\) 1207.32 0.303606 0.151803 0.988411i \(-0.451492\pi\)
0.151803 + 0.988411i \(0.451492\pi\)
\(252\) 0 0
\(253\) 218.846i 0.0543822i
\(254\) 0 0
\(255\) −3711.87 5633.09i −0.911555 1.38336i
\(256\) 0 0
\(257\) 510.936i 0.124013i 0.998076 + 0.0620064i \(0.0197499\pi\)
−0.998076 + 0.0620064i \(0.980250\pi\)
\(258\) 0 0
\(259\) 1334.39 0.320135
\(260\) 0 0
\(261\) 4413.61 1.04673
\(262\) 0 0
\(263\) 2269.04i 0.531997i 0.963974 + 0.265998i \(0.0857015\pi\)
−0.963974 + 0.265998i \(0.914298\pi\)
\(264\) 0 0
\(265\) −3.41109 + 2.24771i −0.000790723 + 0.000521040i
\(266\) 0 0
\(267\) 896.913i 0.205581i
\(268\) 0 0
\(269\) 7836.10 1.77612 0.888058 0.459731i \(-0.152054\pi\)
0.888058 + 0.459731i \(0.152054\pi\)
\(270\) 0 0
\(271\) −1466.28 −0.328673 −0.164336 0.986404i \(-0.552548\pi\)
−0.164336 + 0.986404i \(0.552548\pi\)
\(272\) 0 0
\(273\) 2235.37i 0.495570i
\(274\) 0 0
\(275\) 334.444 779.005i 0.0733372 0.170821i
\(276\) 0 0
\(277\) 4154.17i 0.901083i 0.892755 + 0.450542i \(0.148769\pi\)
−0.892755 + 0.450542i \(0.851231\pi\)
\(278\) 0 0
\(279\) 3206.43 0.688044
\(280\) 0 0
\(281\) −3490.40 −0.740996 −0.370498 0.928833i \(-0.620813\pi\)
−0.370498 + 0.928833i \(0.620813\pi\)
\(282\) 0 0
\(283\) 3125.29i 0.656464i −0.944597 0.328232i \(-0.893547\pi\)
0.944597 0.328232i \(-0.106453\pi\)
\(284\) 0 0
\(285\) 7652.36 5042.46i 1.59048 1.04803i
\(286\) 0 0
\(287\) 862.883i 0.177472i
\(288\) 0 0
\(289\) −3631.80 −0.739223
\(290\) 0 0
\(291\) −1438.92 −0.289865
\(292\) 0 0
\(293\) 1447.69i 0.288652i 0.989530 + 0.144326i \(0.0461014\pi\)
−0.989530 + 0.144326i \(0.953899\pi\)
\(294\) 0 0
\(295\) 2019.71 + 3065.09i 0.398618 + 0.604936i
\(296\) 0 0
\(297\) 504.322i 0.0985310i
\(298\) 0 0
\(299\) −1578.62 −0.305332
\(300\) 0 0
\(301\) 245.141 0.0469425
\(302\) 0 0
\(303\) 3860.08i 0.731867i
\(304\) 0 0
\(305\) −3172.48 4814.52i −0.595593 0.903864i
\(306\) 0 0
\(307\) 1591.43i 0.295856i −0.988998 0.147928i \(-0.952740\pi\)
0.988998 0.147928i \(-0.0472603\pi\)
\(308\) 0 0
\(309\) 3110.31 0.572619
\(310\) 0 0
\(311\) 8584.92 1.56529 0.782647 0.622466i \(-0.213869\pi\)
0.782647 + 0.622466i \(0.213869\pi\)
\(312\) 0 0
\(313\) 7210.05i 1.30203i 0.759064 + 0.651016i \(0.225657\pi\)
−0.759064 + 0.651016i \(0.774343\pi\)
\(314\) 0 0
\(315\) −1019.99 + 672.115i −0.182445 + 0.120220i
\(316\) 0 0
\(317\) 7787.24i 1.37973i 0.723938 + 0.689865i \(0.242330\pi\)
−0.723938 + 0.689865i \(0.757670\pi\)
\(318\) 0 0
\(319\) 1917.83 0.336607
\(320\) 0 0
\(321\) −1472.49 −0.256033
\(322\) 0 0
\(323\) 11607.8i 1.99962i
\(324\) 0 0
\(325\) 5619.28 + 2412.48i 0.959082 + 0.411755i
\(326\) 0 0
\(327\) 10624.5i 1.79674i
\(328\) 0 0
\(329\) −2933.21 −0.491529
\(330\) 0 0
\(331\) 1729.78 0.287243 0.143621 0.989633i \(-0.454125\pi\)
0.143621 + 0.989633i \(0.454125\pi\)
\(332\) 0 0
\(333\) 2975.32i 0.489630i
\(334\) 0 0
\(335\) −7738.94 + 5099.51i −1.26216 + 0.831689i
\(336\) 0 0
\(337\) 7815.06i 1.26325i −0.775276 0.631623i \(-0.782389\pi\)
0.775276 0.631623i \(-0.217611\pi\)
\(338\) 0 0
\(339\) 2330.57 0.373391
\(340\) 0 0
\(341\) 1393.28 0.221262
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 1295.73 + 1966.39i 0.202203 + 0.306860i
\(346\) 0 0
\(347\) 2359.77i 0.365070i 0.983199 + 0.182535i \(0.0584303\pi\)
−0.983199 + 0.182535i \(0.941570\pi\)
\(348\) 0 0
\(349\) −3212.73 −0.492761 −0.246380 0.969173i \(-0.579241\pi\)
−0.246380 + 0.969173i \(0.579241\pi\)
\(350\) 0 0
\(351\) 3637.88 0.553207
\(352\) 0 0
\(353\) 5582.04i 0.841649i −0.907142 0.420824i \(-0.861741\pi\)
0.907142 0.420824i \(-0.138259\pi\)
\(354\) 0 0
\(355\) 3052.67 + 4632.69i 0.456392 + 0.692614i
\(356\) 0 0
\(357\) 4223.72i 0.626171i
\(358\) 0 0
\(359\) −10630.6 −1.56285 −0.781425 0.623999i \(-0.785507\pi\)
−0.781425 + 0.623999i \(0.785507\pi\)
\(360\) 0 0
\(361\) 8909.84 1.29900
\(362\) 0 0
\(363\) 8387.84i 1.21280i
\(364\) 0 0
\(365\) 6545.60 4313.17i 0.938664 0.618524i
\(366\) 0 0
\(367\) 4514.69i 0.642139i 0.947056 + 0.321070i \(0.104042\pi\)
−0.947056 + 0.321070i \(0.895958\pi\)
\(368\) 0 0
\(369\) −1923.99 −0.271434
\(370\) 0 0
\(371\) 2.55765 0.000357916
\(372\) 0 0
\(373\) 11445.8i 1.58885i 0.607361 + 0.794426i \(0.292228\pi\)
−0.607361 + 0.794426i \(0.707772\pi\)
\(374\) 0 0
\(375\) −1607.23 8979.74i −0.221326 1.23656i
\(376\) 0 0
\(377\) 13834.1i 1.88990i
\(378\) 0 0
\(379\) 8146.48 1.10411 0.552054 0.833809i \(-0.313844\pi\)
0.552054 + 0.833809i \(0.313844\pi\)
\(380\) 0 0
\(381\) −11281.2 −1.51693
\(382\) 0 0
\(383\) 5261.56i 0.701967i 0.936382 + 0.350983i \(0.114153\pi\)
−0.936382 + 0.350983i \(0.885847\pi\)
\(384\) 0 0
\(385\) −443.212 + 292.051i −0.0586706 + 0.0386605i
\(386\) 0 0
\(387\) 546.597i 0.0717961i
\(388\) 0 0
\(389\) −13207.1 −1.72141 −0.860706 0.509103i \(-0.829977\pi\)
−0.860706 + 0.509103i \(0.829977\pi\)
\(390\) 0 0
\(391\) 2982.80 0.385798
\(392\) 0 0
\(393\) 9537.93i 1.22424i
\(394\) 0 0
\(395\) 1226.58 + 1861.44i 0.156243 + 0.237112i
\(396\) 0 0
\(397\) 5663.15i 0.715933i 0.933734 + 0.357967i \(0.116530\pi\)
−0.933734 + 0.357967i \(0.883470\pi\)
\(398\) 0 0
\(399\) −5737.78 −0.719920
\(400\) 0 0
\(401\) −11989.0 −1.49302 −0.746512 0.665372i \(-0.768273\pi\)
−0.746512 + 0.665372i \(0.768273\pi\)
\(402\) 0 0
\(403\) 10050.3i 1.24228i
\(404\) 0 0
\(405\) −5578.41 8465.72i −0.684429 1.03868i
\(406\) 0 0
\(407\) 1292.85i 0.157455i
\(408\) 0 0
\(409\) −5249.67 −0.634669 −0.317334 0.948314i \(-0.602788\pi\)
−0.317334 + 0.948314i \(0.602788\pi\)
\(410\) 0 0
\(411\) −12356.3 −1.48294
\(412\) 0 0
\(413\) 2298.22i 0.273821i
\(414\) 0 0
\(415\) 1819.76 1199.11i 0.215249 0.141836i
\(416\) 0 0
\(417\) 11194.8i 1.31466i
\(418\) 0 0
\(419\) −14948.9 −1.74297 −0.871484 0.490424i \(-0.836842\pi\)
−0.871484 + 0.490424i \(0.836842\pi\)
\(420\) 0 0
\(421\) 5840.31 0.676103 0.338051 0.941128i \(-0.390232\pi\)
0.338051 + 0.941128i \(0.390232\pi\)
\(422\) 0 0
\(423\) 6540.24i 0.751767i
\(424\) 0 0
\(425\) −10617.6 4558.38i −1.21184 0.520268i
\(426\) 0 0
\(427\) 3609.95i 0.409128i
\(428\) 0 0
\(429\) −2165.78 −0.243741
\(430\) 0 0
\(431\) −7439.21 −0.831402 −0.415701 0.909501i \(-0.636464\pi\)
−0.415701 + 0.909501i \(0.636464\pi\)
\(432\) 0 0
\(433\) 877.657i 0.0974077i −0.998813 0.0487038i \(-0.984491\pi\)
0.998813 0.0487038i \(-0.0155090\pi\)
\(434\) 0 0
\(435\) 17232.2 11355.0i 1.89936 1.25157i
\(436\) 0 0
\(437\) 4052.04i 0.443559i
\(438\) 0 0
\(439\) −10855.8 −1.18023 −0.590114 0.807320i \(-0.700917\pi\)
−0.590114 + 0.807320i \(0.700917\pi\)
\(440\) 0 0
\(441\) 764.795 0.0825823
\(442\) 0 0
\(443\) 10797.0i 1.15798i 0.815336 + 0.578988i \(0.196552\pi\)
−0.815336 + 0.578988i \(0.803448\pi\)
\(444\) 0 0
\(445\) −845.281 1282.79i −0.0900453 0.136651i
\(446\) 0 0
\(447\) 18266.0i 1.93278i
\(448\) 0 0
\(449\) −8621.70 −0.906198 −0.453099 0.891460i \(-0.649682\pi\)
−0.453099 + 0.891460i \(0.649682\pi\)
\(450\) 0 0
\(451\) −836.023 −0.0872878
\(452\) 0 0
\(453\) 18717.5i 1.94134i
\(454\) 0 0
\(455\) −2106.68 3197.07i −0.217061 0.329409i
\(456\) 0 0
\(457\) 3785.90i 0.387520i 0.981049 + 0.193760i \(0.0620684\pi\)
−0.981049 + 0.193760i \(0.937932\pi\)
\(458\) 0 0
\(459\) −6873.76 −0.698997
\(460\) 0 0
\(461\) 5760.18 0.581948 0.290974 0.956731i \(-0.406021\pi\)
0.290974 + 0.956731i \(0.406021\pi\)
\(462\) 0 0
\(463\) 10760.9i 1.08014i −0.841621 0.540068i \(-0.818398\pi\)
0.841621 0.540068i \(-0.181602\pi\)
\(464\) 0 0
\(465\) 12519.0 8249.27i 1.24850 0.822690i
\(466\) 0 0
\(467\) 2153.58i 0.213395i 0.994292 + 0.106698i \(0.0340277\pi\)
−0.994292 + 0.106698i \(0.965972\pi\)
\(468\) 0 0
\(469\) 5802.70 0.571309
\(470\) 0 0
\(471\) 5115.57 0.500452
\(472\) 0 0
\(473\) 237.510i 0.0230882i
\(474\) 0 0
\(475\) 6192.40 14423.7i 0.598162 1.39327i
\(476\) 0 0
\(477\) 5.70286i 0.000547413i
\(478\) 0 0
\(479\) −6890.26 −0.657253 −0.328626 0.944460i \(-0.606586\pi\)
−0.328626 + 0.944460i \(0.606586\pi\)
\(480\) 0 0
\(481\) 9325.88 0.884041
\(482\) 0 0
\(483\) 1474.41i 0.138898i
\(484\) 0 0
\(485\) −2057.97 + 1356.08i −0.192676 + 0.126962i
\(486\) 0 0
\(487\) 19006.4i 1.76850i −0.467011 0.884251i \(-0.654669\pi\)
0.467011 0.884251i \(-0.345331\pi\)
\(488\) 0 0
\(489\) −15776.5 −1.45897
\(490\) 0 0
\(491\) −4530.05 −0.416371 −0.208186 0.978089i \(-0.566756\pi\)
−0.208186 + 0.978089i \(0.566756\pi\)
\(492\) 0 0
\(493\) 26139.4i 2.38795i
\(494\) 0 0
\(495\) 651.193 + 988.241i 0.0591292 + 0.0897336i
\(496\) 0 0
\(497\) 3473.62i 0.313507i
\(498\) 0 0
\(499\) 3620.18 0.324773 0.162386 0.986727i \(-0.448081\pi\)
0.162386 + 0.986727i \(0.448081\pi\)
\(500\) 0 0
\(501\) −4598.12 −0.410038
\(502\) 0 0
\(503\) 11761.8i 1.04261i −0.853372 0.521303i \(-0.825446\pi\)
0.853372 0.521303i \(-0.174554\pi\)
\(504\) 0 0
\(505\) −3637.86 5520.77i −0.320560 0.486478i
\(506\) 0 0
\(507\) 1281.79i 0.112281i
\(508\) 0 0
\(509\) 5254.47 0.457564 0.228782 0.973478i \(-0.426526\pi\)
0.228782 + 0.973478i \(0.426526\pi\)
\(510\) 0 0
\(511\) −4907.92 −0.424880
\(512\) 0 0
\(513\) 9337.77i 0.803651i
\(514\) 0 0
\(515\) 4448.43 2931.26i 0.380624 0.250809i
\(516\) 0 0
\(517\) 2841.90i 0.241754i
\(518\) 0 0
\(519\) −9128.64 −0.772067
\(520\) 0 0
\(521\) −15511.8 −1.30439 −0.652193 0.758053i \(-0.726151\pi\)
−0.652193 + 0.758053i \(0.726151\pi\)
\(522\) 0 0
\(523\) 3814.73i 0.318942i −0.987203 0.159471i \(-0.949021\pi\)
0.987203 0.159471i \(-0.0509788\pi\)
\(524\) 0 0
\(525\) −2253.22 + 5248.31i −0.187311 + 0.436296i
\(526\) 0 0
\(527\) 18990.0i 1.56967i
\(528\) 0 0
\(529\) 11125.8 0.914422
\(530\) 0 0
\(531\) −5124.39 −0.418794
\(532\) 0 0
\(533\) 6030.58i 0.490081i
\(534\) 0 0
\(535\) −2106.00 + 1387.73i −0.170187 + 0.112143i
\(536\) 0 0
\(537\) 2406.60i 0.193394i
\(538\) 0 0
\(539\) 332.323 0.0265569
\(540\) 0 0
\(541\) −4573.77 −0.363478 −0.181739 0.983347i \(-0.558173\pi\)
−0.181739 + 0.983347i \(0.558173\pi\)
\(542\) 0 0
\(543\) 2060.21i 0.162822i
\(544\) 0 0
\(545\) 10012.9 + 15195.4i 0.786980 + 1.19431i
\(546\) 0 0
\(547\) 13327.6i 1.04177i 0.853627 + 0.520885i \(0.174398\pi\)
−0.853627 + 0.520885i \(0.825602\pi\)
\(548\) 0 0
\(549\) 8049.19 0.625740
\(550\) 0 0
\(551\) 35509.5 2.74548
\(552\) 0 0
\(553\) 1395.72i 0.107327i
\(554\) 0 0
\(555\) −7654.68 11616.6i −0.585447 0.888467i
\(556\) 0 0
\(557\) 12096.1i 0.920155i −0.887879 0.460077i \(-0.847822\pi\)
0.887879 0.460077i \(-0.152178\pi\)
\(558\) 0 0
\(559\) 1713.26 0.129630
\(560\) 0 0
\(561\) 4092.24 0.307976
\(562\) 0 0
\(563\) 22943.6i 1.71751i −0.512387 0.858755i \(-0.671239\pi\)
0.512387 0.858755i \(-0.328761\pi\)
\(564\) 0 0
\(565\) 3333.24 2196.41i 0.248196 0.163546i
\(566\) 0 0
\(567\) 6347.64i 0.470152i
\(568\) 0 0
\(569\) −485.307 −0.0357560 −0.0178780 0.999840i \(-0.505691\pi\)
−0.0178780 + 0.999840i \(0.505691\pi\)
\(570\) 0 0
\(571\) −12271.8 −0.899401 −0.449701 0.893179i \(-0.648469\pi\)
−0.449701 + 0.893179i \(0.648469\pi\)
\(572\) 0 0
\(573\) 989.756i 0.0721600i
\(574\) 0 0
\(575\) 3706.38 + 1591.23i 0.268811 + 0.115407i
\(576\) 0 0
\(577\) 14122.8i 1.01896i 0.860484 + 0.509478i \(0.170162\pi\)
−0.860484 + 0.509478i \(0.829838\pi\)
\(578\) 0 0
\(579\) −4508.46 −0.323601
\(580\) 0 0
\(581\) −1364.46 −0.0974310
\(582\) 0 0
\(583\) 2.47804i 0.000176037i
\(584\) 0 0
\(585\) −7128.59 + 4697.32i −0.503813 + 0.331983i
\(586\) 0 0
\(587\) 11005.3i 0.773826i 0.922116 + 0.386913i \(0.126459\pi\)
−0.922116 + 0.386913i \(0.873541\pi\)
\(588\) 0 0
\(589\) 25797.2 1.80468
\(590\) 0 0
\(591\) 5444.81 0.378967
\(592\) 0 0
\(593\) 11233.1i 0.777889i −0.921261 0.388944i \(-0.872840\pi\)
0.921261 0.388944i \(-0.127160\pi\)
\(594\) 0 0
\(595\) 3980.57 + 6040.86i 0.274265 + 0.416220i
\(596\) 0 0
\(597\) 2527.89i 0.173300i
\(598\) 0 0
\(599\) 14855.4 1.01331 0.506656 0.862149i \(-0.330882\pi\)
0.506656 + 0.862149i \(0.330882\pi\)
\(600\) 0 0
\(601\) 25358.8 1.72115 0.860573 0.509327i \(-0.170106\pi\)
0.860573 + 0.509327i \(0.170106\pi\)
\(602\) 0 0
\(603\) 12938.4i 0.873786i
\(604\) 0 0
\(605\) −7904.97 11996.5i −0.531211 0.806159i
\(606\) 0 0
\(607\) 14393.9i 0.962487i 0.876587 + 0.481243i \(0.159815\pi\)
−0.876587 + 0.481243i \(0.840185\pi\)
\(608\) 0 0
\(609\) −12920.8 −0.859732
\(610\) 0 0
\(611\) −20499.8 −1.35734
\(612\) 0 0
\(613\) 4769.94i 0.314284i 0.987576 + 0.157142i \(0.0502280\pi\)
−0.987576 + 0.157142i \(0.949772\pi\)
\(614\) 0 0
\(615\) −7511.90 + 4949.90i −0.492535 + 0.324551i
\(616\) 0 0
\(617\) 7769.86i 0.506974i 0.967339 + 0.253487i \(0.0815775\pi\)
−0.967339 + 0.253487i \(0.918423\pi\)
\(618\) 0 0
\(619\) −5680.75 −0.368867 −0.184433 0.982845i \(-0.559045\pi\)
−0.184433 + 0.982845i \(0.559045\pi\)
\(620\) 0 0
\(621\) 2399.48 0.155053
\(622\) 0 0
\(623\) 961.840i 0.0618544i
\(624\) 0 0
\(625\) −10761.5 11328.3i −0.688736 0.725012i
\(626\) 0 0
\(627\) 5559.17i 0.354086i
\(628\) 0 0
\(629\) −17621.2 −1.11702
\(630\) 0 0
\(631\) 10395.8 0.655864 0.327932 0.944701i \(-0.393648\pi\)
0.327932 + 0.944701i \(0.393648\pi\)
\(632\) 0 0
\(633\) 20042.9i 1.25851i
\(634\) 0 0
\(635\) −16134.6 + 10631.7i −1.00832 + 0.664421i
\(636\) 0 0
\(637\) 2397.18i 0.149105i
\(638\) 0 0
\(639\) −7745.21 −0.479492
\(640\) 0 0
\(641\) −8194.28 −0.504921 −0.252461 0.967607i \(-0.581240\pi\)
−0.252461 + 0.967607i \(0.581240\pi\)
\(642\) 0 0
\(643\) 32118.2i 1.96985i 0.172970 + 0.984927i \(0.444664\pi\)
−0.172970 + 0.984927i \(0.555336\pi\)
\(644\) 0 0
\(645\) −1406.24 2134.09i −0.0858461 0.130279i
\(646\) 0 0
\(647\) 22299.0i 1.35496i −0.735539 0.677482i \(-0.763071\pi\)
0.735539 0.677482i \(-0.236929\pi\)
\(648\) 0 0
\(649\) −2226.68 −0.134676
\(650\) 0 0
\(651\) −9386.79 −0.565127
\(652\) 0 0
\(653\) 920.410i 0.0551584i 0.999620 + 0.0275792i \(0.00877984\pi\)
−0.999620 + 0.0275792i \(0.991220\pi\)
\(654\) 0 0
\(655\) −8988.86 13641.4i −0.536219 0.813759i
\(656\) 0 0
\(657\) 10943.3i 0.649832i
\(658\) 0 0
\(659\) 17824.3 1.05362 0.526812 0.849982i \(-0.323387\pi\)
0.526812 + 0.849982i \(0.323387\pi\)
\(660\) 0 0
\(661\) 11343.8 0.667510 0.333755 0.942660i \(-0.391684\pi\)
0.333755 + 0.942660i \(0.391684\pi\)
\(662\) 0 0
\(663\) 29519.0i 1.72915i
\(664\) 0 0
\(665\) −8206.30 + 5407.47i −0.478536 + 0.315327i
\(666\) 0 0
\(667\) 9124.71i 0.529700i
\(668\) 0 0
\(669\) −6556.61 −0.378914
\(670\) 0 0
\(671\) 3497.58 0.201226
\(672\) 0 0
\(673\) 13422.9i 0.768816i −0.923163 0.384408i \(-0.874406\pi\)
0.923163 0.384408i \(-0.125594\pi\)
\(674\) 0 0
\(675\) −8541.21 3666.93i −0.487039 0.209097i
\(676\) 0 0
\(677\) 1066.77i 0.0605602i 0.999541 + 0.0302801i \(0.00963993\pi\)
−0.999541 + 0.0302801i \(0.990360\pi\)
\(678\) 0 0
\(679\) 1543.08 0.0872134
\(680\) 0 0
\(681\) −35080.1 −1.97397
\(682\) 0 0
\(683\) 19090.6i 1.06952i 0.845005 + 0.534759i \(0.179598\pi\)
−0.845005 + 0.534759i \(0.820402\pi\)
\(684\) 0 0
\(685\) −17672.2 + 11645.0i −0.985724 + 0.649534i
\(686\) 0 0
\(687\) 23831.6i 1.32348i
\(688\) 0 0
\(689\) 17.8751 0.000988370
\(690\) 0 0
\(691\) 16878.4 0.929208 0.464604 0.885518i \(-0.346197\pi\)
0.464604 + 0.885518i \(0.346197\pi\)
\(692\) 0 0
\(693\) 740.988i 0.0406173i
\(694\) 0 0
\(695\) −10550.4 16011.1i −0.575825 0.873864i
\(696\) 0 0
\(697\) 11394.8i 0.619236i
\(698\) 0 0
\(699\) 29914.7 1.61871
\(700\) 0 0
\(701\) 30272.6 1.63107 0.815535 0.578707i \(-0.196443\pi\)
0.815535 + 0.578707i \(0.196443\pi\)
\(702\) 0 0
\(703\) 23937.8i 1.28426i
\(704\) 0 0
\(705\) 16826.2 + 25535.3i 0.898883 + 1.36413i
\(706\) 0 0
\(707\) 4139.50i 0.220201i
\(708\) 0 0
\(709\) 6593.32 0.349248 0.174624 0.984635i \(-0.444129\pi\)
0.174624 + 0.984635i \(0.444129\pi\)
\(710\) 0 0
\(711\) −3112.06 −0.164151
\(712\) 0 0
\(713\) 6628.99i 0.348187i
\(714\) 0 0
\(715\) −3097.55 + 2041.10i −0.162017 + 0.106759i
\(716\) 0 0
\(717\) 4548.15i 0.236895i
\(718\) 0 0
\(719\) 3293.72 0.170842 0.0854208 0.996345i \(-0.472777\pi\)
0.0854208 + 0.996345i \(0.472777\pi\)
\(720\) 0 0
\(721\) −3335.46 −0.172287
\(722\) 0 0
\(723\) 33178.1i 1.70665i
\(724\) 0 0
\(725\) 13944.6 32480.4i 0.714328 1.66385i
\(726\) 0 0
\(727\) 27757.8i 1.41606i 0.706181 + 0.708032i \(0.250417\pi\)
−0.706181 + 0.708032i \(0.749583\pi\)
\(728\) 0 0
\(729\) 1048.00 0.0532439
\(730\) 0 0
\(731\) −3237.20 −0.163792
\(732\) 0 0
\(733\) 38324.6i 1.93117i 0.260080 + 0.965587i \(0.416251\pi\)
−0.260080 + 0.965587i \(0.583749\pi\)
\(734\) 0 0
\(735\) 2986.01 1967.61i 0.149851 0.0987432i
\(736\) 0 0
\(737\) 5622.07i 0.280993i
\(738\) 0 0
\(739\) 21957.3 1.09298 0.546490 0.837466i \(-0.315964\pi\)
0.546490 + 0.837466i \(0.315964\pi\)
\(740\) 0 0
\(741\) −40100.6 −1.98803
\(742\) 0 0
\(743\) 14695.0i 0.725580i 0.931871 + 0.362790i \(0.118176\pi\)
−0.931871 + 0.362790i \(0.881824\pi\)
\(744\) 0 0
\(745\) 17214.5 + 26124.4i 0.846563 + 1.28473i
\(746\) 0 0
\(747\) 3042.37i 0.149016i
\(748\) 0 0
\(749\) 1579.09 0.0770341
\(750\) 0 0
\(751\) 21439.1 1.04171 0.520855 0.853645i \(-0.325613\pi\)
0.520855 + 0.853645i \(0.325613\pi\)
\(752\) 0 0
\(753\) 7880.74i 0.381395i
\(754\) 0 0
\(755\) 17640.0 + 26770.2i 0.850311 + 1.29042i
\(756\) 0 0
\(757\) 23896.8i 1.14735i 0.819083 + 0.573675i \(0.194483\pi\)
−0.819083 + 0.573675i \(0.805517\pi\)
\(758\) 0 0
\(759\) −1428.51 −0.0683158
\(760\) 0 0
\(761\) −24436.9 −1.16404 −0.582022 0.813173i \(-0.697738\pi\)
−0.582022 + 0.813173i \(0.697738\pi\)
\(762\) 0 0
\(763\) 11393.6i 0.540597i
\(764\) 0 0
\(765\) 13469.4 8875.57i 0.636587 0.419473i
\(766\) 0 0
\(767\) 16061.9i 0.756145i
\(768\) 0 0
\(769\) 30689.3 1.43912 0.719560 0.694430i \(-0.244343\pi\)
0.719560 + 0.694430i \(0.244343\pi\)
\(770\) 0 0
\(771\) −3335.13 −0.155787
\(772\) 0 0
\(773\) 5110.74i 0.237801i −0.992906 0.118901i \(-0.962063\pi\)
0.992906 0.118901i \(-0.0379370\pi\)
\(774\) 0 0
\(775\) 10130.5 23596.6i 0.469548 1.09370i
\(776\) 0 0
\(777\) 8710.22i 0.402159i
\(778\) 0 0
\(779\) −15479.4 −0.711947
\(780\) 0 0
\(781\) −3365.49 −0.154195
\(782\) 0 0
\(783\) 21027.6i 0.959723i
\(784\) 0 0
\(785\) 7316.40 4821.08i 0.332654 0.219199i
\(786\) 0 0
\(787\) 6991.30i 0.316662i 0.987386 + 0.158331i \(0.0506113\pi\)
−0.987386 + 0.158331i \(0.949389\pi\)
\(788\) 0 0
\(789\) −14811.1 −0.668302
\(790\) 0 0
\(791\) −2499.28 −0.112344
\(792\) 0 0
\(793\) 25229.5i 1.12979i
\(794\) 0 0
\(795\) −14.6719 22.2658i −0.000654539 0.000993319i
\(796\) 0 0
\(797\) 4020.31i 0.178678i −0.996001 0.0893392i \(-0.971524\pi\)
0.996001 0.0893392i \(-0.0284755\pi\)
\(798\) 0 0
\(799\) 38734.3 1.71505
\(800\) 0 0
\(801\) 2144.64 0.0946030
\(802\) 0 0
\(803\) 4755.15i 0.208973i
\(804\) 0 0
\(805\) −1389.53 2108.73i −0.0608379 0.0923267i
\(806\) 0 0
\(807\) 51150.0i 2.23118i
\(808\) 0 0
\(809\) 41608.1 1.80824 0.904119 0.427281i \(-0.140528\pi\)
0.904119 + 0.427281i \(0.140528\pi\)
\(810\) 0 0
\(811\) −42271.3 −1.83027 −0.915133 0.403152i \(-0.867914\pi\)
−0.915133 + 0.403152i \(0.867914\pi\)
\(812\) 0 0
\(813\) 9571.13i 0.412884i
\(814\) 0 0
\(815\) −22563.9 + 14868.3i −0.969790 + 0.639035i
\(816\) 0 0
\(817\) 4397.62i 0.188315i
\(818\) 0 0
\(819\) 5345.05 0.228048
\(820\) 0 0
\(821\) 27184.7 1.15561 0.577804 0.816176i \(-0.303910\pi\)
0.577804 + 0.816176i \(0.303910\pi\)
\(822\) 0 0
\(823\) 12967.9i 0.549250i 0.961551 + 0.274625i \(0.0885538\pi\)
−0.961551 + 0.274625i \(0.911446\pi\)
\(824\) 0 0
\(825\) 5084.94 + 2183.08i 0.214588 + 0.0921273i
\(826\) 0 0
\(827\) 33111.2i 1.39225i −0.717921 0.696124i \(-0.754906\pi\)
0.717921 0.696124i \(-0.245094\pi\)
\(828\) 0 0
\(829\) −3715.75 −0.155673 −0.0778367 0.996966i \(-0.524801\pi\)
−0.0778367 + 0.996966i \(0.524801\pi\)
\(830\) 0 0
\(831\) −27116.3 −1.13195
\(832\) 0 0
\(833\) 4529.47i 0.188399i
\(834\) 0 0
\(835\) −6576.33 + 4333.42i −0.272555 + 0.179598i
\(836\) 0 0
\(837\) 15276.3i 0.630854i
\(838\) 0 0
\(839\) −1460.56 −0.0601005 −0.0300502 0.999548i \(-0.509567\pi\)
−0.0300502 + 0.999548i \(0.509567\pi\)
\(840\) 0 0
\(841\) 55574.2 2.27866
\(842\) 0 0
\(843\) 22783.6i 0.930851i
\(844\) 0 0
\(845\) −1208.00 1833.25i −0.0491794 0.0746339i
\(846\) 0 0
\(847\) 8995.02i 0.364903i
\(848\) 0 0
\(849\) 20400.3 0.824660
\(850\) 0 0
\(851\) 6151.19 0.247779
\(852\) 0 0
\(853\) 36027.4i 1.44613i −0.690777 0.723067i \(-0.742732\pi\)
0.690777 0.723067i \(-0.257268\pi\)
\(854\) 0 0
\(855\) 12057.2 + 18297.8i 0.482276 + 0.731896i
\(856\) 0 0
\(857\) 23500.7i 0.936719i −0.883538 0.468359i \(-0.844845\pi\)
0.883538 0.468359i \(-0.155155\pi\)
\(858\) 0 0
\(859\) 5551.11 0.220491 0.110245 0.993904i \(-0.464836\pi\)
0.110245 + 0.993904i \(0.464836\pi\)
\(860\) 0 0
\(861\) 5632.46 0.222943
\(862\) 0 0
\(863\) 27721.4i 1.09345i −0.837312 0.546725i \(-0.815874\pi\)
0.837312 0.546725i \(-0.184126\pi\)
\(864\) 0 0
\(865\) −13056.0 + 8603.13i −0.513199 + 0.338168i
\(866\) 0 0
\(867\) 23706.6i 0.928624i
\(868\) 0 0
\(869\) −1352.27 −0.0527878
\(870\) 0 0
\(871\) 40554.3 1.57765
\(872\) 0 0
\(873\) 3440.64i 0.133388i
\(874\) 0 0
\(875\) 1723.58 + 9629.77i 0.0665915 + 0.372052i
\(876\) 0 0
\(877\) 47255.6i 1.81951i −0.415149 0.909754i \(-0.636270\pi\)
0.415149 0.909754i \(-0.363730\pi\)
\(878\) 0 0
\(879\) −9449.79 −0.362609
\(880\) 0 0
\(881\) 32267.0 1.23394 0.616972 0.786985i \(-0.288359\pi\)
0.616972 + 0.786985i \(0.288359\pi\)
\(882\) 0 0
\(883\) 5062.08i 0.192925i −0.995337 0.0964623i \(-0.969247\pi\)
0.995337 0.0964623i \(-0.0307527\pi\)
\(884\) 0 0
\(885\) −20007.3 + 13183.6i −0.759930 + 0.500749i
\(886\) 0 0
\(887\) 7626.08i 0.288679i 0.989528 + 0.144340i \(0.0461058\pi\)
−0.989528 + 0.144340i \(0.953894\pi\)
\(888\) 0 0
\(889\) 12097.8 0.456408
\(890\) 0 0
\(891\) 6150.05 0.231239
\(892\) 0 0
\(893\) 52619.2i 1.97182i
\(894\) 0 0
\(895\) 2268.06 + 3441.98i 0.0847072 + 0.128550i
\(896\) 0 0
\(897\) 10304.4i 0.383562i
\(898\) 0 0
\(899\) 58092.3 2.15516
\(900\) 0 0
\(901\) −33.7750 −0.00124884
\(902\) 0 0
\(903\) 1600.16i 0.0589699i
\(904\) 0 0
\(905\) −1941.61 2946.56i −0.0713164 0.108229i
\(906\) 0 0
\(907\) 8546.31i 0.312873i −0.987688 0.156436i \(-0.949999\pi\)
0.987688 0.156436i \(-0.0500006\pi\)
\(908\) 0 0
\(909\) 9229.95 0.336786
\(910\) 0 0
\(911\) −8778.92 −0.319274 −0.159637 0.987176i \(-0.551032\pi\)
−0.159637 + 0.987176i \(0.551032\pi\)
\(912\) 0 0
\(913\) 1321.99i 0.0479205i
\(914\) 0 0
\(915\) 31426.7 20708.3i 1.13545 0.748193i
\(916\) 0 0
\(917\) 10228.4i 0.368343i
\(918\) 0 0
\(919\) 21626.0 0.776253 0.388126 0.921606i \(-0.373122\pi\)
0.388126 + 0.921606i \(0.373122\pi\)
\(920\) 0 0
\(921\) 10388.0 0.371658
\(922\) 0 0
\(923\) 24276.7i 0.865738i
\(924\) 0 0
\(925\) −21895.8 9400.36i −0.778302 0.334143i
\(926\) 0 0
\(927\) 7437.15i 0.263504i
\(928\) 0 0
\(929\) −12262.6 −0.433073 −0.216536 0.976275i \(-0.569476\pi\)
−0.216536 + 0.976275i \(0.569476\pi\)
\(930\) 0 0
\(931\) 6153.13 0.216606
\(932\) 0 0
\(933\) 56037.9i 1.96634i
\(934\) 0 0
\(935\) 5852.82 3856.66i 0.204714 0.134894i
\(936\) 0 0
\(937\) 13362.6i 0.465889i 0.972490 + 0.232945i \(0.0748361\pi\)
−0.972490 + 0.232945i \(0.925164\pi\)
\(938\) 0 0
\(939\) −47063.5 −1.63563
\(940\) 0 0
\(941\) −46330.1 −1.60501 −0.802506 0.596643i \(-0.796501\pi\)
−0.802506 + 0.596643i \(0.796501\pi\)
\(942\) 0 0
\(943\) 3977.66i 0.137360i
\(944\) 0 0
\(945\) 3202.12 + 4859.49i 0.110228 + 0.167280i
\(946\) 0 0
\(947\) 17387.6i 0.596643i −0.954465 0.298321i \(-0.903573\pi\)
0.954465 0.298321i \(-0.0964267\pi\)
\(948\) 0 0
\(949\) −34300.8 −1.17329
\(950\) 0 0
\(951\) −50831.1 −1.73324
\(952\) 0 0
\(953\) 42384.6i 1.44068i −0.693619 0.720342i \(-0.743985\pi\)
0.693619 0.720342i \(-0.256015\pi\)
\(954\) 0 0
\(955\) 932.779 + 1415.57i 0.0316063 + 0.0479653i
\(956\) 0 0
\(957\) 12518.6i 0.422851i
\(958\) 0 0
\(959\) 13250.7 0.446182
\(960\) 0 0
\(961\) 12412.3 0.416647
\(962\) 0 0
\(963\) 3520.92i 0.117820i
\(964\) 0 0
\(965\) −6448.10 + 4248.92i −0.215100 + 0.141738i
\(966\) 0 0
\(967\) 15771.6i 0.524489i −0.965001 0.262245i \(-0.915537\pi\)
0.965001 0.262245i \(-0.0844627\pi\)
\(968\) 0 0
\(969\) 75769.9 2.51195
\(970\) 0 0
\(971\) −36370.5 −1.20204 −0.601022 0.799232i \(-0.705240\pi\)
−0.601022 + 0.799232i \(0.705240\pi\)
\(972\) 0 0
\(973\) 12005.2i 0.395549i
\(974\) 0 0
\(975\) −15747.4 + 36679.8i −0.517253 + 1.20481i
\(976\) 0 0
\(977\) 35122.8i 1.15013i 0.818108 + 0.575065i \(0.195023\pi\)
−0.818108 + 0.575065i \(0.804977\pi\)
\(978\) 0 0
\(979\) 931.899 0.0304225
\(980\) 0 0
\(981\) −25404.5 −0.826814
\(982\) 0 0
\(983\) 12798.9i 0.415282i 0.978205 + 0.207641i \(0.0665785\pi\)
−0.978205 + 0.207641i \(0.933421\pi\)
\(984\) 0 0
\(985\) 7787.30 5131.37i 0.251902 0.165989i
\(986\) 0 0
\(987\) 19146.5i 0.617466i
\(988\) 0 0
\(989\) 1130.03 0.0363327
\(990\) 0 0
\(991\) 46594.9 1.49358 0.746789 0.665061i \(-0.231594\pi\)
0.746789 + 0.665061i \(0.231594\pi\)
\(992\) 0 0
\(993\) 11291.1i 0.360838i
\(994\) 0 0
\(995\) 2382.37 + 3615.45i 0.0759058 + 0.115194i
\(996\) 0 0
\(997\) 47534.1i 1.50995i −0.655753 0.754975i \(-0.727649\pi\)
0.655753 0.754975i \(-0.272351\pi\)
\(998\) 0 0
\(999\) −14175.2 −0.448932
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.4.g.f.449.9 10
4.3 odd 2 35.4.b.a.29.2 10
5.4 even 2 inner 560.4.g.f.449.2 10
12.11 even 2 315.4.d.c.64.9 10
20.3 even 4 175.4.a.j.1.1 5
20.7 even 4 175.4.a.i.1.5 5
20.19 odd 2 35.4.b.a.29.9 yes 10
28.3 even 6 245.4.j.f.79.9 20
28.11 odd 6 245.4.j.e.79.9 20
28.19 even 6 245.4.j.f.214.2 20
28.23 odd 6 245.4.j.e.214.2 20
28.27 even 2 245.4.b.d.99.2 10
60.23 odd 4 1575.4.a.bn.1.5 5
60.47 odd 4 1575.4.a.bq.1.1 5
60.59 even 2 315.4.d.c.64.2 10
140.19 even 6 245.4.j.f.214.9 20
140.27 odd 4 1225.4.a.be.1.5 5
140.39 odd 6 245.4.j.e.79.2 20
140.59 even 6 245.4.j.f.79.2 20
140.79 odd 6 245.4.j.e.214.9 20
140.83 odd 4 1225.4.a.bh.1.1 5
140.139 even 2 245.4.b.d.99.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.2 10 4.3 odd 2
35.4.b.a.29.9 yes 10 20.19 odd 2
175.4.a.i.1.5 5 20.7 even 4
175.4.a.j.1.1 5 20.3 even 4
245.4.b.d.99.2 10 28.27 even 2
245.4.b.d.99.9 10 140.139 even 2
245.4.j.e.79.2 20 140.39 odd 6
245.4.j.e.79.9 20 28.11 odd 6
245.4.j.e.214.2 20 28.23 odd 6
245.4.j.e.214.9 20 140.79 odd 6
245.4.j.f.79.2 20 140.59 even 6
245.4.j.f.79.9 20 28.3 even 6
245.4.j.f.214.2 20 28.19 even 6
245.4.j.f.214.9 20 140.19 even 6
315.4.d.c.64.2 10 60.59 even 2
315.4.d.c.64.9 10 12.11 even 2
560.4.g.f.449.2 10 5.4 even 2 inner
560.4.g.f.449.9 10 1.1 even 1 trivial
1225.4.a.be.1.5 5 140.27 odd 4
1225.4.a.bh.1.1 5 140.83 odd 4
1575.4.a.bn.1.5 5 60.23 odd 4
1575.4.a.bq.1.1 5 60.47 odd 4