Properties

Label 35.4.b.a.29.2
Level $35$
Weight $4$
Character 35.29
Analytic conductor $2.065$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,4,Mod(29,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.29");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 35.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.06506685020\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 29.2
Root \(-5.04851i\) of defining polynomial
Character \(\chi\) \(=\) 35.29
Dual form 35.4.b.a.29.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.04851i q^{2} -6.52749i q^{3} -8.39045 q^{4} +(6.15172 + 9.33576i) q^{5} -26.4266 q^{6} +7.00000i q^{7} +1.58074i q^{8} -15.6081 q^{9} +(37.7959 - 24.9053i) q^{10} +6.78210 q^{11} +54.7685i q^{12} -48.9221i q^{13} +28.3396 q^{14} +(60.9390 - 40.1552i) q^{15} -60.7239 q^{16} +92.4381i q^{17} +63.1894i q^{18} +125.574 q^{19} +(-51.6157 - 78.3312i) q^{20} +45.6924 q^{21} -27.4574i q^{22} +32.2681i q^{23} +10.3183 q^{24} +(-49.3128 + 114.862i) q^{25} -198.062 q^{26} -74.3607i q^{27} -58.7332i q^{28} -282.778 q^{29} +(-162.569 - 246.712i) q^{30} +205.434 q^{31} +258.488i q^{32} -44.2701i q^{33} +374.237 q^{34} +(-65.3503 + 43.0620i) q^{35} +130.959 q^{36} +190.627i q^{37} -508.388i q^{38} -319.338 q^{39} +(-14.7574 + 9.72429i) q^{40} +123.269 q^{41} -184.986i q^{42} -35.0202i q^{43} -56.9049 q^{44} +(-96.0164 - 145.713i) q^{45} +130.638 q^{46} +419.030i q^{47} +396.375i q^{48} -49.0000 q^{49} +(465.020 + 199.643i) q^{50} +603.388 q^{51} +410.478i q^{52} +0.365379i q^{53} -301.050 q^{54} +(41.7215 + 63.3160i) q^{55} -11.0652 q^{56} -819.683i q^{57} +1144.83i q^{58} -328.317 q^{59} +(-511.306 + 336.921i) q^{60} -515.707 q^{61} -831.704i q^{62} -109.256i q^{63} +560.699 q^{64} +(456.725 - 300.955i) q^{65} -179.228 q^{66} -828.957i q^{67} -775.597i q^{68} +210.630 q^{69} +(174.337 + 264.572i) q^{70} -496.231 q^{71} -24.6723i q^{72} -701.132i q^{73} +771.757 q^{74} +(749.759 + 321.888i) q^{75} -1053.62 q^{76} +47.4747i q^{77} +1292.84i q^{78} -199.388 q^{79} +(-373.556 - 566.904i) q^{80} -906.806 q^{81} -499.056i q^{82} +194.923i q^{83} -383.380 q^{84} +(-862.980 + 568.653i) q^{85} -141.780 q^{86} +1845.83i q^{87} +10.7208i q^{88} -137.406 q^{89} +(-589.921 + 388.723i) q^{90} +342.454 q^{91} -270.744i q^{92} -1340.97i q^{93} +1696.45 q^{94} +(772.496 + 1172.33i) q^{95} +1687.27 q^{96} +220.440i q^{97} +198.377i q^{98} -105.855 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 36 q^{4} + 6 q^{5} + 12 q^{6} - 46 q^{9} - 16 q^{10} + 84 q^{11} - 56 q^{14} + 8 q^{15} + 148 q^{16} + 72 q^{19} - 68 q^{20} + 140 q^{21} + 72 q^{24} - 362 q^{25} - 620 q^{26} + 88 q^{29} + 52 q^{30}+ \cdots - 5304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/35\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.04851i 1.43137i −0.698426 0.715683i \(-0.746116\pi\)
0.698426 0.715683i \(-0.253884\pi\)
\(3\) 6.52749i 1.25622i −0.778127 0.628108i \(-0.783830\pi\)
0.778127 0.628108i \(-0.216170\pi\)
\(4\) −8.39045 −1.04881
\(5\) 6.15172 + 9.33576i 0.550226 + 0.835016i
\(6\) −26.4266 −1.79810
\(7\) 7.00000i 0.377964i
\(8\) 1.58074i 0.0698597i
\(9\) −15.6081 −0.578076
\(10\) 37.7959 24.9053i 1.19521 0.787575i
\(11\) 6.78210 0.185898 0.0929491 0.995671i \(-0.470371\pi\)
0.0929491 + 0.995671i \(0.470371\pi\)
\(12\) 54.7685i 1.31753i
\(13\) 48.9221i 1.04373i −0.853027 0.521867i \(-0.825236\pi\)
0.853027 0.521867i \(-0.174764\pi\)
\(14\) 28.3396 0.541005
\(15\) 60.9390 40.1552i 1.04896 0.691202i
\(16\) −60.7239 −0.948812
\(17\) 92.4381i 1.31880i 0.751794 + 0.659398i \(0.229189\pi\)
−0.751794 + 0.659398i \(0.770811\pi\)
\(18\) 63.1894i 0.827438i
\(19\) 125.574 1.51625 0.758123 0.652112i \(-0.226117\pi\)
0.758123 + 0.652112i \(0.226117\pi\)
\(20\) −51.6157 78.3312i −0.577081 0.875770i
\(21\) 45.6924 0.474805
\(22\) 27.4574i 0.266088i
\(23\) 32.2681i 0.292538i 0.989245 + 0.146269i \(0.0467265\pi\)
−0.989245 + 0.146269i \(0.953274\pi\)
\(24\) 10.3183 0.0877588
\(25\) −49.3128 + 114.862i −0.394502 + 0.918895i
\(26\) −198.062 −1.49396
\(27\) 74.3607i 0.530027i
\(28\) 58.7332i 0.396412i
\(29\) −282.778 −1.81071 −0.905354 0.424659i \(-0.860394\pi\)
−0.905354 + 0.424659i \(0.860394\pi\)
\(30\) −162.569 246.712i −0.989363 1.50144i
\(31\) 205.434 1.19023 0.595115 0.803641i \(-0.297107\pi\)
0.595115 + 0.803641i \(0.297107\pi\)
\(32\) 258.488i 1.42796i
\(33\) 44.2701i 0.233528i
\(34\) 374.237 1.88768
\(35\) −65.3503 + 43.0620i −0.315606 + 0.207966i
\(36\) 130.959 0.606290
\(37\) 190.627i 0.846998i 0.905897 + 0.423499i \(0.139198\pi\)
−0.905897 + 0.423499i \(0.860802\pi\)
\(38\) 508.388i 2.17030i
\(39\) −319.338 −1.31115
\(40\) −14.7574 + 9.72429i −0.0583339 + 0.0384386i
\(41\) 123.269 0.469546 0.234773 0.972050i \(-0.424565\pi\)
0.234773 + 0.972050i \(0.424565\pi\)
\(42\) 184.986i 0.679619i
\(43\) 35.0202i 0.124198i −0.998070 0.0620991i \(-0.980221\pi\)
0.998070 0.0620991i \(-0.0197795\pi\)
\(44\) −56.9049 −0.194971
\(45\) −96.0164 145.713i −0.318073 0.482703i
\(46\) 130.638 0.418728
\(47\) 419.030i 1.30046i 0.759736 + 0.650231i \(0.225328\pi\)
−0.759736 + 0.650231i \(0.774672\pi\)
\(48\) 396.375i 1.19191i
\(49\) −49.0000 −0.142857
\(50\) 465.020 + 199.643i 1.31527 + 0.564677i
\(51\) 603.388 1.65669
\(52\) 410.478i 1.09467i
\(53\) 0.365379i 0.000946956i 1.00000 0.000473478i \(0.000150713\pi\)
−1.00000 0.000473478i \(0.999849\pi\)
\(54\) −301.050 −0.758662
\(55\) 41.7215 + 63.3160i 0.102286 + 0.155228i
\(56\) −11.0652 −0.0264045
\(57\) 819.683i 1.90473i
\(58\) 1144.83i 2.59178i
\(59\) −328.317 −0.724461 −0.362231 0.932088i \(-0.617985\pi\)
−0.362231 + 0.932088i \(0.617985\pi\)
\(60\) −511.306 + 336.921i −1.10016 + 0.724938i
\(61\) −515.707 −1.08245 −0.541226 0.840877i \(-0.682040\pi\)
−0.541226 + 0.840877i \(0.682040\pi\)
\(62\) 831.704i 1.70365i
\(63\) 109.256i 0.218492i
\(64\) 560.699 1.09511
\(65\) 456.725 300.955i 0.871534 0.574290i
\(66\) −179.228 −0.334264
\(67\) 828.957i 1.51154i −0.654837 0.755770i \(-0.727263\pi\)
0.654837 0.755770i \(-0.272737\pi\)
\(68\) 775.597i 1.38316i
\(69\) 210.630 0.367490
\(70\) 174.337 + 264.572i 0.297675 + 0.451748i
\(71\) −496.231 −0.829462 −0.414731 0.909944i \(-0.636124\pi\)
−0.414731 + 0.909944i \(0.636124\pi\)
\(72\) 24.6723i 0.0403842i
\(73\) 701.132i 1.12413i −0.827094 0.562064i \(-0.810008\pi\)
0.827094 0.562064i \(-0.189992\pi\)
\(74\) 771.757 1.21236
\(75\) 749.759 + 321.888i 1.15433 + 0.495580i
\(76\) −1053.62 −1.59025
\(77\) 47.4747i 0.0702629i
\(78\) 1292.84i 1.87674i
\(79\) −199.388 −0.283961 −0.141981 0.989869i \(-0.545347\pi\)
−0.141981 + 0.989869i \(0.545347\pi\)
\(80\) −373.556 566.904i −0.522061 0.792273i
\(81\) −906.806 −1.24390
\(82\) 499.056i 0.672092i
\(83\) 194.923i 0.257778i 0.991659 + 0.128889i \(0.0411411\pi\)
−0.991659 + 0.128889i \(0.958859\pi\)
\(84\) −383.380 −0.497978
\(85\) −862.980 + 568.653i −1.10122 + 0.725636i
\(86\) −141.780 −0.177773
\(87\) 1845.83i 2.27464i
\(88\) 10.7208i 0.0129868i
\(89\) −137.406 −0.163651 −0.0818257 0.996647i \(-0.526075\pi\)
−0.0818257 + 0.996647i \(0.526075\pi\)
\(90\) −589.921 + 388.723i −0.690924 + 0.455278i
\(91\) 342.454 0.394494
\(92\) 270.744i 0.306815i
\(93\) 1340.97i 1.49518i
\(94\) 1696.45 1.86144
\(95\) 772.496 + 1172.33i 0.834278 + 1.26609i
\(96\) 1687.27 1.79382
\(97\) 220.440i 0.230745i 0.993322 + 0.115372i \(0.0368062\pi\)
−0.993322 + 0.115372i \(0.963194\pi\)
\(98\) 198.377i 0.204481i
\(99\) −105.855 −0.107463
\(100\) 413.756 963.743i 0.413756 0.963743i
\(101\) −591.358 −0.582597 −0.291298 0.956632i \(-0.594087\pi\)
−0.291298 + 0.956632i \(0.594087\pi\)
\(102\) 2442.83i 2.37133i
\(103\) 476.494i 0.455829i 0.973681 + 0.227914i \(0.0731906\pi\)
−0.973681 + 0.227914i \(0.926809\pi\)
\(104\) 77.3332 0.0729149
\(105\) 281.087 + 426.573i 0.261250 + 0.396469i
\(106\) 1.47924 0.00135544
\(107\) 225.584i 0.203813i −0.994794 0.101907i \(-0.967506\pi\)
0.994794 0.101907i \(-0.0324943\pi\)
\(108\) 623.920i 0.555895i
\(109\) 1627.65 1.43028 0.715142 0.698979i \(-0.246362\pi\)
0.715142 + 0.698979i \(0.246362\pi\)
\(110\) 256.336 168.910i 0.222188 0.146409i
\(111\) 1244.32 1.06401
\(112\) 425.068i 0.358617i
\(113\) 357.040i 0.297235i −0.988895 0.148617i \(-0.952518\pi\)
0.988895 0.148617i \(-0.0474823\pi\)
\(114\) −3318.50 −2.72636
\(115\) −301.247 + 198.504i −0.244274 + 0.160962i
\(116\) 2372.63 1.89908
\(117\) 763.579i 0.603358i
\(118\) 1329.19i 1.03697i
\(119\) −647.067 −0.498458
\(120\) 63.4751 + 96.3290i 0.0482872 + 0.0732799i
\(121\) −1285.00 −0.965442
\(122\) 2087.85i 1.54938i
\(123\) 804.637i 0.589851i
\(124\) −1723.69 −1.24832
\(125\) −1375.68 + 246.225i −0.984357 + 0.176185i
\(126\) −442.326 −0.312742
\(127\) 1728.25i 1.20754i −0.797158 0.603771i \(-0.793664\pi\)
0.797158 0.603771i \(-0.206336\pi\)
\(128\) 202.094i 0.139553i
\(129\) −228.594 −0.156020
\(130\) −1218.42 1849.06i −0.822018 1.24748i
\(131\) 1461.19 0.974543 0.487272 0.873250i \(-0.337992\pi\)
0.487272 + 0.873250i \(0.337992\pi\)
\(132\) 371.446i 0.244926i
\(133\) 879.018i 0.573087i
\(134\) −3356.04 −2.16357
\(135\) 694.214 457.446i 0.442581 0.291635i
\(136\) −146.121 −0.0921306
\(137\) 1892.96i 1.18049i 0.807226 + 0.590243i \(0.200968\pi\)
−0.807226 + 0.590243i \(0.799032\pi\)
\(138\) 852.737i 0.526013i
\(139\) 1715.03 1.04652 0.523262 0.852172i \(-0.324715\pi\)
0.523262 + 0.852172i \(0.324715\pi\)
\(140\) 548.319 361.310i 0.331010 0.218116i
\(141\) 2735.21 1.63366
\(142\) 2009.00i 1.18726i
\(143\) 331.794i 0.194028i
\(144\) 947.783 0.548486
\(145\) −1739.57 2639.94i −0.996299 1.51197i
\(146\) −2838.54 −1.60904
\(147\) 319.847i 0.179459i
\(148\) 1599.45i 0.888337i
\(149\) 2798.32 1.53857 0.769286 0.638904i \(-0.220612\pi\)
0.769286 + 0.638904i \(0.220612\pi\)
\(150\) 1303.17 3035.41i 0.709355 1.65227i
\(151\) −2867.49 −1.54538 −0.772692 0.634781i \(-0.781090\pi\)
−0.772692 + 0.634781i \(0.781090\pi\)
\(152\) 198.500i 0.105924i
\(153\) 1442.78i 0.762365i
\(154\) 192.202 0.100572
\(155\) 1263.77 + 1917.89i 0.654896 + 0.993860i
\(156\) 2679.39 1.37515
\(157\) 783.696i 0.398381i −0.979961 0.199190i \(-0.936169\pi\)
0.979961 0.199190i \(-0.0638312\pi\)
\(158\) 807.226i 0.406452i
\(159\) 2.38501 0.00118958
\(160\) −2413.18 + 1590.14i −1.19237 + 0.785699i
\(161\) −225.877 −0.110569
\(162\) 3671.22i 1.78048i
\(163\) 2416.93i 1.16140i −0.814116 0.580702i \(-0.802778\pi\)
0.814116 0.580702i \(-0.197222\pi\)
\(164\) −1034.28 −0.492463
\(165\) 413.295 272.337i 0.195000 0.128493i
\(166\) 789.149 0.368975
\(167\) 704.424i 0.326407i −0.986592 0.163204i \(-0.947817\pi\)
0.986592 0.163204i \(-0.0521827\pi\)
\(168\) 72.2280i 0.0331697i
\(169\) −196.369 −0.0893803
\(170\) 2302.20 + 3493.78i 1.03865 + 1.57624i
\(171\) −1959.97 −0.876506
\(172\) 293.835i 0.130260i
\(173\) 1398.49i 0.614598i 0.951613 + 0.307299i \(0.0994252\pi\)
−0.951613 + 0.307299i \(0.900575\pi\)
\(174\) 7472.85 3.25584
\(175\) −804.033 345.189i −0.347310 0.149108i
\(176\) −411.836 −0.176382
\(177\) 2143.08i 0.910079i
\(178\) 556.289i 0.234245i
\(179\) −368.688 −0.153950 −0.0769749 0.997033i \(-0.524526\pi\)
−0.0769749 + 0.997033i \(0.524526\pi\)
\(180\) 805.621 + 1222.60i 0.333597 + 0.506262i
\(181\) −315.621 −0.129613 −0.0648064 0.997898i \(-0.520643\pi\)
−0.0648064 + 0.997898i \(0.520643\pi\)
\(182\) 1386.43i 0.564665i
\(183\) 3366.27i 1.35979i
\(184\) −51.0076 −0.0204366
\(185\) −1779.65 + 1172.69i −0.707257 + 0.466041i
\(186\) −5428.94 −2.14016
\(187\) 626.924i 0.245162i
\(188\) 3515.85i 1.36393i
\(189\) 520.525 0.200331
\(190\) 4746.19 3127.46i 1.81224 1.19416i
\(191\) −151.629 −0.0574424 −0.0287212 0.999587i \(-0.509143\pi\)
−0.0287212 + 0.999587i \(0.509143\pi\)
\(192\) 3659.95i 1.37570i
\(193\) 690.689i 0.257600i 0.991671 + 0.128800i \(0.0411126\pi\)
−0.991671 + 0.128800i \(0.958887\pi\)
\(194\) 892.453 0.330280
\(195\) −1964.48 2981.26i −0.721431 1.09483i
\(196\) 411.132 0.149829
\(197\) 834.136i 0.301674i −0.988559 0.150837i \(-0.951803\pi\)
0.988559 0.150837i \(-0.0481968\pi\)
\(198\) 428.557i 0.153819i
\(199\) −387.269 −0.137954 −0.0689769 0.997618i \(-0.521973\pi\)
−0.0689769 + 0.997618i \(0.521973\pi\)
\(200\) −181.567 77.9509i −0.0641937 0.0275598i
\(201\) −5411.00 −1.89882
\(202\) 2394.12i 0.833909i
\(203\) 1979.44i 0.684383i
\(204\) −5062.70 −1.73755
\(205\) 758.316 + 1150.81i 0.258357 + 0.392078i
\(206\) 1929.09 0.652457
\(207\) 503.643i 0.169109i
\(208\) 2970.74i 0.990307i
\(209\) 851.656 0.281867
\(210\) 1726.99 1137.98i 0.567492 0.373944i
\(211\) 3070.54 1.00182 0.500912 0.865498i \(-0.332998\pi\)
0.500912 + 0.865498i \(0.332998\pi\)
\(212\) 3.06570i 0.000993174i
\(213\) 3239.14i 1.04198i
\(214\) −913.278 −0.291731
\(215\) 326.940 215.434i 0.103707 0.0683371i
\(216\) 117.545 0.0370275
\(217\) 1438.04i 0.449865i
\(218\) 6589.58i 2.04726i
\(219\) −4576.63 −1.41215
\(220\) −350.063 531.250i −0.107278 0.162804i
\(221\) 4522.26 1.37647
\(222\) 5037.63i 1.52299i
\(223\) 1004.46i 0.301631i −0.988562 0.150816i \(-0.951810\pi\)
0.988562 0.150816i \(-0.0481900\pi\)
\(224\) −1809.41 −0.539716
\(225\) 769.677 1792.77i 0.228052 0.531192i
\(226\) −1445.48 −0.425451
\(227\) 5374.22i 1.57136i −0.618631 0.785681i \(-0.712313\pi\)
0.618631 0.785681i \(-0.287687\pi\)
\(228\) 6877.51i 1.99769i
\(229\) −3650.97 −1.05355 −0.526775 0.850005i \(-0.676599\pi\)
−0.526775 + 0.850005i \(0.676599\pi\)
\(230\) 803.647 + 1219.60i 0.230395 + 0.349645i
\(231\) 309.890 0.0882653
\(232\) 446.999i 0.126495i
\(233\) 4582.88i 1.28856i −0.764789 0.644280i \(-0.777157\pi\)
0.764789 0.644280i \(-0.222843\pi\)
\(234\) 3091.36 0.863625
\(235\) −3911.96 + 2577.75i −1.08591 + 0.715549i
\(236\) 2754.73 0.759820
\(237\) 1301.50i 0.356716i
\(238\) 2619.66i 0.713476i
\(239\) −696.769 −0.188578 −0.0942892 0.995545i \(-0.530058\pi\)
−0.0942892 + 0.995545i \(0.530058\pi\)
\(240\) −3700.46 + 2438.38i −0.995265 + 0.655821i
\(241\) 5082.82 1.35856 0.679281 0.733878i \(-0.262292\pi\)
0.679281 + 0.733878i \(0.262292\pi\)
\(242\) 5202.35i 1.38190i
\(243\) 3911.42i 1.03258i
\(244\) 4327.02 1.13528
\(245\) −301.434 457.452i −0.0786037 0.119288i
\(246\) −3257.58 −0.844292
\(247\) 6143.34i 1.58256i
\(248\) 324.739i 0.0831490i
\(249\) 1272.36 0.323825
\(250\) 996.847 + 5569.46i 0.252185 + 1.40897i
\(251\) −1207.32 −0.303606 −0.151803 0.988411i \(-0.548508\pi\)
−0.151803 + 0.988411i \(0.548508\pi\)
\(252\) 916.711i 0.229156i
\(253\) 218.846i 0.0543822i
\(254\) −6996.86 −1.72843
\(255\) 3711.87 + 5633.09i 0.911555 + 1.38336i
\(256\) 3667.41 0.895363
\(257\) 510.936i 0.124013i 0.998076 + 0.0620064i \(0.0197499\pi\)
−0.998076 + 0.0620064i \(0.980250\pi\)
\(258\) 925.464i 0.223321i
\(259\) −1334.39 −0.320135
\(260\) −3832.13 + 2525.15i −0.914070 + 0.602319i
\(261\) 4413.61 1.04673
\(262\) 5915.67i 1.39493i
\(263\) 2269.04i 0.531997i −0.963974 0.265998i \(-0.914298\pi\)
0.963974 0.265998i \(-0.0857015\pi\)
\(264\) 69.9796 0.0163142
\(265\) −3.41109 + 2.24771i −0.000790723 + 0.000521040i
\(266\) 3558.72 0.820297
\(267\) 896.913i 0.205581i
\(268\) 6955.32i 1.58531i
\(269\) 7836.10 1.77612 0.888058 0.459731i \(-0.152054\pi\)
0.888058 + 0.459731i \(0.152054\pi\)
\(270\) −1851.98 2810.53i −0.417436 0.633495i
\(271\) 1466.28 0.328673 0.164336 0.986404i \(-0.447452\pi\)
0.164336 + 0.986404i \(0.447452\pi\)
\(272\) 5613.21i 1.25129i
\(273\) 2235.37i 0.495570i
\(274\) 7663.67 1.68971
\(275\) −334.444 + 779.005i −0.0733372 + 0.170821i
\(276\) −1767.28 −0.385426
\(277\) 4154.17i 0.901083i 0.892755 + 0.450542i \(0.148769\pi\)
−0.892755 + 0.450542i \(0.851231\pi\)
\(278\) 6943.32i 1.49796i
\(279\) −3206.43 −0.688044
\(280\) −68.0700 103.302i −0.0145284 0.0220481i
\(281\) −3490.40 −0.740996 −0.370498 0.928833i \(-0.620813\pi\)
−0.370498 + 0.928833i \(0.620813\pi\)
\(282\) 11073.5i 2.33837i
\(283\) 3125.29i 0.656464i 0.944597 + 0.328232i \(0.106453\pi\)
−0.944597 + 0.328232i \(0.893547\pi\)
\(284\) 4163.60 0.869945
\(285\) 7652.36 5042.46i 1.59048 1.04803i
\(286\) −1343.27 −0.277725
\(287\) 862.883i 0.177472i
\(288\) 4034.49i 0.825467i
\(289\) −3631.80 −0.739223
\(290\) −10687.8 + 7042.66i −2.16418 + 1.42607i
\(291\) 1438.92 0.289865
\(292\) 5882.81i 1.17899i
\(293\) 1447.69i 0.288652i 0.989530 + 0.144326i \(0.0461014\pi\)
−0.989530 + 0.144326i \(0.953899\pi\)
\(294\) 1294.90 0.256872
\(295\) −2019.71 3065.09i −0.398618 0.604936i
\(296\) −301.333 −0.0591710
\(297\) 504.322i 0.0985310i
\(298\) 11329.0i 2.20226i
\(299\) 1578.62 0.305332
\(300\) −6290.82 2700.79i −1.21067 0.519767i
\(301\) 245.141 0.0469425
\(302\) 11609.1i 2.21201i
\(303\) 3860.08i 0.731867i
\(304\) −7625.35 −1.43863
\(305\) −3172.48 4814.52i −0.595593 0.903864i
\(306\) −5841.11 −1.09122
\(307\) 1591.43i 0.295856i 0.988998 + 0.147928i \(0.0472603\pi\)
−0.988998 + 0.147928i \(0.952740\pi\)
\(308\) 398.334i 0.0736922i
\(309\) 3110.31 0.572619
\(310\) 7764.59 5116.41i 1.42258 0.937395i
\(311\) −8584.92 −1.56529 −0.782647 0.622466i \(-0.786131\pi\)
−0.782647 + 0.622466i \(0.786131\pi\)
\(312\) 504.792i 0.0915968i
\(313\) 7210.05i 1.30203i 0.759064 + 0.651016i \(0.225657\pi\)
−0.759064 + 0.651016i \(0.774343\pi\)
\(314\) −3172.80 −0.570228
\(315\) 1019.99 672.115i 0.182445 0.120220i
\(316\) 1672.96 0.297820
\(317\) 7787.24i 1.37973i 0.723938 + 0.689865i \(0.242330\pi\)
−0.723938 + 0.689865i \(0.757670\pi\)
\(318\) 9.65573i 0.00170272i
\(319\) −1917.83 −0.336607
\(320\) 3449.26 + 5234.55i 0.602561 + 0.914438i
\(321\) −1472.49 −0.256033
\(322\) 914.465i 0.158264i
\(323\) 11607.8i 1.99962i
\(324\) 7608.51 1.30461
\(325\) 5619.28 + 2412.48i 0.959082 + 0.411755i
\(326\) −9784.98 −1.66239
\(327\) 10624.5i 1.79674i
\(328\) 194.857i 0.0328023i
\(329\) −2933.21 −0.491529
\(330\) −1102.56 1673.23i −0.183921 0.279116i
\(331\) −1729.78 −0.287243 −0.143621 0.989633i \(-0.545875\pi\)
−0.143621 + 0.989633i \(0.545875\pi\)
\(332\) 1635.49i 0.270359i
\(333\) 2975.32i 0.489630i
\(334\) −2851.87 −0.467208
\(335\) 7738.94 5099.51i 1.26216 0.831689i
\(336\) −2774.62 −0.450500
\(337\) 7815.06i 1.26325i −0.775276 0.631623i \(-0.782389\pi\)
0.775276 0.631623i \(-0.217611\pi\)
\(338\) 795.000i 0.127936i
\(339\) −2330.57 −0.373391
\(340\) 7240.79 4771.26i 1.15496 0.761052i
\(341\) 1393.28 0.221262
\(342\) 7934.95i 1.25460i
\(343\) 343.000i 0.0539949i
\(344\) 55.3579 0.00867645
\(345\) 1295.73 + 1966.39i 0.202203 + 0.306860i
\(346\) 5661.82 0.879714
\(347\) 2359.77i 0.365070i −0.983199 0.182535i \(-0.941570\pi\)
0.983199 0.182535i \(-0.0584303\pi\)
\(348\) 15487.3i 2.38565i
\(349\) −3212.73 −0.492761 −0.246380 0.969173i \(-0.579241\pi\)
−0.246380 + 0.969173i \(0.579241\pi\)
\(350\) −1397.50 + 3255.14i −0.213428 + 0.497127i
\(351\) −3637.88 −0.553207
\(352\) 1753.09i 0.265454i
\(353\) 5582.04i 0.841649i −0.907142 0.420824i \(-0.861741\pi\)
0.907142 0.420824i \(-0.138259\pi\)
\(354\) 8676.30 1.30266
\(355\) −3052.67 4632.69i −0.456392 0.692614i
\(356\) 1152.90 0.171639
\(357\) 4223.72i 0.626171i
\(358\) 1492.64i 0.220358i
\(359\) 10630.6 1.56285 0.781425 0.623999i \(-0.214493\pi\)
0.781425 + 0.623999i \(0.214493\pi\)
\(360\) 230.335 151.777i 0.0337215 0.0222205i
\(361\) 8909.84 1.29900
\(362\) 1277.80i 0.185523i
\(363\) 8387.84i 1.21280i
\(364\) −2873.35 −0.413748
\(365\) 6545.60 4313.17i 0.938664 0.618524i
\(366\) 13628.4 1.94636
\(367\) 4514.69i 0.642139i −0.947056 0.321070i \(-0.895958\pi\)
0.947056 0.321070i \(-0.104042\pi\)
\(368\) 1959.45i 0.277563i
\(369\) −1923.99 −0.271434
\(370\) 4747.63 + 7204.94i 0.667074 + 1.01234i
\(371\) −2.55765 −0.000357916
\(372\) 11251.3i 1.56816i
\(373\) 11445.8i 1.58885i 0.607361 + 0.794426i \(0.292228\pi\)
−0.607361 + 0.794426i \(0.707772\pi\)
\(374\) 2538.11 0.350916
\(375\) 1607.23 + 8979.74i 0.221326 + 1.23656i
\(376\) −662.378 −0.0908499
\(377\) 13834.1i 1.88990i
\(378\) 2107.35i 0.286747i
\(379\) −8146.48 −1.10411 −0.552054 0.833809i \(-0.686156\pi\)
−0.552054 + 0.833809i \(0.686156\pi\)
\(380\) −6481.59 9836.37i −0.874996 1.32788i
\(381\) −11281.2 −1.51693
\(382\) 613.872i 0.0822210i
\(383\) 5261.56i 0.701967i −0.936382 0.350983i \(-0.885847\pi\)
0.936382 0.350983i \(-0.114153\pi\)
\(384\) −1319.17 −0.175308
\(385\) −443.212 + 292.051i −0.0586706 + 0.0386605i
\(386\) 2796.26 0.368720
\(387\) 546.597i 0.0717961i
\(388\) 1849.59i 0.242007i
\(389\) −13207.1 −1.72141 −0.860706 0.509103i \(-0.829977\pi\)
−0.860706 + 0.509103i \(0.829977\pi\)
\(390\) −12069.7 + 7953.21i −1.56711 + 1.03263i
\(391\) −2982.80 −0.385798
\(392\) 77.4564i 0.00997995i
\(393\) 9537.93i 1.22424i
\(394\) −3377.01 −0.431805
\(395\) −1226.58 1861.44i −0.156243 0.237112i
\(396\) 888.175 0.112708
\(397\) 5663.15i 0.715933i 0.933734 + 0.357967i \(0.116530\pi\)
−0.933734 + 0.357967i \(0.883470\pi\)
\(398\) 1567.86i 0.197462i
\(399\) 5737.78 0.719920
\(400\) 2994.47 6974.87i 0.374308 0.871858i
\(401\) −11989.0 −1.49302 −0.746512 0.665372i \(-0.768273\pi\)
−0.746512 + 0.665372i \(0.768273\pi\)
\(402\) 21906.5i 2.71790i
\(403\) 10050.3i 1.24228i
\(404\) 4961.76 0.611031
\(405\) −5578.41 8465.72i −0.684429 1.03868i
\(406\) −8013.80 −0.979602
\(407\) 1292.85i 0.157455i
\(408\) 953.802i 0.115736i
\(409\) −5249.67 −0.634669 −0.317334 0.948314i \(-0.602788\pi\)
−0.317334 + 0.948314i \(0.602788\pi\)
\(410\) 4659.07 3070.05i 0.561207 0.369803i
\(411\) 12356.3 1.48294
\(412\) 3998.00i 0.478076i
\(413\) 2298.22i 0.273821i
\(414\) −2039.00 −0.242057
\(415\) −1819.76 + 1199.11i −0.215249 + 0.141836i
\(416\) 12645.7 1.49041
\(417\) 11194.8i 1.31466i
\(418\) 3447.94i 0.403455i
\(419\) 14948.9 1.74297 0.871484 0.490424i \(-0.163158\pi\)
0.871484 + 0.490424i \(0.163158\pi\)
\(420\) −2358.44 3579.14i −0.274001 0.415820i
\(421\) 5840.31 0.676103 0.338051 0.941128i \(-0.390232\pi\)
0.338051 + 0.941128i \(0.390232\pi\)
\(422\) 12431.1i 1.43398i
\(423\) 6540.24i 0.751767i
\(424\) −0.577571 −6.61540e−5
\(425\) −10617.6 4558.38i −1.21184 0.520268i
\(426\) 13113.7 1.49146
\(427\) 3609.95i 0.409128i
\(428\) 1892.75i 0.213760i
\(429\) −2165.78 −0.243741
\(430\) −872.188 1323.62i −0.0978154 0.148443i
\(431\) 7439.21 0.831402 0.415701 0.909501i \(-0.363536\pi\)
0.415701 + 0.909501i \(0.363536\pi\)
\(432\) 4515.48i 0.502896i
\(433\) 877.657i 0.0974077i −0.998813 0.0487038i \(-0.984491\pi\)
0.998813 0.0487038i \(-0.0155090\pi\)
\(434\) 5821.93 0.643920
\(435\) −17232.2 + 11355.0i −1.89936 + 1.25157i
\(436\) −13656.8 −1.50009
\(437\) 4052.04i 0.443559i
\(438\) 18528.5i 2.02130i
\(439\) 10855.8 1.18023 0.590114 0.807320i \(-0.299083\pi\)
0.590114 + 0.807320i \(0.299083\pi\)
\(440\) −100.086 + 65.9511i −0.0108442 + 0.00714567i
\(441\) 764.795 0.0825823
\(442\) 18308.4i 1.97023i
\(443\) 10797.0i 1.15798i −0.815336 0.578988i \(-0.803448\pi\)
0.815336 0.578988i \(-0.196552\pi\)
\(444\) −10440.4 −1.11594
\(445\) −845.281 1282.79i −0.0900453 0.136651i
\(446\) −4066.58 −0.431745
\(447\) 18266.0i 1.93278i
\(448\) 3924.89i 0.413914i
\(449\) −8621.70 −0.906198 −0.453099 0.891460i \(-0.649682\pi\)
−0.453099 + 0.891460i \(0.649682\pi\)
\(450\) −7258.06 3116.05i −0.760329 0.326426i
\(451\) 836.023 0.0872878
\(452\) 2995.73i 0.311742i
\(453\) 18717.5i 1.94134i
\(454\) −21757.6 −2.24919
\(455\) 2106.68 + 3197.07i 0.217061 + 0.329409i
\(456\) 1295.71 0.133064
\(457\) 3785.90i 0.387520i 0.981049 + 0.193760i \(0.0620684\pi\)
−0.981049 + 0.193760i \(0.937932\pi\)
\(458\) 14781.0i 1.50801i
\(459\) 6873.76 0.698997
\(460\) 2527.60 1665.54i 0.256196 0.168818i
\(461\) 5760.18 0.581948 0.290974 0.956731i \(-0.406021\pi\)
0.290974 + 0.956731i \(0.406021\pi\)
\(462\) 1254.59i 0.126340i
\(463\) 10760.9i 1.08014i 0.841621 + 0.540068i \(0.181602\pi\)
−0.841621 + 0.540068i \(0.818398\pi\)
\(464\) 17171.4 1.71802
\(465\) 12519.0 8249.27i 1.24850 0.822690i
\(466\) −18553.9 −1.84440
\(467\) 2153.58i 0.213395i −0.994292 0.106698i \(-0.965972\pi\)
0.994292 0.106698i \(-0.0340277\pi\)
\(468\) 6406.77i 0.632806i
\(469\) 5802.70 0.571309
\(470\) 10436.1 + 15837.6i 1.02421 + 1.55433i
\(471\) −5115.57 −0.500452
\(472\) 518.985i 0.0506106i
\(473\) 237.510i 0.0230882i
\(474\) 5269.15 0.510591
\(475\) −6192.40 + 14423.7i −0.598162 + 1.39327i
\(476\) 5429.18 0.522786
\(477\) 5.70286i 0.000547413i
\(478\) 2820.88i 0.269924i
\(479\) 6890.26 0.657253 0.328626 0.944460i \(-0.393414\pi\)
0.328626 + 0.944460i \(0.393414\pi\)
\(480\) 10379.6 + 15752.0i 0.987006 + 1.49787i
\(481\) 9325.88 0.884041
\(482\) 20577.9i 1.94460i
\(483\) 1474.41i 0.138898i
\(484\) 10781.8 1.01256
\(485\) −2057.97 + 1356.08i −0.192676 + 0.126962i
\(486\) 15835.4 1.47801
\(487\) 19006.4i 1.76850i 0.467011 + 0.884251i \(0.345331\pi\)
−0.467011 + 0.884251i \(0.654669\pi\)
\(488\) 815.201i 0.0756197i
\(489\) −15776.5 −1.45897
\(490\) −1852.00 + 1220.36i −0.170745 + 0.112511i
\(491\) 4530.05 0.416371 0.208186 0.978089i \(-0.433244\pi\)
0.208186 + 0.978089i \(0.433244\pi\)
\(492\) 6751.27i 0.618639i
\(493\) 26139.4i 2.38795i
\(494\) −24871.4 −2.26522
\(495\) −651.193 988.241i −0.0591292 0.0897336i
\(496\) −12474.8 −1.12930
\(497\) 3473.62i 0.313507i
\(498\) 5151.16i 0.463512i
\(499\) −3620.18 −0.324773 −0.162386 0.986727i \(-0.551919\pi\)
−0.162386 + 0.986727i \(0.551919\pi\)
\(500\) 11542.6 2065.94i 1.03240 0.184784i
\(501\) −4598.12 −0.410038
\(502\) 4887.84i 0.434571i
\(503\) 11761.8i 1.04261i 0.853372 + 0.521303i \(0.174554\pi\)
−0.853372 + 0.521303i \(0.825446\pi\)
\(504\) 172.706 0.0152638
\(505\) −3637.86 5520.77i −0.320560 0.486478i
\(506\) 885.999 0.0778408
\(507\) 1281.79i 0.112281i
\(508\) 14500.8i 1.26648i
\(509\) 5254.47 0.457564 0.228782 0.973478i \(-0.426526\pi\)
0.228782 + 0.973478i \(0.426526\pi\)
\(510\) 22805.6 15027.6i 1.98010 1.30477i
\(511\) 4907.92 0.424880
\(512\) 16464.3i 1.42114i
\(513\) 9337.77i 0.803651i
\(514\) 2068.53 0.177508
\(515\) −4448.43 + 2931.26i −0.380624 + 0.250809i
\(516\) 1918.00 0.163634
\(517\) 2841.90i 0.241754i
\(518\) 5402.30i 0.458230i
\(519\) 9128.64 0.772067
\(520\) 475.732 + 721.964i 0.0401197 + 0.0608851i
\(521\) −15511.8 −1.30439 −0.652193 0.758053i \(-0.726151\pi\)
−0.652193 + 0.758053i \(0.726151\pi\)
\(522\) 17868.6i 1.49825i
\(523\) 3814.73i 0.318942i 0.987203 + 0.159471i \(0.0509788\pi\)
−0.987203 + 0.159471i \(0.949021\pi\)
\(524\) −12260.1 −1.02211
\(525\) −2253.22 + 5248.31i −0.187311 + 0.436296i
\(526\) −9186.24 −0.761481
\(527\) 18990.0i 1.56967i
\(528\) 2688.25i 0.221574i
\(529\) 11125.8 0.914422
\(530\) 9.09988 + 13.8098i 0.000745799 + 0.00113181i
\(531\) 5124.39 0.418794
\(532\) 7375.36i 0.601057i
\(533\) 6030.58i 0.490081i
\(534\) 3631.17 0.294262
\(535\) 2106.00 1387.73i 0.170187 0.112143i
\(536\) 1310.37 0.105596
\(537\) 2406.60i 0.193394i
\(538\) 31724.5i 2.54227i
\(539\) −332.323 −0.0265569
\(540\) −5824.76 + 3838.18i −0.464181 + 0.305868i
\(541\) −4573.77 −0.363478 −0.181739 0.983347i \(-0.558173\pi\)
−0.181739 + 0.983347i \(0.558173\pi\)
\(542\) 5936.26i 0.470451i
\(543\) 2060.21i 0.162822i
\(544\) −23894.1 −1.88318
\(545\) 10012.9 + 15195.4i 0.786980 + 1.19431i
\(546\) −9049.91 −0.709341
\(547\) 13327.6i 1.04177i −0.853627 0.520885i \(-0.825602\pi\)
0.853627 0.520885i \(-0.174398\pi\)
\(548\) 15882.8i 1.23810i
\(549\) 8049.19 0.625740
\(550\) 3153.81 + 1354.00i 0.244507 + 0.104972i
\(551\) −35509.5 −2.74548
\(552\) 332.952i 0.0256728i
\(553\) 1395.72i 0.107327i
\(554\) 16818.2 1.28978
\(555\) 7654.68 + 11616.6i 0.585447 + 0.888467i
\(556\) −14389.9 −1.09760
\(557\) 12096.1i 0.920155i −0.887879 0.460077i \(-0.847822\pi\)
0.887879 0.460077i \(-0.152178\pi\)
\(558\) 12981.3i 0.984842i
\(559\) −1713.26 −0.129630
\(560\) 3968.33 2614.90i 0.299451 0.197321i
\(561\) 4092.24 0.307976
\(562\) 14130.9i 1.06064i
\(563\) 22943.6i 1.71751i 0.512387 + 0.858755i \(0.328761\pi\)
−0.512387 + 0.858755i \(0.671239\pi\)
\(564\) −22949.6 −1.71339
\(565\) 3333.24 2196.41i 0.248196 0.163546i
\(566\) 12652.8 0.939639
\(567\) 6347.64i 0.470152i
\(568\) 784.414i 0.0579459i
\(569\) −485.307 −0.0357560 −0.0178780 0.999840i \(-0.505691\pi\)
−0.0178780 + 0.999840i \(0.505691\pi\)
\(570\) −20414.4 30980.7i −1.50012 2.27656i
\(571\) 12271.8 0.899401 0.449701 0.893179i \(-0.351531\pi\)
0.449701 + 0.893179i \(0.351531\pi\)
\(572\) 2783.90i 0.203498i
\(573\) 989.756i 0.0721600i
\(574\) 3493.39 0.254027
\(575\) −3706.38 1591.23i −0.268811 0.115407i
\(576\) −8751.42 −0.633060
\(577\) 14122.8i 1.01896i 0.860484 + 0.509478i \(0.170162\pi\)
−0.860484 + 0.509478i \(0.829838\pi\)
\(578\) 14703.4i 1.05810i
\(579\) 4508.46 0.323601
\(580\) 14595.8 + 22150.3i 1.04492 + 1.58576i
\(581\) −1364.46 −0.0974310
\(582\) 5825.47i 0.414903i
\(583\) 2.47804i 0.000176037i
\(584\) 1108.31 0.0785312
\(585\) −7128.59 + 4697.32i −0.503813 + 0.331983i
\(586\) 5861.00 0.413167
\(587\) 11005.3i 0.773826i −0.922116 0.386913i \(-0.873541\pi\)
0.922116 0.386913i \(-0.126459\pi\)
\(588\) 2683.66i 0.188218i
\(589\) 25797.2 1.80468
\(590\) −12409.0 + 8176.83i −0.865885 + 0.570567i
\(591\) −5444.81 −0.378967
\(592\) 11575.6i 0.803642i
\(593\) 11233.1i 0.777889i −0.921261 0.388944i \(-0.872840\pi\)
0.921261 0.388944i \(-0.127160\pi\)
\(594\) −2041.75 −0.141034
\(595\) −3980.57 6040.86i −0.274265 0.416220i
\(596\) −23479.2 −1.61366
\(597\) 2527.89i 0.173300i
\(598\) 6391.08i 0.437041i
\(599\) −14855.4 −1.01331 −0.506656 0.862149i \(-0.669118\pi\)
−0.506656 + 0.862149i \(0.669118\pi\)
\(600\) −508.823 + 1185.18i −0.0346210 + 0.0806411i
\(601\) 25358.8 1.72115 0.860573 0.509327i \(-0.170106\pi\)
0.860573 + 0.509327i \(0.170106\pi\)
\(602\) 992.457i 0.0671919i
\(603\) 12938.4i 0.873786i
\(604\) 24059.5 1.62081
\(605\) −7904.97 11996.5i −0.531211 0.806159i
\(606\) 15627.6 1.04757
\(607\) 14393.9i 0.962487i −0.876587 0.481243i \(-0.840185\pi\)
0.876587 0.481243i \(-0.159815\pi\)
\(608\) 32459.3i 2.16513i
\(609\) −12920.8 −0.859732
\(610\) −19491.6 + 12843.8i −1.29376 + 0.852511i
\(611\) 20499.8 1.35734
\(612\) 12105.6i 0.799573i
\(613\) 4769.94i 0.314284i 0.987576 + 0.157142i \(0.0502280\pi\)
−0.987576 + 0.157142i \(0.949772\pi\)
\(614\) 6442.92 0.423477
\(615\) 7511.90 4949.90i 0.492535 0.324551i
\(616\) −75.0453 −0.00490854
\(617\) 7769.86i 0.506974i 0.967339 + 0.253487i \(0.0815775\pi\)
−0.967339 + 0.253487i \(0.918423\pi\)
\(618\) 12592.1i 0.819627i
\(619\) 5680.75 0.368867 0.184433 0.982845i \(-0.440955\pi\)
0.184433 + 0.982845i \(0.440955\pi\)
\(620\) −10603.6 16091.9i −0.686859 1.04237i
\(621\) 2399.48 0.155053
\(622\) 34756.2i 2.24051i
\(623\) 961.840i 0.0618544i
\(624\) 19391.5 1.24404
\(625\) −10761.5 11328.3i −0.688736 0.725012i
\(626\) 29190.0 1.86368
\(627\) 5559.17i 0.354086i
\(628\) 6575.56i 0.417824i
\(629\) −17621.2 −1.11702
\(630\) −2721.06 4129.45i −0.172079 0.261145i
\(631\) −10395.8 −0.655864 −0.327932 0.944701i \(-0.606352\pi\)
−0.327932 + 0.944701i \(0.606352\pi\)
\(632\) 315.182i 0.0198374i
\(633\) 20042.9i 1.25851i
\(634\) 31526.7 1.97490
\(635\) 16134.6 10631.7i 1.00832 0.664421i
\(636\) −20.0113 −0.00124764
\(637\) 2397.18i 0.149105i
\(638\) 7764.34i 0.481808i
\(639\) 7745.21 0.479492
\(640\) 1886.70 1243.23i 0.116529 0.0767857i
\(641\) −8194.28 −0.504921 −0.252461 0.967607i \(-0.581240\pi\)
−0.252461 + 0.967607i \(0.581240\pi\)
\(642\) 5961.41i 0.366477i
\(643\) 32118.2i 1.96985i −0.172970 0.984927i \(-0.555336\pi\)
0.172970 0.984927i \(-0.444664\pi\)
\(644\) 1895.21 0.115965
\(645\) −1406.24 2134.09i −0.0858461 0.130279i
\(646\) 46994.4 2.86218
\(647\) 22299.0i 1.35496i 0.735539 + 0.677482i \(0.236929\pi\)
−0.735539 + 0.677482i \(0.763071\pi\)
\(648\) 1433.43i 0.0868987i
\(649\) −2226.68 −0.134676
\(650\) 9766.97 22749.7i 0.589372 1.37280i
\(651\) 9386.79 0.565127
\(652\) 20279.1i 1.21809i
\(653\) 920.410i 0.0551584i 0.999620 + 0.0275792i \(0.00877984\pi\)
−0.999620 + 0.0275792i \(0.991220\pi\)
\(654\) −43013.4 −2.57180
\(655\) 8988.86 + 13641.4i 0.536219 + 0.813759i
\(656\) −7485.38 −0.445511
\(657\) 10943.3i 0.649832i
\(658\) 11875.1i 0.703557i
\(659\) −17824.3 −1.05362 −0.526812 0.849982i \(-0.676613\pi\)
−0.526812 + 0.849982i \(0.676613\pi\)
\(660\) −3467.73 + 2285.03i −0.204517 + 0.134765i
\(661\) 11343.8 0.667510 0.333755 0.942660i \(-0.391684\pi\)
0.333755 + 0.942660i \(0.391684\pi\)
\(662\) 7003.03i 0.411149i
\(663\) 29519.0i 1.72915i
\(664\) −308.123 −0.0180083
\(665\) −8206.30 + 5407.47i −0.478536 + 0.315327i
\(666\) −12045.6 −0.700839
\(667\) 9124.71i 0.529700i
\(668\) 5910.44i 0.342338i
\(669\) −6556.61 −0.378914
\(670\) −20645.4 31331.2i −1.19045 1.80661i
\(671\) −3497.58 −0.201226
\(672\) 11810.9i 0.678000i
\(673\) 13422.9i 0.768816i −0.923163 0.384408i \(-0.874406\pi\)
0.923163 0.384408i \(-0.125594\pi\)
\(674\) −31639.4 −1.80817
\(675\) 8541.21 + 3666.93i 0.487039 + 0.209097i
\(676\) 1647.62 0.0937426
\(677\) 1066.77i 0.0605602i 0.999541 + 0.0302801i \(0.00963993\pi\)
−0.999541 + 0.0302801i \(0.990360\pi\)
\(678\) 9435.36i 0.534458i
\(679\) −1543.08 −0.0872134
\(680\) −898.895 1364.15i −0.0506927 0.0769305i
\(681\) −35080.1 −1.97397
\(682\) 5640.70i 0.316706i
\(683\) 19090.6i 1.06952i −0.845005 0.534759i \(-0.820402\pi\)
0.845005 0.534759i \(-0.179598\pi\)
\(684\) 16445.0 0.919285
\(685\) −17672.2 + 11645.0i −0.985724 + 0.649534i
\(686\) −1388.64 −0.0772865
\(687\) 23831.6i 1.32348i
\(688\) 2126.56i 0.117841i
\(689\) 17.8751 0.000988370
\(690\) 7960.95 5245.80i 0.439229 0.289426i
\(691\) −16878.4 −0.929208 −0.464604 0.885518i \(-0.653803\pi\)
−0.464604 + 0.885518i \(0.653803\pi\)
\(692\) 11734.0i 0.644594i
\(693\) 740.988i 0.0406173i
\(694\) −9553.57 −0.522549
\(695\) 10550.4 + 16011.1i 0.575825 + 0.873864i
\(696\) −2917.78 −0.158905
\(697\) 11394.8i 0.619236i
\(698\) 13006.8i 0.705321i
\(699\) −29914.7 −1.61871
\(700\) 6746.20 + 2896.29i 0.364261 + 0.156385i
\(701\) 30272.6 1.63107 0.815535 0.578707i \(-0.196443\pi\)
0.815535 + 0.578707i \(0.196443\pi\)
\(702\) 14728.0i 0.791841i
\(703\) 23937.8i 1.28426i
\(704\) 3802.71 0.203580
\(705\) 16826.2 + 25535.3i 0.898883 + 1.36413i
\(706\) −22599.0 −1.20471
\(707\) 4139.50i 0.220201i
\(708\) 17981.4i 0.954497i
\(709\) 6593.32 0.349248 0.174624 0.984635i \(-0.444129\pi\)
0.174624 + 0.984635i \(0.444129\pi\)
\(710\) −18755.5 + 12358.8i −0.991383 + 0.653263i
\(711\) 3112.06 0.164151
\(712\) 217.203i 0.0114326i
\(713\) 6628.99i 0.348187i
\(714\) 17099.8 0.896279
\(715\) 3097.55 2041.10i 0.162017 0.106759i
\(716\) 3093.46 0.161464
\(717\) 4548.15i 0.236895i
\(718\) 43038.2i 2.23701i
\(719\) −3293.72 −0.170842 −0.0854208 0.996345i \(-0.527223\pi\)
−0.0854208 + 0.996345i \(0.527223\pi\)
\(720\) 5830.49 + 8848.27i 0.301791 + 0.457994i
\(721\) −3335.46 −0.172287
\(722\) 36071.6i 1.85934i
\(723\) 33178.1i 1.70665i
\(724\) 2648.20 0.135939
\(725\) 13944.6 32480.4i 0.714328 1.66385i
\(726\) 33958.3 1.73596
\(727\) 27757.8i 1.41606i −0.706181 0.708032i \(-0.749583\pi\)
0.706181 0.708032i \(-0.250417\pi\)
\(728\) 541.333i 0.0275592i
\(729\) 1048.00 0.0532439
\(730\) −17461.9 26499.9i −0.885334 1.34357i
\(731\) 3237.20 0.163792
\(732\) 28244.5i 1.42616i
\(733\) 38324.6i 1.93117i 0.260080 + 0.965587i \(0.416251\pi\)
−0.260080 + 0.965587i \(0.583749\pi\)
\(734\) −18277.8 −0.919136
\(735\) −2986.01 + 1967.61i −0.149851 + 0.0987432i
\(736\) −8340.91 −0.417731
\(737\) 5622.07i 0.280993i
\(738\) 7789.30i 0.388521i
\(739\) −21957.3 −1.09298 −0.546490 0.837466i \(-0.684036\pi\)
−0.546490 + 0.837466i \(0.684036\pi\)
\(740\) 14932.1 9839.36i 0.741775 0.488786i
\(741\) −40100.6 −1.98803
\(742\) 10.3547i 0.000512308i
\(743\) 14695.0i 0.725580i −0.931871 0.362790i \(-0.881824\pi\)
0.931871 0.362790i \(-0.118176\pi\)
\(744\) 2119.73 0.104453
\(745\) 17214.5 + 26124.4i 0.846563 + 1.28473i
\(746\) 46338.5 2.27423
\(747\) 3042.37i 0.149016i
\(748\) 5260.18i 0.257127i
\(749\) 1579.09 0.0770341
\(750\) 36354.6 6506.90i 1.76998 0.316798i
\(751\) −21439.1 −1.04171 −0.520855 0.853645i \(-0.674387\pi\)
−0.520855 + 0.853645i \(0.674387\pi\)
\(752\) 25445.1i 1.23389i
\(753\) 7880.74i 0.381395i
\(754\) 56007.4 2.70513
\(755\) −17640.0 26770.2i −0.850311 1.29042i
\(756\) −4367.44 −0.210109
\(757\) 23896.8i 1.14735i 0.819083 + 0.573675i \(0.194483\pi\)
−0.819083 + 0.573675i \(0.805517\pi\)
\(758\) 32981.1i 1.58038i
\(759\) 1428.51 0.0683158
\(760\) −1853.15 + 1221.12i −0.0884485 + 0.0582824i
\(761\) −24436.9 −1.16404 −0.582022 0.813173i \(-0.697738\pi\)
−0.582022 + 0.813173i \(0.697738\pi\)
\(762\) 45671.9i 2.17128i
\(763\) 11393.6i 0.540597i
\(764\) 1272.24 0.0602459
\(765\) 13469.4 8875.57i 0.636587 0.419473i
\(766\) −21301.5 −1.00477
\(767\) 16061.9i 0.756145i
\(768\) 23938.9i 1.12477i
\(769\) 30689.3 1.43912 0.719560 0.694430i \(-0.244343\pi\)
0.719560 + 0.694430i \(0.244343\pi\)
\(770\) 1182.37 + 1794.35i 0.0553373 + 0.0839791i
\(771\) 3335.13 0.155787
\(772\) 5795.19i 0.270173i
\(773\) 5110.74i 0.237801i −0.992906 0.118901i \(-0.962063\pi\)
0.992906 0.118901i \(-0.0379370\pi\)
\(774\) 2212.90 0.102766
\(775\) −10130.5 + 23596.6i −0.469548 + 1.09370i
\(776\) −348.459 −0.0161198
\(777\) 8710.22i 0.402159i
\(778\) 53469.3i 2.46397i
\(779\) 15479.4 0.711947
\(780\) 16482.8 + 25014.1i 0.756642 + 1.14827i
\(781\) −3365.49 −0.154195
\(782\) 12075.9i 0.552217i
\(783\) 21027.6i 0.959723i
\(784\) 2975.47 0.135545
\(785\) 7316.40 4821.08i 0.332654 0.219199i
\(786\) −38614.4 −1.75233
\(787\) 6991.30i 0.316662i −0.987386 0.158331i \(-0.949389\pi\)
0.987386 0.158331i \(-0.0506113\pi\)
\(788\) 6998.78i 0.316397i
\(789\) −14811.1 −0.668302
\(790\) −7536.06 + 4965.82i −0.339394 + 0.223641i
\(791\) 2499.28 0.112344
\(792\) 167.330i 0.00750735i
\(793\) 25229.5i 1.12979i
\(794\) 22927.3 1.02476
\(795\) 14.6719 + 22.2658i 0.000654539 + 0.000993319i
\(796\) 3249.36 0.144687
\(797\) 4020.31i 0.178678i −0.996001 0.0893392i \(-0.971524\pi\)
0.996001 0.0893392i \(-0.0284755\pi\)
\(798\) 23229.5i 1.03047i
\(799\) −38734.3 −1.71505
\(800\) −29690.4 12746.7i −1.31214 0.563332i
\(801\) 2144.64 0.0946030
\(802\) 48537.7i 2.13706i
\(803\) 4755.15i 0.208973i
\(804\) 45400.8 1.99149
\(805\) −1389.53 2108.73i −0.0608379 0.0923267i
\(806\) −40688.7 −1.77816
\(807\) 51150.0i 2.23118i
\(808\) 934.785i 0.0407000i
\(809\) 41608.1 1.80824 0.904119 0.427281i \(-0.140528\pi\)
0.904119 + 0.427281i \(0.140528\pi\)
\(810\) −34273.6 + 22584.3i −1.48673 + 0.979667i
\(811\) 42271.3 1.83027 0.915133 0.403152i \(-0.132086\pi\)
0.915133 + 0.403152i \(0.132086\pi\)
\(812\) 16608.4i 0.717785i
\(813\) 9571.13i 0.412884i
\(814\) 5234.13 0.225376
\(815\) 22563.9 14868.3i 0.969790 0.639035i
\(816\) −36640.1 −1.57189
\(817\) 4397.62i 0.188315i
\(818\) 21253.4i 0.908443i
\(819\) −5345.05 −0.228048
\(820\) −6362.62 9655.82i −0.270966 0.411214i
\(821\) 27184.7 1.15561 0.577804 0.816176i \(-0.303910\pi\)
0.577804 + 0.816176i \(0.303910\pi\)
\(822\) 50024.5i 2.12263i
\(823\) 12967.9i 0.549250i −0.961551 0.274625i \(-0.911446\pi\)
0.961551 0.274625i \(-0.0885538\pi\)
\(824\) −753.215 −0.0318440
\(825\) 5084.94 + 2183.08i 0.214588 + 0.0921273i
\(826\) −9304.36 −0.391937
\(827\) 33111.2i 1.39225i 0.717921 + 0.696124i \(0.245094\pi\)
−0.717921 + 0.696124i \(0.754906\pi\)
\(828\) 4225.79i 0.177363i
\(829\) −3715.75 −0.155673 −0.0778367 0.996966i \(-0.524801\pi\)
−0.0778367 + 0.996966i \(0.524801\pi\)
\(830\) 4854.62 + 7367.30i 0.203020 + 0.308100i
\(831\) 27116.3 1.13195
\(832\) 27430.5i 1.14301i
\(833\) 4529.47i 0.188399i
\(834\) −45322.4 −1.88176
\(835\) 6576.33 4333.42i 0.272555 0.179598i
\(836\) −7145.77 −0.295624
\(837\) 15276.3i 0.630854i
\(838\) 60521.0i 2.49482i
\(839\) 1460.56 0.0601005 0.0300502 0.999548i \(-0.490433\pi\)
0.0300502 + 0.999548i \(0.490433\pi\)
\(840\) −674.303 + 444.326i −0.0276972 + 0.0182508i
\(841\) 55574.2 2.27866
\(842\) 23644.6i 0.967750i
\(843\) 22783.6i 0.930851i
\(844\) −25763.2 −1.05072
\(845\) −1208.00 1833.25i −0.0491794 0.0746339i
\(846\) −26478.2 −1.07605
\(847\) 8995.02i 0.364903i
\(848\) 22.1873i 0.000898483i
\(849\) 20400.3 0.824660
\(850\) −18454.7 + 42985.5i −0.744694 + 1.73458i
\(851\) −6151.19 −0.247779
\(852\) 27177.9i 1.09284i
\(853\) 36027.4i 1.44613i −0.690777 0.723067i \(-0.742732\pi\)
0.690777 0.723067i \(-0.257268\pi\)
\(854\) −14614.9 −0.585612
\(855\) −12057.2 18297.8i −0.482276 0.731896i
\(856\) 356.590 0.0142383
\(857\) 23500.7i 0.936719i −0.883538 0.468359i \(-0.844845\pi\)
0.883538 0.468359i \(-0.155155\pi\)
\(858\) 8768.20i 0.348883i
\(859\) −5551.11 −0.220491 −0.110245 0.993904i \(-0.535164\pi\)
−0.110245 + 0.993904i \(0.535164\pi\)
\(860\) −2743.17 + 1807.59i −0.108769 + 0.0716724i
\(861\) 5632.46 0.222943
\(862\) 30117.7i 1.19004i
\(863\) 27721.4i 1.09345i 0.837312 + 0.546725i \(0.184126\pi\)
−0.837312 + 0.546725i \(0.815874\pi\)
\(864\) 19221.3 0.756855
\(865\) −13056.0 + 8603.13i −0.513199 + 0.338168i
\(866\) −3553.21 −0.139426
\(867\) 23706.6i 0.928624i
\(868\) 12065.8i 0.471821i
\(869\) −1352.27 −0.0527878
\(870\) 45970.9 + 69764.8i 1.79145 + 2.71867i
\(871\) −40554.3 −1.57765
\(872\) 2572.90i 0.0999192i
\(873\) 3440.64i 0.133388i
\(874\) 16404.7 0.634895
\(875\) −1723.58 9629.77i −0.0665915 0.372052i
\(876\) 38400.0 1.48107
\(877\) 47255.6i 1.81951i −0.415149 0.909754i \(-0.636270\pi\)
0.415149 0.909754i \(-0.363730\pi\)
\(878\) 43950.0i 1.68934i
\(879\) 9449.79 0.362609
\(880\) −2533.50 3844.80i −0.0970502 0.147282i
\(881\) 32267.0 1.23394 0.616972 0.786985i \(-0.288359\pi\)
0.616972 + 0.786985i \(0.288359\pi\)
\(882\) 3096.28i 0.118205i
\(883\) 5062.08i 0.192925i 0.995337 + 0.0964623i \(0.0307527\pi\)
−0.995337 + 0.0964623i \(0.969247\pi\)
\(884\) −37943.8 −1.44365
\(885\) −20007.3 + 13183.6i −0.759930 + 0.500749i
\(886\) −43712.0 −1.65749
\(887\) 7626.08i 0.288679i −0.989528 0.144340i \(-0.953894\pi\)
0.989528 0.144340i \(-0.0461058\pi\)
\(888\) 1966.95i 0.0743315i
\(889\) 12097.8 0.456408
\(890\) −5193.38 + 3422.13i −0.195598 + 0.128888i
\(891\) −6150.05 −0.231239
\(892\) 8427.89i 0.316353i
\(893\) 52619.2i 1.97182i
\(894\) −73950.1 −2.76651
\(895\) −2268.06 3441.98i −0.0847072 0.128550i
\(896\) 1414.66 0.0527460
\(897\) 10304.4i 0.383562i
\(898\) 34905.0i 1.29710i
\(899\) −58092.3 −2.15516
\(900\) −6457.94 + 15042.2i −0.239183 + 0.557117i
\(901\) −33.7750 −0.00124884
\(902\) 3384.65i 0.124941i
\(903\) 1600.16i 0.0589699i
\(904\) 564.389 0.0207647
\(905\) −1941.61 2946.56i −0.0713164 0.108229i
\(906\) 75778.0 2.77876
\(907\) 8546.31i 0.312873i 0.987688 + 0.156436i \(0.0500006\pi\)
−0.987688 + 0.156436i \(0.949999\pi\)
\(908\) 45092.1i 1.64806i
\(909\) 9229.95 0.336786
\(910\) 12943.4 8528.93i 0.471504 0.310694i
\(911\) 8778.92 0.319274 0.159637 0.987176i \(-0.448968\pi\)
0.159637 + 0.987176i \(0.448968\pi\)
\(912\) 49774.4i 1.80723i
\(913\) 1321.99i 0.0479205i
\(914\) 15327.3 0.554683
\(915\) −31426.7 + 20708.3i −1.13545 + 0.748193i
\(916\) 30633.3 1.10497
\(917\) 10228.4i 0.368343i
\(918\) 27828.5i 1.00052i
\(919\) −21626.0 −0.776253 −0.388126 0.921606i \(-0.626878\pi\)
−0.388126 + 0.921606i \(0.626878\pi\)
\(920\) −313.784 476.195i −0.0112447 0.0170649i
\(921\) 10388.0 0.371658
\(922\) 23320.1i 0.832981i
\(923\) 24276.7i 0.865738i
\(924\) −2600.12 −0.0925732
\(925\) −21895.8 9400.36i −0.778302 0.334143i
\(926\) 43565.8 1.54607
\(927\) 7437.15i 0.263504i
\(928\) 73094.5i 2.58561i
\(929\) −12262.6 −0.433073 −0.216536 0.976275i \(-0.569476\pi\)
−0.216536 + 0.976275i \(0.569476\pi\)
\(930\) −33397.3 50683.2i −1.17757 1.78706i
\(931\) −6153.13 −0.216606
\(932\) 38452.5i 1.35145i
\(933\) 56037.9i 1.96634i
\(934\) −8718.78 −0.305447
\(935\) −5852.82 + 3856.66i −0.204714 + 0.134894i
\(936\) −1207.02 −0.0421504
\(937\) 13362.6i 0.465889i 0.972490 + 0.232945i \(0.0748361\pi\)
−0.972490 + 0.232945i \(0.925164\pi\)
\(938\) 23492.3i 0.817751i
\(939\) 47063.5 1.63563
\(940\) 32823.1 21628.5i 1.13891 0.750472i
\(941\) −46330.1 −1.60501 −0.802506 0.596643i \(-0.796501\pi\)
−0.802506 + 0.596643i \(0.796501\pi\)
\(942\) 20710.4i 0.716329i
\(943\) 3977.66i 0.137360i
\(944\) 19936.7 0.687377
\(945\) 3202.12 + 4859.49i 0.110228 + 0.167280i
\(946\) −961.563 −0.0330477
\(947\) 17387.6i 0.596643i 0.954465 + 0.298321i \(0.0964267\pi\)
−0.954465 + 0.298321i \(0.903573\pi\)
\(948\) 10920.2i 0.374126i
\(949\) −34300.8 −1.17329
\(950\) 58394.4 + 25070.0i 1.99428 + 0.856188i
\(951\) 50831.1 1.73324
\(952\) 1022.85i 0.0348221i
\(953\) 42384.6i 1.44068i −0.693619 0.720342i \(-0.743985\pi\)
0.693619 0.720342i \(-0.256015\pi\)
\(954\) −23.0881 −0.000783548
\(955\) −932.779 1415.57i −0.0316063 0.0479653i
\(956\) 5846.20 0.197782
\(957\) 12518.6i 0.422851i
\(958\) 27895.3i 0.940769i
\(959\) −13250.7 −0.446182
\(960\) 34168.4 22515.0i 1.14873 0.756946i
\(961\) 12412.3 0.416647
\(962\) 37755.9i 1.26539i
\(963\) 3520.92i 0.117820i
\(964\) −42647.2 −1.42487
\(965\) −6448.10 + 4248.92i −0.215100 + 0.141738i
\(966\) 5969.16 0.198814
\(967\) 15771.6i 0.524489i 0.965001 + 0.262245i \(0.0844627\pi\)
−0.965001 + 0.262245i \(0.915537\pi\)
\(968\) 2031.26i 0.0674454i
\(969\) 75769.9 2.51195
\(970\) 5490.12 + 8331.72i 0.181729 + 0.275789i
\(971\) 36370.5 1.20204 0.601022 0.799232i \(-0.294760\pi\)
0.601022 + 0.799232i \(0.294760\pi\)
\(972\) 32818.6i 1.08298i
\(973\) 12005.2i 0.395549i
\(974\) 76947.5 2.53137
\(975\) 15747.4 36679.8i 0.517253 1.20481i
\(976\) 31315.8 1.02704
\(977\) 35122.8i 1.15013i 0.818108 + 0.575065i \(0.195023\pi\)
−0.818108 + 0.575065i \(0.804977\pi\)
\(978\) 63871.3i 2.08832i
\(979\) −931.899 −0.0304225
\(980\) 2529.17 + 3838.23i 0.0824401 + 0.125110i
\(981\) −25404.5 −0.826814
\(982\) 18340.0i 0.595979i
\(983\) 12798.9i 0.415282i −0.978205 0.207641i \(-0.933421\pi\)
0.978205 0.207641i \(-0.0665785\pi\)
\(984\) 1271.92 0.0412068
\(985\) 7787.30 5131.37i 0.251902 0.165989i
\(986\) −105826. −3.41803
\(987\) 19146.5i 0.617466i
\(988\) 51545.4i 1.65980i
\(989\) 1130.03 0.0363327
\(990\) −4000.90 + 2636.36i −0.128442 + 0.0846354i
\(991\) −46594.9 −1.49358 −0.746789 0.665061i \(-0.768406\pi\)
−0.746789 + 0.665061i \(0.768406\pi\)
\(992\) 53102.3i 1.69960i
\(993\) 11291.1i 0.360838i
\(994\) −14063.0 −0.448743
\(995\) −2382.37 3615.45i −0.0759058 0.115194i
\(996\) −10675.7 −0.339630
\(997\) 47534.1i 1.50995i −0.655753 0.754975i \(-0.727649\pi\)
0.655753 0.754975i \(-0.272351\pi\)
\(998\) 14656.4i 0.464869i
\(999\) 14175.2 0.448932
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.4.b.a.29.2 10
3.2 odd 2 315.4.d.c.64.9 10
4.3 odd 2 560.4.g.f.449.9 10
5.2 odd 4 175.4.a.i.1.5 5
5.3 odd 4 175.4.a.j.1.1 5
5.4 even 2 inner 35.4.b.a.29.9 yes 10
7.2 even 3 245.4.j.e.214.2 20
7.3 odd 6 245.4.j.f.79.9 20
7.4 even 3 245.4.j.e.79.9 20
7.5 odd 6 245.4.j.f.214.2 20
7.6 odd 2 245.4.b.d.99.2 10
15.2 even 4 1575.4.a.bq.1.1 5
15.8 even 4 1575.4.a.bn.1.5 5
15.14 odd 2 315.4.d.c.64.2 10
20.19 odd 2 560.4.g.f.449.2 10
35.4 even 6 245.4.j.e.79.2 20
35.9 even 6 245.4.j.e.214.9 20
35.13 even 4 1225.4.a.bh.1.1 5
35.19 odd 6 245.4.j.f.214.9 20
35.24 odd 6 245.4.j.f.79.2 20
35.27 even 4 1225.4.a.be.1.5 5
35.34 odd 2 245.4.b.d.99.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.2 10 1.1 even 1 trivial
35.4.b.a.29.9 yes 10 5.4 even 2 inner
175.4.a.i.1.5 5 5.2 odd 4
175.4.a.j.1.1 5 5.3 odd 4
245.4.b.d.99.2 10 7.6 odd 2
245.4.b.d.99.9 10 35.34 odd 2
245.4.j.e.79.2 20 35.4 even 6
245.4.j.e.79.9 20 7.4 even 3
245.4.j.e.214.2 20 7.2 even 3
245.4.j.e.214.9 20 35.9 even 6
245.4.j.f.79.2 20 35.24 odd 6
245.4.j.f.79.9 20 7.3 odd 6
245.4.j.f.214.2 20 7.5 odd 6
245.4.j.f.214.9 20 35.19 odd 6
315.4.d.c.64.2 10 15.14 odd 2
315.4.d.c.64.9 10 3.2 odd 2
560.4.g.f.449.2 10 20.19 odd 2
560.4.g.f.449.9 10 4.3 odd 2
1225.4.a.be.1.5 5 35.27 even 4
1225.4.a.bh.1.1 5 35.13 even 4
1575.4.a.bn.1.5 5 15.8 even 4
1575.4.a.bq.1.1 5 15.2 even 4