Properties

Label 3150.2.b.b
Level $3150$
Weight $2$
Character orbit 3150.b
Analytic conductor $25.153$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3150,2,Mod(251,3150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3150.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - q^{4} + ( - \beta_{5} - \beta_{3}) q^{7} - \beta_1 q^{8} + 4 \beta_{4} q^{11} - 2 \beta_{5} q^{13} + ( - \beta_{4} + \beta_{2}) q^{14} + q^{16} + \beta_{7} q^{17} + \beta_{6} q^{19}+ \cdots + (2 \beta_{7} - 3 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 8 q^{16} - 32 q^{46} - 24 q^{49} - 8 q^{64} - 48 q^{79} - 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 7x^{4} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} + 8\nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{4} + 7 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{7} - \nu^{5} + 13\nu^{3} - 5\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{7} - \nu^{5} - 13\nu^{3} - 5\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} + 6\nu^{2} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4\nu^{7} + \nu^{5} + 29\nu^{3} + 11\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -4\nu^{7} + \nu^{5} - 29\nu^{3} + 11\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} + \beta_{4} + \beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} + 3\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{7} + \beta_{6} + 2\beta_{4} - 2\beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3\beta_{2} - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -5\beta_{7} - 5\beta_{6} - 11\beta_{4} - 11\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 4\beta_{5} - 9\beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 13\beta_{7} - 13\beta_{6} - 29\beta_{4} + 29\beta_{3} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
251.1
1.14412 1.14412i
−0.437016 + 0.437016i
−1.14412 + 1.14412i
0.437016 0.437016i
−0.437016 0.437016i
1.14412 + 1.14412i
0.437016 + 0.437016i
−1.14412 1.14412i
1.00000i 0 −1.00000 0 0 −1.41421 2.23607i 1.00000i 0 0
251.2 1.00000i 0 −1.00000 0 0 −1.41421 + 2.23607i 1.00000i 0 0
251.3 1.00000i 0 −1.00000 0 0 1.41421 2.23607i 1.00000i 0 0
251.4 1.00000i 0 −1.00000 0 0 1.41421 + 2.23607i 1.00000i 0 0
251.5 1.00000i 0 −1.00000 0 0 −1.41421 2.23607i 1.00000i 0 0
251.6 1.00000i 0 −1.00000 0 0 −1.41421 + 2.23607i 1.00000i 0 0
251.7 1.00000i 0 −1.00000 0 0 1.41421 2.23607i 1.00000i 0 0
251.8 1.00000i 0 −1.00000 0 0 1.41421 + 2.23607i 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 251.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
7.b odd 2 1 inner
15.d odd 2 1 inner
21.c even 2 1 inner
35.c odd 2 1 inner
105.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.b.b 8
3.b odd 2 1 inner 3150.2.b.b 8
5.b even 2 1 inner 3150.2.b.b 8
5.c odd 4 1 630.2.d.b 4
5.c odd 4 1 630.2.d.c yes 4
7.b odd 2 1 inner 3150.2.b.b 8
15.d odd 2 1 inner 3150.2.b.b 8
15.e even 4 1 630.2.d.b 4
15.e even 4 1 630.2.d.c yes 4
20.e even 4 1 5040.2.k.b 4
20.e even 4 1 5040.2.k.c 4
21.c even 2 1 inner 3150.2.b.b 8
35.c odd 2 1 inner 3150.2.b.b 8
35.f even 4 1 630.2.d.b 4
35.f even 4 1 630.2.d.c yes 4
60.l odd 4 1 5040.2.k.b 4
60.l odd 4 1 5040.2.k.c 4
105.g even 2 1 inner 3150.2.b.b 8
105.k odd 4 1 630.2.d.b 4
105.k odd 4 1 630.2.d.c yes 4
140.j odd 4 1 5040.2.k.b 4
140.j odd 4 1 5040.2.k.c 4
420.w even 4 1 5040.2.k.b 4
420.w even 4 1 5040.2.k.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.d.b 4 5.c odd 4 1
630.2.d.b 4 15.e even 4 1
630.2.d.b 4 35.f even 4 1
630.2.d.b 4 105.k odd 4 1
630.2.d.c yes 4 5.c odd 4 1
630.2.d.c yes 4 15.e even 4 1
630.2.d.c yes 4 35.f even 4 1
630.2.d.c yes 4 105.k odd 4 1
3150.2.b.b 8 1.a even 1 1 trivial
3150.2.b.b 8 3.b odd 2 1 inner
3150.2.b.b 8 5.b even 2 1 inner
3150.2.b.b 8 7.b odd 2 1 inner
3150.2.b.b 8 15.d odd 2 1 inner
3150.2.b.b 8 21.c even 2 1 inner
3150.2.b.b 8 35.c odd 2 1 inner
3150.2.b.b 8 105.g even 2 1 inner
5040.2.k.b 4 20.e even 4 1
5040.2.k.b 4 60.l odd 4 1
5040.2.k.b 4 140.j odd 4 1
5040.2.k.b 4 420.w even 4 1
5040.2.k.c 4 20.e even 4 1
5040.2.k.c 4 60.l odd 4 1
5040.2.k.c 4 140.j odd 4 1
5040.2.k.c 4 420.w even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3150, [\chi])\):

\( T_{11}^{2} + 32 \) Copy content Toggle raw display
\( T_{13}^{2} + 20 \) Copy content Toggle raw display
\( T_{17}^{2} - 10 \) Copy content Toggle raw display
\( T_{43}^{2} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 6 T^{2} + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 32)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 20)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 10)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 10)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 16)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 8)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 40)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 98)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 20)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 2)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 90)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 16)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 20)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 90)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 50)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 180)^{4} \) Copy content Toggle raw display
$79$ \( (T + 6)^{8} \) Copy content Toggle raw display
$83$ \( (T^{2} - 160)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 20)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less