Properties

Label 5040.2.k.b
Level $5040$
Weight $2$
Character orbit 5040.k
Analytic conductor $40.245$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5040,2,Mod(1889,5040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5040.1889");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5040.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.2446026187\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{5} + ( - \beta_{3} + \beta_1) q^{7} - 4 \beta_1 q^{11} - 2 \beta_{3} q^{13} - \beta_{2} q^{17} - \beta_{2} q^{19} - 4 q^{23} + 5 q^{25} + 2 \beta_1 q^{29} - 2 \beta_{2} q^{31} + ( - \beta_{2} + 5) q^{35}+ \cdots + 5 \beta_1 q^{95}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{23} + 20 q^{25} + 20 q^{35} + 12 q^{49} + 16 q^{53} + 40 q^{65} + 32 q^{77} - 24 q^{79} + 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 6x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 4\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 8\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{2} + 4\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5040\mathbb{Z}\right)^\times\).

\(n\) \(2017\) \(2801\) \(3151\) \(3601\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1889.1
0.874032i
0.874032i
2.28825i
2.28825i
0 0 0 −2.23607 0 −2.23607 1.41421i 0 0 0
1889.2 0 0 0 −2.23607 0 −2.23607 + 1.41421i 0 0 0
1889.3 0 0 0 2.23607 0 2.23607 1.41421i 0 0 0
1889.4 0 0 0 2.23607 0 2.23607 + 1.41421i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
15.d odd 2 1 inner
105.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5040.2.k.b 4
3.b odd 2 1 5040.2.k.c 4
4.b odd 2 1 630.2.d.b 4
5.b even 2 1 5040.2.k.c 4
7.b odd 2 1 inner 5040.2.k.b 4
12.b even 2 1 630.2.d.c yes 4
15.d odd 2 1 inner 5040.2.k.b 4
20.d odd 2 1 630.2.d.c yes 4
20.e even 4 2 3150.2.b.b 8
21.c even 2 1 5040.2.k.c 4
28.d even 2 1 630.2.d.b 4
35.c odd 2 1 5040.2.k.c 4
60.h even 2 1 630.2.d.b 4
60.l odd 4 2 3150.2.b.b 8
84.h odd 2 1 630.2.d.c yes 4
105.g even 2 1 inner 5040.2.k.b 4
140.c even 2 1 630.2.d.c yes 4
140.j odd 4 2 3150.2.b.b 8
420.o odd 2 1 630.2.d.b 4
420.w even 4 2 3150.2.b.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.d.b 4 4.b odd 2 1
630.2.d.b 4 28.d even 2 1
630.2.d.b 4 60.h even 2 1
630.2.d.b 4 420.o odd 2 1
630.2.d.c yes 4 12.b even 2 1
630.2.d.c yes 4 20.d odd 2 1
630.2.d.c yes 4 84.h odd 2 1
630.2.d.c yes 4 140.c even 2 1
3150.2.b.b 8 20.e even 4 2
3150.2.b.b 8 60.l odd 4 2
3150.2.b.b 8 140.j odd 4 2
3150.2.b.b 8 420.w even 4 2
5040.2.k.b 4 1.a even 1 1 trivial
5040.2.k.b 4 7.b odd 2 1 inner
5040.2.k.b 4 15.d odd 2 1 inner
5040.2.k.b 4 105.g even 2 1 inner
5040.2.k.c 4 3.b odd 2 1
5040.2.k.c 4 5.b even 2 1
5040.2.k.c 4 21.c even 2 1
5040.2.k.c 4 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5040, [\chi])\):

\( T_{11}^{2} + 32 \) Copy content Toggle raw display
\( T_{13}^{2} - 20 \) Copy content Toggle raw display
\( T_{23} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 6T^{2} + 49 \) Copy content Toggle raw display
$11$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 10)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 10)^{2} \) Copy content Toggle raw display
$23$ \( (T + 4)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 40)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 98)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 90)^{2} \) Copy content Toggle raw display
$53$ \( (T - 4)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 90)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 50)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 180)^{2} \) Copy content Toggle raw display
$79$ \( (T + 6)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 160)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less