Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3150,2,Mod(1151,3150)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3150, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3150.1151");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3150.bf (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 630) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1151.1 |
|
−0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0 | 0 | −2.63896 | + | 0.189469i | 1.00000i | 0 | 0 | ||||||||||||||||||||||||||||||||||||
1151.2 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0 | 0 | 2.63896 | − | 0.189469i | 1.00000i | 0 | 0 | |||||||||||||||||||||||||||||||||||||
1151.3 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0 | 0 | −0.189469 | − | 2.63896i | − | 1.00000i | 0 | 0 | ||||||||||||||||||||||||||||||||||||
1151.4 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0 | 0 | 0.189469 | + | 2.63896i | − | 1.00000i | 0 | 0 | ||||||||||||||||||||||||||||||||||||
1601.1 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0 | 0 | −2.63896 | − | 0.189469i | − | 1.00000i | 0 | 0 | ||||||||||||||||||||||||||||||||||||
1601.2 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0 | 0 | 2.63896 | + | 0.189469i | − | 1.00000i | 0 | 0 | ||||||||||||||||||||||||||||||||||||
1601.3 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0 | 0 | −0.189469 | + | 2.63896i | 1.00000i | 0 | 0 | |||||||||||||||||||||||||||||||||||||
1601.4 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0 | 0 | 0.189469 | − | 2.63896i | 1.00000i | 0 | 0 | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
21.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3150.2.bf.b | 8 | |
3.b | odd | 2 | 1 | 3150.2.bf.c | 8 | ||
5.b | even | 2 | 1 | 630.2.be.a | ✓ | 8 | |
5.c | odd | 4 | 1 | 3150.2.bp.a | 8 | ||
5.c | odd | 4 | 1 | 3150.2.bp.d | 8 | ||
7.d | odd | 6 | 1 | 3150.2.bf.c | 8 | ||
15.d | odd | 2 | 1 | 630.2.be.b | yes | 8 | |
15.e | even | 4 | 1 | 3150.2.bp.c | 8 | ||
15.e | even | 4 | 1 | 3150.2.bp.f | 8 | ||
21.g | even | 6 | 1 | inner | 3150.2.bf.b | 8 | |
35.i | odd | 6 | 1 | 630.2.be.b | yes | 8 | |
35.i | odd | 6 | 1 | 4410.2.b.b | 8 | ||
35.j | even | 6 | 1 | 4410.2.b.e | 8 | ||
35.k | even | 12 | 1 | 3150.2.bp.c | 8 | ||
35.k | even | 12 | 1 | 3150.2.bp.f | 8 | ||
105.o | odd | 6 | 1 | 4410.2.b.b | 8 | ||
105.p | even | 6 | 1 | 630.2.be.a | ✓ | 8 | |
105.p | even | 6 | 1 | 4410.2.b.e | 8 | ||
105.w | odd | 12 | 1 | 3150.2.bp.a | 8 | ||
105.w | odd | 12 | 1 | 3150.2.bp.d | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
630.2.be.a | ✓ | 8 | 5.b | even | 2 | 1 | |
630.2.be.a | ✓ | 8 | 105.p | even | 6 | 1 | |
630.2.be.b | yes | 8 | 15.d | odd | 2 | 1 | |
630.2.be.b | yes | 8 | 35.i | odd | 6 | 1 | |
3150.2.bf.b | 8 | 1.a | even | 1 | 1 | trivial | |
3150.2.bf.b | 8 | 21.g | even | 6 | 1 | inner | |
3150.2.bf.c | 8 | 3.b | odd | 2 | 1 | ||
3150.2.bf.c | 8 | 7.d | odd | 6 | 1 | ||
3150.2.bp.a | 8 | 5.c | odd | 4 | 1 | ||
3150.2.bp.a | 8 | 105.w | odd | 12 | 1 | ||
3150.2.bp.c | 8 | 15.e | even | 4 | 1 | ||
3150.2.bp.c | 8 | 35.k | even | 12 | 1 | ||
3150.2.bp.d | 8 | 5.c | odd | 4 | 1 | ||
3150.2.bp.d | 8 | 105.w | odd | 12 | 1 | ||
3150.2.bp.f | 8 | 15.e | even | 4 | 1 | ||
3150.2.bp.f | 8 | 35.k | even | 12 | 1 | ||
4410.2.b.b | 8 | 35.i | odd | 6 | 1 | ||
4410.2.b.b | 8 | 105.o | odd | 6 | 1 | ||
4410.2.b.e | 8 | 35.j | even | 6 | 1 | ||
4410.2.b.e | 8 | 105.p | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|