Properties

Label 3150.2.bf.b
Level 31503150
Weight 22
Character orbit 3150.bf
Analytic conductor 25.15325.153
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3150,2,Mod(1151,3150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3150, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3150.1151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3150=232527 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3150.bf (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 25.152876636725.1528766367
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ24\zeta_{24}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ242q2+ζ244q4+(3ζ245+ζ24)q7+ζ246q8+(ζ245+2ζ244+4)q11+(ζ247+ζ245)q13++(5ζ2443)q98+O(q100) q + \zeta_{24}^{2} q^{2} + \zeta_{24}^{4} q^{4} + ( - 3 \zeta_{24}^{5} + \zeta_{24}) q^{7} + \zeta_{24}^{6} q^{8} + (\zeta_{24}^{5} + 2 \zeta_{24}^{4} + \cdots - 4) q^{11} + ( - \zeta_{24}^{7} + \cdots - \zeta_{24}^{5}) q^{13}+ \cdots + ( - 5 \zeta_{24}^{4} - 3) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q424q114q16+12q238q2624q374q3832q41+16q4324q44+8q468q47+24q53+16q58+24q5916q628q64+24q67+44q98+O(q100) 8 q + 4 q^{4} - 24 q^{11} - 4 q^{16} + 12 q^{23} - 8 q^{26} - 24 q^{37} - 4 q^{38} - 32 q^{41} + 16 q^{43} - 24 q^{44} + 8 q^{46} - 8 q^{47} + 24 q^{53} + 16 q^{58} + 24 q^{59} - 16 q^{62} - 8 q^{64} + 24 q^{67}+ \cdots - 44 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3150Z)×\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times.

nn 127127 451451 28012801
χ(n)\chi(n) 11 1ζ2441 - \zeta_{24}^{4} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1151.1
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
−0.866025 + 0.500000i 0 0.500000 0.866025i 0 0 −2.63896 + 0.189469i 1.00000i 0 0
1151.2 −0.866025 + 0.500000i 0 0.500000 0.866025i 0 0 2.63896 0.189469i 1.00000i 0 0
1151.3 0.866025 0.500000i 0 0.500000 0.866025i 0 0 −0.189469 2.63896i 1.00000i 0 0
1151.4 0.866025 0.500000i 0 0.500000 0.866025i 0 0 0.189469 + 2.63896i 1.00000i 0 0
1601.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 0 0 −2.63896 0.189469i 1.00000i 0 0
1601.2 −0.866025 0.500000i 0 0.500000 + 0.866025i 0 0 2.63896 + 0.189469i 1.00000i 0 0
1601.3 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0 −0.189469 + 2.63896i 1.00000i 0 0
1601.4 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0 0.189469 2.63896i 1.00000i 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1151.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.bf.b 8
3.b odd 2 1 3150.2.bf.c 8
5.b even 2 1 630.2.be.a 8
5.c odd 4 1 3150.2.bp.a 8
5.c odd 4 1 3150.2.bp.d 8
7.d odd 6 1 3150.2.bf.c 8
15.d odd 2 1 630.2.be.b yes 8
15.e even 4 1 3150.2.bp.c 8
15.e even 4 1 3150.2.bp.f 8
21.g even 6 1 inner 3150.2.bf.b 8
35.i odd 6 1 630.2.be.b yes 8
35.i odd 6 1 4410.2.b.b 8
35.j even 6 1 4410.2.b.e 8
35.k even 12 1 3150.2.bp.c 8
35.k even 12 1 3150.2.bp.f 8
105.o odd 6 1 4410.2.b.b 8
105.p even 6 1 630.2.be.a 8
105.p even 6 1 4410.2.b.e 8
105.w odd 12 1 3150.2.bp.a 8
105.w odd 12 1 3150.2.bp.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.be.a 8 5.b even 2 1
630.2.be.a 8 105.p even 6 1
630.2.be.b yes 8 15.d odd 2 1
630.2.be.b yes 8 35.i odd 6 1
3150.2.bf.b 8 1.a even 1 1 trivial
3150.2.bf.b 8 21.g even 6 1 inner
3150.2.bf.c 8 3.b odd 2 1
3150.2.bf.c 8 7.d odd 6 1
3150.2.bp.a 8 5.c odd 4 1
3150.2.bp.a 8 105.w odd 12 1
3150.2.bp.c 8 15.e even 4 1
3150.2.bp.c 8 35.k even 12 1
3150.2.bp.d 8 5.c odd 4 1
3150.2.bp.d 8 105.w odd 12 1
3150.2.bp.f 8 15.e even 4 1
3150.2.bp.f 8 35.k even 12 1
4410.2.b.b 8 35.i odd 6 1
4410.2.b.b 8 105.o odd 6 1
4410.2.b.e 8 35.j even 6 1
4410.2.b.e 8 105.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3150,[χ])S_{2}^{\mathrm{new}}(3150, [\chi]):

T118+24T117+260T116+1632T115+6447T114+16320T113++9409 T_{11}^{8} + 24 T_{11}^{7} + 260 T_{11}^{6} + 1632 T_{11}^{5} + 6447 T_{11}^{4} + 16320 T_{11}^{3} + \cdots + 9409 Copy content Toggle raw display
T378+24T377+364T376+3456T375+24207T374+117648T373++1329409 T_{37}^{8} + 24 T_{37}^{7} + 364 T_{37}^{6} + 3456 T_{37}^{5} + 24207 T_{37}^{4} + 117648 T_{37}^{3} + \cdots + 1329409 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4T2+1)2 (T^{4} - T^{2} + 1)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T894T4+2401 T^{8} - 94T^{4} + 2401 Copy content Toggle raw display
1111 T8+24T7++9409 T^{8} + 24 T^{7} + \cdots + 9409 Copy content Toggle raw display
1313 T8+24T6++1 T^{8} + 24 T^{6} + \cdots + 1 Copy content Toggle raw display
1717 T8+40T6++1024 T^{8} + 40 T^{6} + \cdots + 1024 Copy content Toggle raw display
1919 T818T6++1 T^{8} - 18 T^{6} + \cdots + 1 Copy content Toggle raw display
2323 (T46T3+11T2++1)2 (T^{4} - 6 T^{3} + 11 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
2929 (T4+80T2+64)2 (T^{4} + 80 T^{2} + 64)^{2} Copy content Toggle raw display
3131 T824T6++256 T^{8} - 24 T^{6} + \cdots + 256 Copy content Toggle raw display
3737 T8+24T7++1329409 T^{8} + 24 T^{7} + \cdots + 1329409 Copy content Toggle raw display
4141 (T4+16T3+71)2 (T^{4} + 16 T^{3} + \cdots - 71)^{2} Copy content Toggle raw display
4343 (T48T3+8T2+32)2 (T^{4} - 8 T^{3} + 8 T^{2} + \cdots - 32)^{2} Copy content Toggle raw display
4747 T8+8T7++330625 T^{8} + 8 T^{7} + \cdots + 330625 Copy content Toggle raw display
5353 T824T7++2745649 T^{8} - 24 T^{7} + \cdots + 2745649 Copy content Toggle raw display
5959 T824T7++22090000 T^{8} - 24 T^{7} + \cdots + 22090000 Copy content Toggle raw display
6161 T8120T6++2262016 T^{8} - 120 T^{6} + \cdots + 2262016 Copy content Toggle raw display
6767 T824T7++442008576 T^{8} - 24 T^{7} + \cdots + 442008576 Copy content Toggle raw display
7171 T8+288T6++1364224 T^{8} + 288 T^{6} + \cdots + 1364224 Copy content Toggle raw display
7373 T8136T6++256 T^{8} - 136 T^{6} + \cdots + 256 Copy content Toggle raw display
7979 T8+24T7++171295744 T^{8} + 24 T^{7} + \cdots + 171295744 Copy content Toggle raw display
8383 (T4+8T3++7648)2 (T^{4} + 8 T^{3} + \cdots + 7648)^{2} Copy content Toggle raw display
8989 T816T7++2062096 T^{8} - 16 T^{7} + \cdots + 2062096 Copy content Toggle raw display
9797 T8+800T6++610287616 T^{8} + 800 T^{6} + \cdots + 610287616 Copy content Toggle raw display
show more
show less