Properties

Label 3150.2.bp.a
Level $3150$
Weight $2$
Character orbit 3150.bp
Analytic conductor $25.153$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3150,2,Mod(899,3150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3150, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3150.899");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.bp (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{24}^{4} - 1) q^{2} - \zeta_{24}^{4} q^{4} + ( - 2 \zeta_{24}^{7} + 3 \zeta_{24}^{3}) q^{7} + q^{8} + (\zeta_{24}^{5} + 2 \zeta_{24}^{4} + \cdots - 4) q^{11} + (\zeta_{24}^{7} - \zeta_{24}^{3} + \cdots + 2) q^{13} + \cdots + (8 \zeta_{24}^{6} - 5 \zeta_{24}^{2}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 8 q^{8} - 24 q^{11} + 16 q^{13} - 4 q^{16} - 24 q^{17} + 8 q^{23} - 8 q^{26} - 4 q^{32} - 32 q^{41} + 24 q^{44} + 8 q^{46} - 12 q^{47} - 8 q^{52} - 4 q^{53} - 24 q^{59} + 8 q^{64}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(-1\) \(1 - \zeta_{24}^{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
899.1
−0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
0.965926 0.258819i
−0.965926 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 + 0.258819i
−0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 −2.63896 + 0.189469i 1.00000 0 0
899.2 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 −0.189469 2.63896i 1.00000 0 0
899.3 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 0.189469 + 2.63896i 1.00000 0 0
899.4 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 2.63896 0.189469i 1.00000 0 0
1349.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 −2.63896 0.189469i 1.00000 0 0
1349.2 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 −0.189469 + 2.63896i 1.00000 0 0
1349.3 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 0.189469 2.63896i 1.00000 0 0
1349.4 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 2.63896 + 0.189469i 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 899.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
105.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.bp.a 8
3.b odd 2 1 3150.2.bp.f 8
5.b even 2 1 3150.2.bp.d 8
5.c odd 4 1 630.2.be.a 8
5.c odd 4 1 3150.2.bf.b 8
7.d odd 6 1 3150.2.bp.c 8
15.d odd 2 1 3150.2.bp.c 8
15.e even 4 1 630.2.be.b yes 8
15.e even 4 1 3150.2.bf.c 8
21.g even 6 1 3150.2.bp.d 8
35.i odd 6 1 3150.2.bp.f 8
35.k even 12 1 630.2.be.b yes 8
35.k even 12 1 3150.2.bf.c 8
35.k even 12 1 4410.2.b.b 8
35.l odd 12 1 4410.2.b.e 8
105.p even 6 1 inner 3150.2.bp.a 8
105.w odd 12 1 630.2.be.a 8
105.w odd 12 1 3150.2.bf.b 8
105.w odd 12 1 4410.2.b.e 8
105.x even 12 1 4410.2.b.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
630.2.be.a 8 5.c odd 4 1
630.2.be.a 8 105.w odd 12 1
630.2.be.b yes 8 15.e even 4 1
630.2.be.b yes 8 35.k even 12 1
3150.2.bf.b 8 5.c odd 4 1
3150.2.bf.b 8 105.w odd 12 1
3150.2.bf.c 8 15.e even 4 1
3150.2.bf.c 8 35.k even 12 1
3150.2.bp.a 8 1.a even 1 1 trivial
3150.2.bp.a 8 105.p even 6 1 inner
3150.2.bp.c 8 7.d odd 6 1
3150.2.bp.c 8 15.d odd 2 1
3150.2.bp.d 8 5.b even 2 1
3150.2.bp.d 8 21.g even 6 1
3150.2.bp.f 8 3.b odd 2 1
3150.2.bp.f 8 35.i odd 6 1
4410.2.b.b 8 35.k even 12 1
4410.2.b.b 8 105.x even 12 1
4410.2.b.e 8 35.l odd 12 1
4410.2.b.e 8 105.w odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3150, [\chi])\):

\( T_{11}^{8} + 24 T_{11}^{7} + 260 T_{11}^{6} + 1632 T_{11}^{5} + 6447 T_{11}^{4} + 16320 T_{11}^{3} + \cdots + 9409 \) Copy content Toggle raw display
\( T_{13}^{4} - 8T_{13}^{3} + 20T_{13}^{2} - 16T_{13} + 1 \) Copy content Toggle raw display
\( T_{17}^{8} + 24T_{17}^{7} + 248T_{17}^{6} + 1344T_{17}^{5} + 3936T_{17}^{4} + 5376T_{17}^{3} + 1280T_{17}^{2} - 3072T_{17} + 1024 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} - 94T^{4} + 2401 \) Copy content Toggle raw display
$11$ \( T^{8} + 24 T^{7} + \cdots + 9409 \) Copy content Toggle raw display
$13$ \( (T^{4} - 8 T^{3} + 20 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + 24 T^{7} + \cdots + 1024 \) Copy content Toggle raw display
$19$ \( T^{8} - 18 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( (T^{4} - 4 T^{3} + 15 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 80 T^{2} + 64)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} - 24 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$37$ \( T^{8} - 76 T^{6} + \cdots + 1329409 \) Copy content Toggle raw display
$41$ \( (T^{4} + 16 T^{3} + \cdots - 71)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 48 T^{6} + \cdots + 1024 \) Copy content Toggle raw display
$47$ \( T^{8} + 12 T^{7} + \cdots + 330625 \) Copy content Toggle raw display
$53$ \( T^{8} + 4 T^{7} + \cdots + 2745649 \) Copy content Toggle raw display
$59$ \( T^{8} + 24 T^{7} + \cdots + 22090000 \) Copy content Toggle raw display
$61$ \( T^{8} - 120 T^{6} + \cdots + 2262016 \) Copy content Toggle raw display
$67$ \( T^{8} - 48 T^{7} + \cdots + 442008576 \) Copy content Toggle raw display
$71$ \( T^{8} + 288 T^{6} + \cdots + 1364224 \) Copy content Toggle raw display
$73$ \( (T^{4} + 12 T^{3} + \cdots + 16)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} - 24 T^{7} + \cdots + 171295744 \) Copy content Toggle raw display
$83$ \( T^{8} + 432 T^{6} + \cdots + 58491904 \) Copy content Toggle raw display
$89$ \( T^{8} + 16 T^{7} + \cdots + 2062096 \) Copy content Toggle raw display
$97$ \( (T^{4} + 24 T^{3} + \cdots - 24704)^{2} \) Copy content Toggle raw display
show more
show less