Properties

Label 3150.2.bf.f.1151.7
Level $3150$
Weight $2$
Character 3150.1151
Analytic conductor $25.153$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3150,2,Mod(1151,3150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3150, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3150.1151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1151.7
Character \(\chi\) \(=\) 3150.1151
Dual form 3150.2.bf.f.1601.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-1.29693 + 2.30608i) q^{7} +1.00000i q^{8} +(1.11120 + 0.641550i) q^{11} +6.14864i q^{13} +(-0.0298666 - 2.64558i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-3.26128 + 5.64871i) q^{17} +(-5.22868 + 3.01878i) q^{19} -1.28310 q^{22} +(2.49343 - 1.43958i) q^{23} +(-3.07432 - 5.32488i) q^{26} +(1.34866 + 2.27621i) q^{28} +1.35052i q^{29} +(-7.49558 - 4.32758i) q^{31} +(0.866025 + 0.500000i) q^{32} -6.52257i q^{34} +(-4.76690 - 8.25652i) q^{37} +(3.01878 - 5.22868i) q^{38} +8.71759 q^{41} +5.35859 q^{43} +(1.11120 - 0.641550i) q^{44} +(-1.43958 + 2.49343i) q^{46} +(-0.403086 - 0.698165i) q^{47} +(-3.63597 - 5.98162i) q^{49} +(5.32488 + 3.07432i) q^{52} +(5.77488 + 3.33413i) q^{53} +(-2.30608 - 1.29693i) q^{56} +(-0.675260 - 1.16959i) q^{58} +(0.798110 - 1.38237i) q^{59} +(-5.50239 + 3.17681i) q^{61} +8.65515 q^{62} -1.00000 q^{64} +(2.69731 - 4.67188i) q^{67} +(3.26128 + 5.64871i) q^{68} -15.6787i q^{71} +(-10.7532 - 6.20837i) q^{73} +(8.25652 + 4.76690i) q^{74} +6.03756i q^{76} +(-2.92060 + 1.73046i) q^{77} +(5.59093 + 9.68377i) q^{79} +(-7.54966 + 4.35880i) q^{82} -3.74493 q^{83} +(-4.64067 + 2.67929i) q^{86} +(-0.641550 + 1.11120i) q^{88} +(-1.81971 - 3.15183i) q^{89} +(-14.1792 - 7.97433i) q^{91} -2.87917i q^{92} +(0.698165 + 0.403086i) q^{94} +8.76818i q^{97} +(6.13965 + 3.36225i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} - 16 q^{16} - 48 q^{19} + 24 q^{31} - 16 q^{46} + 56 q^{49} + 48 q^{61} - 32 q^{64} - 8 q^{79} - 56 q^{91} + 120 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) −1.29693 + 2.30608i −0.490192 + 0.871614i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.11120 + 0.641550i 0.335038 + 0.193435i 0.658076 0.752952i \(-0.271371\pi\)
−0.323037 + 0.946386i \(0.604704\pi\)
\(12\) 0 0
\(13\) 6.14864i 1.70533i 0.522462 + 0.852663i \(0.325014\pi\)
−0.522462 + 0.852663i \(0.674986\pi\)
\(14\) −0.0298666 2.64558i −0.00798219 0.707062i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.26128 + 5.64871i −0.790977 + 1.37001i 0.134385 + 0.990929i \(0.457094\pi\)
−0.925362 + 0.379084i \(0.876239\pi\)
\(18\) 0 0
\(19\) −5.22868 + 3.01878i −1.19954 + 0.692555i −0.960453 0.278443i \(-0.910182\pi\)
−0.239088 + 0.970998i \(0.576848\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.28310 −0.273558
\(23\) 2.49343 1.43958i 0.519917 0.300174i −0.216984 0.976175i \(-0.569622\pi\)
0.736901 + 0.676001i \(0.236289\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −3.07432 5.32488i −0.602923 1.04429i
\(27\) 0 0
\(28\) 1.34866 + 2.27621i 0.254872 + 0.430163i
\(29\) 1.35052i 0.250785i 0.992107 + 0.125393i \(0.0400191\pi\)
−0.992107 + 0.125393i \(0.959981\pi\)
\(30\) 0 0
\(31\) −7.49558 4.32758i −1.34625 0.777255i −0.358530 0.933518i \(-0.616722\pi\)
−0.987716 + 0.156263i \(0.950055\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 6.52257i 1.11861i
\(35\) 0 0
\(36\) 0 0
\(37\) −4.76690 8.25652i −0.783674 1.35736i −0.929788 0.368095i \(-0.880010\pi\)
0.146114 0.989268i \(-0.453323\pi\)
\(38\) 3.01878 5.22868i 0.489710 0.848203i
\(39\) 0 0
\(40\) 0 0
\(41\) 8.71759 1.36146 0.680730 0.732535i \(-0.261663\pi\)
0.680730 + 0.732535i \(0.261663\pi\)
\(42\) 0 0
\(43\) 5.35859 0.817177 0.408588 0.912719i \(-0.366021\pi\)
0.408588 + 0.912719i \(0.366021\pi\)
\(44\) 1.11120 0.641550i 0.167519 0.0967173i
\(45\) 0 0
\(46\) −1.43958 + 2.49343i −0.212255 + 0.367637i
\(47\) −0.403086 0.698165i −0.0587961 0.101838i 0.835129 0.550054i \(-0.185393\pi\)
−0.893925 + 0.448216i \(0.852060\pi\)
\(48\) 0 0
\(49\) −3.63597 5.98162i −0.519424 0.854517i
\(50\) 0 0
\(51\) 0 0
\(52\) 5.32488 + 3.07432i 0.738427 + 0.426331i
\(53\) 5.77488 + 3.33413i 0.793241 + 0.457978i 0.841102 0.540876i \(-0.181907\pi\)
−0.0478611 + 0.998854i \(0.515240\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.30608 1.29693i −0.308162 0.173309i
\(57\) 0 0
\(58\) −0.675260 1.16959i −0.0886660 0.153574i
\(59\) 0.798110 1.38237i 0.103905 0.179969i −0.809385 0.587278i \(-0.800200\pi\)
0.913290 + 0.407309i \(0.133533\pi\)
\(60\) 0 0
\(61\) −5.50239 + 3.17681i −0.704509 + 0.406748i −0.809025 0.587775i \(-0.800004\pi\)
0.104516 + 0.994523i \(0.466671\pi\)
\(62\) 8.65515 1.09921
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.69731 4.67188i 0.329529 0.570761i −0.652889 0.757453i \(-0.726443\pi\)
0.982418 + 0.186692i \(0.0597766\pi\)
\(68\) 3.26128 + 5.64871i 0.395489 + 0.685006i
\(69\) 0 0
\(70\) 0 0
\(71\) 15.6787i 1.86072i −0.366650 0.930359i \(-0.619495\pi\)
0.366650 0.930359i \(-0.380505\pi\)
\(72\) 0 0
\(73\) −10.7532 6.20837i −1.25857 0.726635i −0.285772 0.958298i \(-0.592250\pi\)
−0.972796 + 0.231663i \(0.925583\pi\)
\(74\) 8.25652 + 4.76690i 0.959801 + 0.554141i
\(75\) 0 0
\(76\) 6.03756i 0.692555i
\(77\) −2.92060 + 1.73046i −0.332834 + 0.197204i
\(78\) 0 0
\(79\) 5.59093 + 9.68377i 0.629028 + 1.08951i 0.987747 + 0.156064i \(0.0498805\pi\)
−0.358719 + 0.933446i \(0.616786\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −7.54966 + 4.35880i −0.833720 + 0.481349i
\(83\) −3.74493 −0.411059 −0.205530 0.978651i \(-0.565892\pi\)
−0.205530 + 0.978651i \(0.565892\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.64067 + 2.67929i −0.500417 + 0.288916i
\(87\) 0 0
\(88\) −0.641550 + 1.11120i −0.0683894 + 0.118454i
\(89\) −1.81971 3.15183i −0.192889 0.334093i 0.753318 0.657657i \(-0.228452\pi\)
−0.946206 + 0.323564i \(0.895119\pi\)
\(90\) 0 0
\(91\) −14.1792 7.97433i −1.48639 0.835937i
\(92\) 2.87917i 0.300174i
\(93\) 0 0
\(94\) 0.698165 + 0.403086i 0.0720102 + 0.0415751i
\(95\) 0 0
\(96\) 0 0
\(97\) 8.76818i 0.890274i 0.895463 + 0.445137i \(0.146845\pi\)
−0.895463 + 0.445137i \(0.853155\pi\)
\(98\) 6.13965 + 3.36225i 0.620198 + 0.339639i
\(99\) 0 0
\(100\) 0 0
\(101\) 0.853270 1.47791i 0.0849035 0.147057i −0.820447 0.571723i \(-0.806275\pi\)
0.905350 + 0.424666i \(0.139608\pi\)
\(102\) 0 0
\(103\) −8.97583 + 5.18220i −0.884415 + 0.510617i −0.872112 0.489307i \(-0.837250\pi\)
−0.0123035 + 0.999924i \(0.503916\pi\)
\(104\) −6.14864 −0.602923
\(105\) 0 0
\(106\) −6.66826 −0.647679
\(107\) 9.97106 5.75680i 0.963939 0.556531i 0.0665560 0.997783i \(-0.478799\pi\)
0.897383 + 0.441252i \(0.145466\pi\)
\(108\) 0 0
\(109\) 1.00000 1.73205i 0.0957826 0.165900i −0.814152 0.580651i \(-0.802798\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.64558 0.0298666i 0.249984 0.00282213i
\(113\) 13.3875i 1.25939i 0.776843 + 0.629695i \(0.216820\pi\)
−0.776843 + 0.629695i \(0.783180\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.16959 + 0.675260i 0.108593 + 0.0626963i
\(117\) 0 0
\(118\) 1.59622i 0.146944i
\(119\) −8.79670 14.8467i −0.806392 1.36100i
\(120\) 0 0
\(121\) −4.67683 8.10050i −0.425166 0.736409i
\(122\) 3.17681 5.50239i 0.287615 0.498163i
\(123\) 0 0
\(124\) −7.49558 + 4.32758i −0.673123 + 0.388628i
\(125\) 0 0
\(126\) 0 0
\(127\) 5.65313 0.501634 0.250817 0.968035i \(-0.419301\pi\)
0.250817 + 0.968035i \(0.419301\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 0 0
\(131\) −6.23366 10.7970i −0.544638 0.943340i −0.998630 0.0523344i \(-0.983334\pi\)
0.453992 0.891006i \(-0.349999\pi\)
\(132\) 0 0
\(133\) −0.180321 15.9729i −0.0156358 1.38502i
\(134\) 5.39463i 0.466025i
\(135\) 0 0
\(136\) −5.64871 3.26128i −0.484373 0.279653i
\(137\) −0.0441401 0.0254843i −0.00377114 0.00217727i 0.498113 0.867112i \(-0.334026\pi\)
−0.501884 + 0.864935i \(0.667360\pi\)
\(138\) 0 0
\(139\) 1.05069i 0.0891184i −0.999007 0.0445592i \(-0.985812\pi\)
0.999007 0.0445592i \(-0.0141883\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 7.83934 + 13.5781i 0.657863 + 1.13945i
\(143\) −3.94466 + 6.83235i −0.329869 + 0.571350i
\(144\) 0 0
\(145\) 0 0
\(146\) 12.4167 1.02762
\(147\) 0 0
\(148\) −9.53381 −0.783674
\(149\) 7.12137 4.11153i 0.583406 0.336829i −0.179080 0.983835i \(-0.557312\pi\)
0.762486 + 0.647005i \(0.223979\pi\)
\(150\) 0 0
\(151\) 2.13357 3.69546i 0.173628 0.300732i −0.766058 0.642772i \(-0.777784\pi\)
0.939686 + 0.342040i \(0.111118\pi\)
\(152\) −3.01878 5.22868i −0.244855 0.424102i
\(153\) 0 0
\(154\) 1.66409 2.95892i 0.134096 0.238437i
\(155\) 0 0
\(156\) 0 0
\(157\) −4.18466 2.41601i −0.333972 0.192819i 0.323631 0.946183i \(-0.395096\pi\)
−0.657603 + 0.753364i \(0.728430\pi\)
\(158\) −9.68377 5.59093i −0.770399 0.444790i
\(159\) 0 0
\(160\) 0 0
\(161\) 0.0859910 + 7.61708i 0.00677704 + 0.600310i
\(162\) 0 0
\(163\) 5.37661 + 9.31256i 0.421128 + 0.729416i 0.996050 0.0887927i \(-0.0283009\pi\)
−0.574922 + 0.818208i \(0.694968\pi\)
\(164\) 4.35880 7.54966i 0.340365 0.589529i
\(165\) 0 0
\(166\) 3.24320 1.87246i 0.251721 0.145331i
\(167\) −18.9267 −1.46459 −0.732295 0.680988i \(-0.761551\pi\)
−0.732295 + 0.680988i \(0.761551\pi\)
\(168\) 0 0
\(169\) −24.8057 −1.90813
\(170\) 0 0
\(171\) 0 0
\(172\) 2.67929 4.64067i 0.204294 0.353848i
\(173\) −5.92176 10.2568i −0.450223 0.779810i 0.548176 0.836363i \(-0.315322\pi\)
−0.998400 + 0.0565531i \(0.981989\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.28310i 0.0967173i
\(177\) 0 0
\(178\) 3.15183 + 1.81971i 0.236239 + 0.136393i
\(179\) 3.27843 + 1.89280i 0.245041 + 0.141475i 0.617492 0.786577i \(-0.288149\pi\)
−0.372450 + 0.928052i \(0.621482\pi\)
\(180\) 0 0
\(181\) 19.0033i 1.41251i 0.707960 + 0.706253i \(0.249616\pi\)
−0.707960 + 0.706253i \(0.750384\pi\)
\(182\) 16.2667 0.183639i 1.20577 0.0136122i
\(183\) 0 0
\(184\) 1.43958 + 2.49343i 0.106128 + 0.183818i
\(185\) 0 0
\(186\) 0 0
\(187\) −7.24785 + 4.18455i −0.530016 + 0.306005i
\(188\) −0.806172 −0.0587961
\(189\) 0 0
\(190\) 0 0
\(191\) −2.44949 + 1.41421i −0.177239 + 0.102329i −0.585995 0.810315i \(-0.699296\pi\)
0.408756 + 0.912644i \(0.365963\pi\)
\(192\) 0 0
\(193\) −1.76946 + 3.06479i −0.127368 + 0.220608i −0.922656 0.385623i \(-0.873986\pi\)
0.795288 + 0.606232i \(0.207320\pi\)
\(194\) −4.38409 7.59347i −0.314759 0.545179i
\(195\) 0 0
\(196\) −6.99822 + 0.158029i −0.499873 + 0.0112878i
\(197\) 2.36728i 0.168662i 0.996438 + 0.0843308i \(0.0268752\pi\)
−0.996438 + 0.0843308i \(0.973125\pi\)
\(198\) 0 0
\(199\) 3.00000 + 1.73205i 0.212664 + 0.122782i 0.602549 0.798082i \(-0.294152\pi\)
−0.389885 + 0.920864i \(0.627485\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1.70654i 0.120072i
\(203\) −3.11440 1.75153i −0.218588 0.122933i
\(204\) 0 0
\(205\) 0 0
\(206\) 5.18220 8.97583i 0.361061 0.625376i
\(207\) 0 0
\(208\) 5.32488 3.07432i 0.369214 0.213166i
\(209\) −7.74679 −0.535856
\(210\) 0 0
\(211\) −14.3620 −0.988721 −0.494361 0.869257i \(-0.664598\pi\)
−0.494361 + 0.869257i \(0.664598\pi\)
\(212\) 5.77488 3.33413i 0.396621 0.228989i
\(213\) 0 0
\(214\) −5.75680 + 9.97106i −0.393527 + 0.681608i
\(215\) 0 0
\(216\) 0 0
\(217\) 19.7009 11.6728i 1.33739 0.792403i
\(218\) 2.00000i 0.135457i
\(219\) 0 0
\(220\) 0 0
\(221\) −34.7319 20.0524i −2.33632 1.34887i
\(222\) 0 0
\(223\) 13.5975i 0.910557i −0.890349 0.455279i \(-0.849540\pi\)
0.890349 0.455279i \(-0.150460\pi\)
\(224\) −2.27621 + 1.34866i −0.152086 + 0.0901109i
\(225\) 0 0
\(226\) −6.69375 11.5939i −0.445261 0.771215i
\(227\) −6.17797 + 10.7006i −0.410046 + 0.710221i −0.994894 0.100922i \(-0.967821\pi\)
0.584848 + 0.811143i \(0.301154\pi\)
\(228\) 0 0
\(229\) 2.09008 1.20671i 0.138116 0.0797414i −0.429350 0.903138i \(-0.641257\pi\)
0.567466 + 0.823397i \(0.307924\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.35052 −0.0886660
\(233\) −11.1506 + 6.43780i −0.730500 + 0.421754i −0.818605 0.574357i \(-0.805252\pi\)
0.0881051 + 0.996111i \(0.471919\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.798110 1.38237i −0.0519525 0.0899844i
\(237\) 0 0
\(238\) 15.0415 + 8.45929i 0.974997 + 0.548334i
\(239\) 27.2546i 1.76296i 0.472226 + 0.881478i \(0.343451\pi\)
−0.472226 + 0.881478i \(0.656549\pi\)
\(240\) 0 0
\(241\) 2.26690 + 1.30880i 0.146024 + 0.0843070i 0.571232 0.820789i \(-0.306466\pi\)
−0.425208 + 0.905096i \(0.639799\pi\)
\(242\) 8.10050 + 4.67683i 0.520720 + 0.300638i
\(243\) 0 0
\(244\) 6.35361i 0.406748i
\(245\) 0 0
\(246\) 0 0
\(247\) −18.5614 32.1492i −1.18103 2.04561i
\(248\) 4.32758 7.49558i 0.274801 0.475970i
\(249\) 0 0
\(250\) 0 0
\(251\) 26.7173 1.68638 0.843190 0.537615i \(-0.180675\pi\)
0.843190 + 0.537615i \(0.180675\pi\)
\(252\) 0 0
\(253\) 3.69426 0.232256
\(254\) −4.89575 + 2.82656i −0.307187 + 0.177354i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −5.28063 9.14632i −0.329397 0.570532i 0.652996 0.757362i \(-0.273512\pi\)
−0.982392 + 0.186830i \(0.940179\pi\)
\(258\) 0 0
\(259\) 25.2225 0.284743i 1.56725 0.0176930i
\(260\) 0 0
\(261\) 0 0
\(262\) 10.7970 + 6.23366i 0.667042 + 0.385117i
\(263\) 7.21550 + 4.16587i 0.444927 + 0.256879i 0.705685 0.708526i \(-0.250639\pi\)
−0.260759 + 0.965404i \(0.583973\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 8.14259 + 13.7427i 0.499254 + 0.842621i
\(267\) 0 0
\(268\) −2.69731 4.67188i −0.164765 0.285381i
\(269\) 7.14171 12.3698i 0.435438 0.754201i −0.561893 0.827210i \(-0.689927\pi\)
0.997331 + 0.0730091i \(0.0232602\pi\)
\(270\) 0 0
\(271\) −6.58566 + 3.80223i −0.400050 + 0.230969i −0.686506 0.727125i \(-0.740856\pi\)
0.286456 + 0.958094i \(0.407523\pi\)
\(272\) 6.52257 0.395489
\(273\) 0 0
\(274\) 0.0509686 0.00307912
\(275\) 0 0
\(276\) 0 0
\(277\) −6.02002 + 10.4270i −0.361708 + 0.626497i −0.988242 0.152897i \(-0.951140\pi\)
0.626534 + 0.779394i \(0.284473\pi\)
\(278\) 0.525345 + 0.909924i 0.0315081 + 0.0545736i
\(279\) 0 0
\(280\) 0 0
\(281\) 12.7879i 0.762861i 0.924397 + 0.381431i \(0.124569\pi\)
−0.924397 + 0.381431i \(0.875431\pi\)
\(282\) 0 0
\(283\) 13.4685 + 7.77607i 0.800622 + 0.462239i 0.843689 0.536833i \(-0.180379\pi\)
−0.0430666 + 0.999072i \(0.513713\pi\)
\(284\) −13.5781 7.83934i −0.805715 0.465180i
\(285\) 0 0
\(286\) 7.88931i 0.466505i
\(287\) −11.3061 + 20.1034i −0.667376 + 1.18667i
\(288\) 0 0
\(289\) −12.7719 22.1216i −0.751290 1.30127i
\(290\) 0 0
\(291\) 0 0
\(292\) −10.7532 + 6.20837i −0.629284 + 0.363317i
\(293\) −11.5536 −0.674967 −0.337483 0.941331i \(-0.609576\pi\)
−0.337483 + 0.941331i \(0.609576\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 8.25652 4.76690i 0.479900 0.277071i
\(297\) 0 0
\(298\) −4.11153 + 7.12137i −0.238174 + 0.412530i
\(299\) 8.85148 + 15.3312i 0.511894 + 0.886627i
\(300\) 0 0
\(301\) −6.94969 + 12.3573i −0.400573 + 0.712263i
\(302\) 4.26715i 0.245547i
\(303\) 0 0
\(304\) 5.22868 + 3.01878i 0.299885 + 0.173139i
\(305\) 0 0
\(306\) 0 0
\(307\) 2.57617i 0.147030i 0.997294 + 0.0735150i \(0.0234217\pi\)
−0.997294 + 0.0735150i \(0.976578\pi\)
\(308\) 0.0383219 + 3.39455i 0.00218359 + 0.193422i
\(309\) 0 0
\(310\) 0 0
\(311\) 12.3570 21.4030i 0.700702 1.21365i −0.267519 0.963553i \(-0.586204\pi\)
0.968220 0.250098i \(-0.0804629\pi\)
\(312\) 0 0
\(313\) −7.79573 + 4.50087i −0.440641 + 0.254404i −0.703869 0.710329i \(-0.748546\pi\)
0.263229 + 0.964733i \(0.415213\pi\)
\(314\) 4.83203 0.272687
\(315\) 0 0
\(316\) 11.1819 0.629028
\(317\) −20.7031 + 11.9529i −1.16280 + 0.671344i −0.951974 0.306180i \(-0.900949\pi\)
−0.210828 + 0.977523i \(0.567616\pi\)
\(318\) 0 0
\(319\) −0.866426 + 1.50069i −0.0485106 + 0.0840227i
\(320\) 0 0
\(321\) 0 0
\(322\) −3.88301 6.55359i −0.216392 0.365217i
\(323\) 39.3804i 2.19118i
\(324\) 0 0
\(325\) 0 0
\(326\) −9.31256 5.37661i −0.515775 0.297783i
\(327\) 0 0
\(328\) 8.71759i 0.481349i
\(329\) 2.13279 0.0240776i 0.117585 0.00132744i
\(330\) 0 0
\(331\) −2.18364 3.78217i −0.120024 0.207887i 0.799753 0.600329i \(-0.204964\pi\)
−0.919777 + 0.392442i \(0.871630\pi\)
\(332\) −1.87246 + 3.24320i −0.102765 + 0.177994i
\(333\) 0 0
\(334\) 16.3910 9.46334i 0.896874 0.517811i
\(335\) 0 0
\(336\) 0 0
\(337\) −19.5159 −1.06310 −0.531549 0.847028i \(-0.678390\pi\)
−0.531549 + 0.847028i \(0.678390\pi\)
\(338\) 21.4824 12.4029i 1.16849 0.674627i
\(339\) 0 0
\(340\) 0 0
\(341\) −5.55271 9.61758i −0.300696 0.520821i
\(342\) 0 0
\(343\) 18.5096 0.627092i 0.999427 0.0338598i
\(344\) 5.35859i 0.288916i
\(345\) 0 0
\(346\) 10.2568 + 5.92176i 0.551409 + 0.318356i
\(347\) −23.3088 13.4574i −1.25128 0.722429i −0.279919 0.960024i \(-0.590308\pi\)
−0.971364 + 0.237595i \(0.923641\pi\)
\(348\) 0 0
\(349\) 10.3821i 0.555741i −0.960619 0.277870i \(-0.910371\pi\)
0.960619 0.277870i \(-0.0896286\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.641550 + 1.11120i 0.0341947 + 0.0592270i
\(353\) 0.0844756 0.146316i 0.00449618 0.00778761i −0.863769 0.503889i \(-0.831902\pi\)
0.868265 + 0.496101i \(0.165235\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −3.63941 −0.192889
\(357\) 0 0
\(358\) −3.78561 −0.200075
\(359\) 32.6198 18.8330i 1.72161 0.993970i 0.805975 0.591949i \(-0.201641\pi\)
0.915631 0.402021i \(-0.131692\pi\)
\(360\) 0 0
\(361\) 8.72604 15.1139i 0.459265 0.795471i
\(362\) −9.50166 16.4574i −0.499396 0.864979i
\(363\) 0 0
\(364\) −13.9956 + 8.29240i −0.733568 + 0.434640i
\(365\) 0 0
\(366\) 0 0
\(367\) 13.1253 + 7.57787i 0.685133 + 0.395562i 0.801786 0.597611i \(-0.203883\pi\)
−0.116653 + 0.993173i \(0.537217\pi\)
\(368\) −2.49343 1.43958i −0.129979 0.0750435i
\(369\) 0 0
\(370\) 0 0
\(371\) −15.1784 + 8.99319i −0.788021 + 0.466903i
\(372\) 0 0
\(373\) −6.02002 10.4270i −0.311705 0.539889i 0.667027 0.745034i \(-0.267567\pi\)
−0.978732 + 0.205145i \(0.934233\pi\)
\(374\) 4.18455 7.24785i 0.216378 0.374778i
\(375\) 0 0
\(376\) 0.698165 0.403086i 0.0360051 0.0207876i
\(377\) −8.30386 −0.427671
\(378\) 0 0
\(379\) −18.0918 −0.929312 −0.464656 0.885491i \(-0.653822\pi\)
−0.464656 + 0.885491i \(0.653822\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.41421 2.44949i 0.0723575 0.125327i
\(383\) −14.5769 25.2480i −0.744846 1.29011i −0.950267 0.311437i \(-0.899190\pi\)
0.205421 0.978674i \(-0.434144\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.53892i 0.180126i
\(387\) 0 0
\(388\) 7.59347 + 4.38409i 0.385500 + 0.222568i
\(389\) −17.0297 9.83207i −0.863438 0.498506i 0.00172432 0.999999i \(-0.499451\pi\)
−0.865162 + 0.501493i \(0.832784\pi\)
\(390\) 0 0
\(391\) 18.7796i 0.949723i
\(392\) 5.98162 3.63597i 0.302117 0.183644i
\(393\) 0 0
\(394\) −1.18364 2.05012i −0.0596309 0.103284i
\(395\) 0 0
\(396\) 0 0
\(397\) 4.92295 2.84227i 0.247076 0.142649i −0.371349 0.928493i \(-0.621105\pi\)
0.618425 + 0.785844i \(0.287771\pi\)
\(398\) −3.46410 −0.173640
\(399\) 0 0
\(400\) 0 0
\(401\) −8.84787 + 5.10832i −0.441842 + 0.255097i −0.704378 0.709825i \(-0.748774\pi\)
0.262537 + 0.964922i \(0.415441\pi\)
\(402\) 0 0
\(403\) 26.6087 46.0876i 1.32547 2.29579i
\(404\) −0.853270 1.47791i −0.0424518 0.0735286i
\(405\) 0 0
\(406\) 3.57291 0.0403355i 0.177321 0.00200182i
\(407\) 12.2328i 0.606359i
\(408\) 0 0
\(409\) −12.0969 6.98414i −0.598153 0.345344i 0.170162 0.985416i \(-0.445571\pi\)
−0.768314 + 0.640073i \(0.778904\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 10.3644i 0.510617i
\(413\) 2.15275 + 3.63333i 0.105930 + 0.178784i
\(414\) 0 0
\(415\) 0 0
\(416\) −3.07432 + 5.32488i −0.150731 + 0.261074i
\(417\) 0 0
\(418\) 6.70891 3.87339i 0.328144 0.189454i
\(419\) −11.3181 −0.552924 −0.276462 0.961025i \(-0.589162\pi\)
−0.276462 + 0.961025i \(0.589162\pi\)
\(420\) 0 0
\(421\) −13.9099 −0.677928 −0.338964 0.940799i \(-0.610077\pi\)
−0.338964 + 0.940799i \(0.610077\pi\)
\(422\) 12.4379 7.18100i 0.605466 0.349566i
\(423\) 0 0
\(424\) −3.33413 + 5.77488i −0.161920 + 0.280453i
\(425\) 0 0
\(426\) 0 0
\(427\) −0.189761 16.8090i −0.00918318 0.813445i
\(428\) 11.5136i 0.556531i
\(429\) 0 0
\(430\) 0 0
\(431\) 22.5947 + 13.0451i 1.08835 + 0.628359i 0.933137 0.359522i \(-0.117060\pi\)
0.155213 + 0.987881i \(0.450394\pi\)
\(432\) 0 0
\(433\) 8.42614i 0.404935i 0.979289 + 0.202467i \(0.0648960\pi\)
−0.979289 + 0.202467i \(0.935104\pi\)
\(434\) −11.2251 + 19.9594i −0.538822 + 0.958083i
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) −8.69157 + 15.0542i −0.415774 + 0.720142i
\(438\) 0 0
\(439\) 23.9529 13.8292i 1.14321 0.660033i 0.195987 0.980606i \(-0.437209\pi\)
0.947224 + 0.320573i \(0.103875\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 40.1049 1.90759
\(443\) 2.04142 1.17861i 0.0969906 0.0559975i −0.450720 0.892665i \(-0.648833\pi\)
0.547711 + 0.836668i \(0.315499\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6.79876 + 11.7758i 0.321931 + 0.557600i
\(447\) 0 0
\(448\) 1.29693 2.30608i 0.0612740 0.108952i
\(449\) 12.8021i 0.604169i −0.953281 0.302084i \(-0.902318\pi\)
0.953281 0.302084i \(-0.0976824\pi\)
\(450\) 0 0
\(451\) 9.68696 + 5.59277i 0.456141 + 0.263353i
\(452\) 11.5939 + 6.69375i 0.545332 + 0.314847i
\(453\) 0 0
\(454\) 12.3559i 0.579893i
\(455\) 0 0
\(456\) 0 0
\(457\) −17.2621 29.8989i −0.807488 1.39861i −0.914599 0.404363i \(-0.867493\pi\)
0.107111 0.994247i \(-0.465840\pi\)
\(458\) −1.20671 + 2.09008i −0.0563857 + 0.0976628i
\(459\) 0 0
\(460\) 0 0
\(461\) 20.2692 0.944032 0.472016 0.881590i \(-0.343526\pi\)
0.472016 + 0.881590i \(0.343526\pi\)
\(462\) 0 0
\(463\) −13.1246 −0.609952 −0.304976 0.952360i \(-0.598648\pi\)
−0.304976 + 0.952360i \(0.598648\pi\)
\(464\) 1.16959 0.675260i 0.0542966 0.0313482i
\(465\) 0 0
\(466\) 6.43780 11.1506i 0.298225 0.516541i
\(467\) −0.765836 1.32647i −0.0354387 0.0613816i 0.847762 0.530377i \(-0.177950\pi\)
−0.883201 + 0.468995i \(0.844616\pi\)
\(468\) 0 0
\(469\) 7.27550 + 12.2793i 0.335951 + 0.567005i
\(470\) 0 0
\(471\) 0 0
\(472\) 1.38237 + 0.798110i 0.0636286 + 0.0367360i
\(473\) 5.95444 + 3.43780i 0.273786 + 0.158070i
\(474\) 0 0
\(475\) 0 0
\(476\) −17.2560 + 0.194807i −0.790927 + 0.00892896i
\(477\) 0 0
\(478\) −13.6273 23.6032i −0.623299 1.07959i
\(479\) −14.6585 + 25.3893i −0.669764 + 1.16007i 0.308205 + 0.951320i \(0.400272\pi\)
−0.977970 + 0.208746i \(0.933062\pi\)
\(480\) 0 0
\(481\) 50.7663 29.3100i 2.31475 1.33642i
\(482\) −2.61759 −0.119228
\(483\) 0 0
\(484\) −9.35366 −0.425166
\(485\) 0 0
\(486\) 0 0
\(487\) −4.09770 + 7.09743i −0.185685 + 0.321615i −0.943807 0.330497i \(-0.892784\pi\)
0.758122 + 0.652112i \(0.226117\pi\)
\(488\) −3.17681 5.50239i −0.143807 0.249082i
\(489\) 0 0
\(490\) 0 0
\(491\) 40.4383i 1.82495i 0.409129 + 0.912477i \(0.365833\pi\)
−0.409129 + 0.912477i \(0.634167\pi\)
\(492\) 0 0
\(493\) −7.62869 4.40443i −0.343579 0.198366i
\(494\) 32.1492 + 18.5614i 1.44646 + 0.835116i
\(495\) 0 0
\(496\) 8.65515i 0.388628i
\(497\) 36.1562 + 20.3341i 1.62183 + 0.912109i
\(498\) 0 0
\(499\) 8.72450 + 15.1113i 0.390562 + 0.676474i 0.992524 0.122051i \(-0.0389473\pi\)
−0.601961 + 0.798525i \(0.705614\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −23.1379 + 13.3586i −1.03269 + 0.596226i
\(503\) −1.91949 −0.0855860 −0.0427930 0.999084i \(-0.513626\pi\)
−0.0427930 + 0.999084i \(0.513626\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.19932 + 1.84713i −0.142227 + 0.0821149i
\(507\) 0 0
\(508\) 2.82656 4.89575i 0.125408 0.217214i
\(509\) 5.54549 + 9.60508i 0.245800 + 0.425737i 0.962356 0.271792i \(-0.0876161\pi\)
−0.716556 + 0.697529i \(0.754283\pi\)
\(510\) 0 0
\(511\) 28.2631 16.7459i 1.25029 0.740796i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 9.14632 + 5.28063i 0.403427 + 0.232919i
\(515\) 0 0
\(516\) 0 0
\(517\) 1.03440i 0.0454928i
\(518\) −21.7009 + 12.8578i −0.953484 + 0.564941i
\(519\) 0 0
\(520\) 0 0
\(521\) −19.8706 + 34.4168i −0.870546 + 1.50783i −0.00911254 + 0.999958i \(0.502901\pi\)
−0.861433 + 0.507871i \(0.830433\pi\)
\(522\) 0 0
\(523\) −27.0900 + 15.6404i −1.18456 + 0.683907i −0.957065 0.289872i \(-0.906387\pi\)
−0.227496 + 0.973779i \(0.573054\pi\)
\(524\) −12.4673 −0.544638
\(525\) 0 0
\(526\) −8.33174 −0.363281
\(527\) 48.8904 28.2269i 2.12970 1.22958i
\(528\) 0 0
\(529\) −7.35519 + 12.7396i −0.319791 + 0.553894i
\(530\) 0 0
\(531\) 0 0
\(532\) −13.9231 7.83026i −0.603641 0.339485i
\(533\) 53.6013i 2.32173i
\(534\) 0 0
\(535\) 0 0
\(536\) 4.67188 + 2.69731i 0.201795 + 0.116506i
\(537\) 0 0
\(538\) 14.2834i 0.615802i
\(539\) −0.202767 8.97941i −0.00873380 0.386771i
\(540\) 0 0
\(541\) 12.3987 + 21.4752i 0.533061 + 0.923290i 0.999254 + 0.0386065i \(0.0122919\pi\)
−0.466193 + 0.884683i \(0.654375\pi\)
\(542\) 3.80223 6.58566i 0.163320 0.282878i
\(543\) 0 0
\(544\) −5.64871 + 3.26128i −0.242186 + 0.139826i
\(545\) 0 0
\(546\) 0 0
\(547\) 40.5380 1.73328 0.866640 0.498934i \(-0.166275\pi\)
0.866640 + 0.498934i \(0.166275\pi\)
\(548\) −0.0441401 + 0.0254843i −0.00188557 + 0.00108863i
\(549\) 0 0
\(550\) 0 0
\(551\) −4.07692 7.06144i −0.173683 0.300827i
\(552\) 0 0
\(553\) −29.5825 + 0.333964i −1.25798 + 0.0142016i
\(554\) 12.0400i 0.511532i
\(555\) 0 0
\(556\) −0.909924 0.525345i −0.0385894 0.0222796i
\(557\) −20.5650 11.8732i −0.871367 0.503084i −0.00356477 0.999994i \(-0.501135\pi\)
−0.867802 + 0.496910i \(0.834468\pi\)
\(558\) 0 0
\(559\) 32.9480i 1.39355i
\(560\) 0 0
\(561\) 0 0
\(562\) −6.39394 11.0746i −0.269712 0.467155i
\(563\) −4.21434 + 7.29944i −0.177613 + 0.307635i −0.941062 0.338233i \(-0.890171\pi\)
0.763449 + 0.645868i \(0.223504\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −15.5521 −0.653705
\(567\) 0 0
\(568\) 15.6787 0.657863
\(569\) −20.3139 + 11.7283i −0.851605 + 0.491674i −0.861192 0.508280i \(-0.830282\pi\)
0.00958727 + 0.999954i \(0.496948\pi\)
\(570\) 0 0
\(571\) −7.67946 + 13.3012i −0.321376 + 0.556639i −0.980772 0.195157i \(-0.937479\pi\)
0.659397 + 0.751795i \(0.270812\pi\)
\(572\) 3.94466 + 6.83235i 0.164934 + 0.285675i
\(573\) 0 0
\(574\) −0.260365 23.0631i −0.0108674 0.962636i
\(575\) 0 0
\(576\) 0 0
\(577\) 12.3329 + 7.12041i 0.513426 + 0.296426i 0.734241 0.678889i \(-0.237538\pi\)
−0.220815 + 0.975316i \(0.570872\pi\)
\(578\) 22.1216 + 12.7719i 0.920139 + 0.531242i
\(579\) 0 0
\(580\) 0 0
\(581\) 4.85690 8.63609i 0.201498 0.358285i
\(582\) 0 0
\(583\) 4.27802 + 7.40975i 0.177178 + 0.306881i
\(584\) 6.20837 10.7532i 0.256904 0.444971i
\(585\) 0 0
\(586\) 10.0057 5.77679i 0.413331 0.238637i
\(587\) −12.5249 −0.516958 −0.258479 0.966017i \(-0.583221\pi\)
−0.258479 + 0.966017i \(0.583221\pi\)
\(588\) 0 0
\(589\) 52.2560 2.15317
\(590\) 0 0
\(591\) 0 0
\(592\) −4.76690 + 8.25652i −0.195919 + 0.339341i
\(593\) 7.35750 + 12.7436i 0.302136 + 0.523316i 0.976620 0.214975i \(-0.0689669\pi\)
−0.674483 + 0.738290i \(0.735634\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8.22305i 0.336829i
\(597\) 0 0
\(598\) −15.3312 8.85148i −0.626940 0.361964i
\(599\) −23.9304 13.8162i −0.977769 0.564515i −0.0761732 0.997095i \(-0.524270\pi\)
−0.901596 + 0.432579i \(0.857604\pi\)
\(600\) 0 0
\(601\) 8.82137i 0.359831i 0.983682 + 0.179916i \(0.0575825\pi\)
−0.983682 + 0.179916i \(0.942418\pi\)
\(602\) −0.160043 14.1766i −0.00652286 0.577794i
\(603\) 0 0
\(604\) −2.13357 3.69546i −0.0868139 0.150366i
\(605\) 0 0
\(606\) 0 0
\(607\) −22.9803 + 13.2677i −0.932743 + 0.538519i −0.887678 0.460465i \(-0.847683\pi\)
−0.0450649 + 0.998984i \(0.514349\pi\)
\(608\) −6.03756 −0.244855
\(609\) 0 0
\(610\) 0 0
\(611\) 4.29276 2.47843i 0.173667 0.100266i
\(612\) 0 0
\(613\) −0.456842 + 0.791273i −0.0184517 + 0.0319592i −0.875104 0.483935i \(-0.839207\pi\)
0.856652 + 0.515894i \(0.172540\pi\)
\(614\) −1.28809 2.23103i −0.0519830 0.0900371i
\(615\) 0 0
\(616\) −1.73046 2.92060i −0.0697223 0.117674i
\(617\) 35.0558i 1.41129i 0.708565 + 0.705646i \(0.249343\pi\)
−0.708565 + 0.705646i \(0.750657\pi\)
\(618\) 0 0
\(619\) −16.5382 9.54835i −0.664727 0.383781i 0.129348 0.991599i \(-0.458711\pi\)
−0.794076 + 0.607819i \(0.792045\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 24.7140i 0.990942i
\(623\) 9.62837 0.108697i 0.385753 0.00435485i
\(624\) 0 0
\(625\) 0 0
\(626\) 4.50087 7.79573i 0.179891 0.311580i
\(627\) 0 0
\(628\) −4.18466 + 2.41601i −0.166986 + 0.0964095i
\(629\) 62.1849 2.47947
\(630\) 0 0
\(631\) 21.5350 0.857296 0.428648 0.903472i \(-0.358990\pi\)
0.428648 + 0.903472i \(0.358990\pi\)
\(632\) −9.68377 + 5.59093i −0.385200 + 0.222395i
\(633\) 0 0
\(634\) 11.9529 20.7031i 0.474712 0.822225i
\(635\) 0 0
\(636\) 0 0
\(637\) 36.7788 22.3562i 1.45723 0.885786i
\(638\) 1.73285i 0.0686043i
\(639\) 0 0
\(640\) 0 0
\(641\) 28.6767 + 16.5565i 1.13266 + 0.653943i 0.944603 0.328214i \(-0.106447\pi\)
0.188060 + 0.982158i \(0.439780\pi\)
\(642\) 0 0
\(643\) 3.31191i 0.130609i −0.997865 0.0653044i \(-0.979198\pi\)
0.997865 0.0653044i \(-0.0208018\pi\)
\(644\) 6.63958 + 3.73407i 0.261636 + 0.147143i
\(645\) 0 0
\(646\) 19.6902 + 34.1044i 0.774700 + 1.34182i
\(647\) 11.6669 20.2077i 0.458674 0.794447i −0.540217 0.841526i \(-0.681658\pi\)
0.998891 + 0.0470789i \(0.0149912\pi\)
\(648\) 0 0
\(649\) 1.77371 1.02405i 0.0696244 0.0401977i
\(650\) 0 0
\(651\) 0 0
\(652\) 10.7532 0.421128
\(653\) −15.1211 + 8.73019i −0.591735 + 0.341639i −0.765783 0.643099i \(-0.777649\pi\)
0.174048 + 0.984737i \(0.444315\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −4.35880 7.54966i −0.170182 0.294765i
\(657\) 0 0
\(658\) −1.83501 + 1.08725i −0.0715363 + 0.0423854i
\(659\) 1.29864i 0.0505877i 0.999680 + 0.0252939i \(0.00805215\pi\)
−0.999680 + 0.0252939i \(0.991948\pi\)
\(660\) 0 0
\(661\) 4.39869 + 2.53959i 0.171089 + 0.0987785i 0.583099 0.812401i \(-0.301840\pi\)
−0.412010 + 0.911179i \(0.635173\pi\)
\(662\) 3.78217 + 2.18364i 0.146998 + 0.0848695i
\(663\) 0 0
\(664\) 3.74493i 0.145331i
\(665\) 0 0
\(666\) 0 0
\(667\) 1.94419 + 3.36743i 0.0752793 + 0.130387i
\(668\) −9.46334 + 16.3910i −0.366147 + 0.634186i
\(669\) 0 0
\(670\) 0 0
\(671\) −8.15232 −0.314717
\(672\) 0 0
\(673\) 18.4124 0.709747 0.354873 0.934914i \(-0.384524\pi\)
0.354873 + 0.934914i \(0.384524\pi\)
\(674\) 16.9012 9.75794i 0.651012 0.375862i
\(675\) 0 0
\(676\) −12.4029 + 21.4824i −0.477033 + 0.826246i
\(677\) −20.6397 35.7491i −0.793250 1.37395i −0.923945 0.382526i \(-0.875054\pi\)
0.130695 0.991423i \(-0.458279\pi\)
\(678\) 0 0
\(679\) −20.2201 11.3717i −0.775976 0.436405i
\(680\) 0 0
\(681\) 0 0
\(682\) 9.61758 + 5.55271i 0.368276 + 0.212624i
\(683\) −19.9007 11.4896i −0.761477 0.439639i 0.0683485 0.997662i \(-0.478227\pi\)
−0.829826 + 0.558022i \(0.811560\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −15.7163 + 9.79790i −0.600050 + 0.374085i
\(687\) 0 0
\(688\) −2.67929 4.64067i −0.102147 0.176924i
\(689\) −20.5004 + 35.5077i −0.781001 + 1.35273i
\(690\) 0 0
\(691\) 11.0048 6.35361i 0.418642 0.241703i −0.275854 0.961199i \(-0.588961\pi\)
0.694496 + 0.719497i \(0.255627\pi\)
\(692\) −11.8435 −0.450223
\(693\) 0 0
\(694\) 26.9147 1.02167
\(695\) 0 0
\(696\) 0 0
\(697\) −28.4305 + 49.2431i −1.07688 + 1.86522i
\(698\) 5.19105 + 8.99116i 0.196484 + 0.340320i
\(699\) 0 0
\(700\) 0 0
\(701\) 26.5441i 1.00256i 0.865286 + 0.501279i \(0.167137\pi\)
−0.865286 + 0.501279i \(0.832863\pi\)
\(702\) 0 0
\(703\) 49.8492 + 28.7804i 1.88010 + 1.08548i
\(704\) −1.11120 0.641550i −0.0418798 0.0241793i
\(705\) 0 0
\(706\) 0.168951i 0.00635856i
\(707\) 2.30154 + 3.88444i 0.0865582 + 0.146089i
\(708\) 0 0
\(709\) 21.1766 + 36.6789i 0.795303 + 1.37751i 0.922646 + 0.385647i \(0.126022\pi\)
−0.127343 + 0.991859i \(0.540645\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 3.15183 1.81971i 0.118120 0.0681964i
\(713\) −24.9196 −0.933248
\(714\) 0 0
\(715\) 0 0
\(716\) 3.27843 1.89280i 0.122521 0.0707374i
\(717\) 0 0
\(718\) −18.8330 + 32.6198i −0.702843 + 1.21736i
\(719\) −11.9507 20.6992i −0.445686 0.771951i 0.552413 0.833570i \(-0.313707\pi\)
−0.998100 + 0.0616189i \(0.980374\pi\)
\(720\) 0 0
\(721\) −0.309550 27.4199i −0.0115282 1.02117i
\(722\) 17.4521i 0.649499i
\(723\) 0 0
\(724\) 16.4574 + 9.50166i 0.611633 + 0.353126i
\(725\) 0 0
\(726\) 0 0
\(727\) 22.4529i 0.832731i 0.909197 + 0.416365i \(0.136696\pi\)
−0.909197 + 0.416365i \(0.863304\pi\)
\(728\) 7.97433 14.1792i 0.295548 0.525517i
\(729\) 0 0
\(730\) 0 0
\(731\) −17.4759 + 30.2691i −0.646368 + 1.11954i
\(732\) 0 0
\(733\) −23.8547 + 13.7725i −0.881094 + 0.508700i −0.871019 0.491249i \(-0.836540\pi\)
−0.0100750 + 0.999949i \(0.503207\pi\)
\(734\) −15.1557 −0.559409
\(735\) 0 0
\(736\) 2.87917 0.106128
\(737\) 5.99449 3.46092i 0.220810 0.127485i
\(738\) 0 0
\(739\) 15.5456 26.9258i 0.571856 0.990483i −0.424520 0.905419i \(-0.639557\pi\)
0.996375 0.0850646i \(-0.0271097\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 8.64824 15.3775i 0.317487 0.564526i
\(743\) 1.12610i 0.0413127i 0.999787 + 0.0206564i \(0.00657559\pi\)
−0.999787 + 0.0206564i \(0.993424\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 10.4270 + 6.02002i 0.381759 + 0.220409i
\(747\) 0 0
\(748\) 8.36910i 0.306005i
\(749\) 0.343872 + 30.4602i 0.0125648 + 1.11299i
\(750\) 0 0
\(751\) 4.77108 + 8.26375i 0.174099 + 0.301549i 0.939849 0.341590i \(-0.110965\pi\)
−0.765750 + 0.643138i \(0.777632\pi\)
\(752\) −0.403086 + 0.698165i −0.0146990 + 0.0254595i
\(753\) 0 0
\(754\) 7.19135 4.15193i 0.261894 0.151204i
\(755\) 0 0
\(756\) 0 0
\(757\) −33.1687 −1.20554 −0.602768 0.797917i \(-0.705935\pi\)
−0.602768 + 0.797917i \(0.705935\pi\)
\(758\) 15.6679 9.04589i 0.569085 0.328562i
\(759\) 0 0
\(760\) 0 0
\(761\) −2.17122 3.76067i −0.0787068 0.136324i 0.823985 0.566611i \(-0.191746\pi\)
−0.902692 + 0.430287i \(0.858412\pi\)
\(762\) 0 0
\(763\) 2.69731 + 4.55242i 0.0976493 + 0.164809i
\(764\) 2.82843i 0.102329i
\(765\) 0 0
\(766\) 25.2480 + 14.5769i 0.912246 + 0.526685i
\(767\) 8.49967 + 4.90729i 0.306905 + 0.177192i
\(768\) 0 0
\(769\) 46.1795i 1.66528i 0.553818 + 0.832638i \(0.313170\pi\)
−0.553818 + 0.832638i \(0.686830\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.76946 + 3.06479i 0.0636842 + 0.110304i
\(773\) −8.98723 + 15.5663i −0.323248 + 0.559883i −0.981156 0.193216i \(-0.938108\pi\)
0.657908 + 0.753098i \(0.271442\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −8.76818 −0.314759
\(777\) 0 0
\(778\) 19.6641 0.704994
\(779\) −45.5815 + 26.3165i −1.63313 + 0.942886i
\(780\) 0 0
\(781\) 10.0587 17.4221i 0.359927 0.623412i
\(782\) −9.38978 16.2636i −0.335778 0.581584i
\(783\) 0 0
\(784\) −3.36225 + 6.13965i −0.120080 + 0.219273i
\(785\) 0 0
\(786\) 0 0
\(787\) 11.9873 + 6.92087i 0.427301 + 0.246702i 0.698196 0.715907i \(-0.253986\pi\)
−0.270895 + 0.962609i \(0.587320\pi\)
\(788\) 2.05012 + 1.18364i 0.0730326 + 0.0421654i
\(789\) 0 0
\(790\) 0 0
\(791\) −30.8726 17.3626i −1.09770 0.617342i
\(792\) 0 0
\(793\) −19.5330 33.8322i −0.693638 1.20142i
\(794\) −2.84227 + 4.92295i −0.100868 + 0.174709i
\(795\) 0 0
\(796\) 3.00000 1.73205i 0.106332 0.0613909i
\(797\) 7.46138 0.264296 0.132148 0.991230i \(-0.457813\pi\)
0.132148 + 0.991230i \(0.457813\pi\)
\(798\) 0 0
\(799\) 5.25831 0.186026
\(800\) 0 0
\(801\) 0 0
\(802\) 5.10832 8.84787i 0.180381 0.312429i
\(803\) −7.96596 13.7974i −0.281113 0.486901i
\(804\) 0 0
\(805\) 0 0
\(806\) 53.2174i 1.87450i
\(807\) 0 0
\(808\) 1.47791 + 0.853270i 0.0519926 + 0.0300179i
\(809\) −1.28750 0.743340i −0.0452662 0.0261344i 0.477196 0.878797i \(-0.341653\pi\)
−0.522462 + 0.852662i \(0.674986\pi\)
\(810\) 0 0
\(811\) 31.5494i 1.10785i −0.832567 0.553925i \(-0.813129\pi\)
0.832567 0.553925i \(-0.186871\pi\)
\(812\) −3.07407 + 1.82139i −0.107879 + 0.0639182i
\(813\) 0 0
\(814\) 6.11641 + 10.5939i 0.214380 + 0.371317i
\(815\) 0 0
\(816\) 0 0
\(817\) −28.0183 + 16.1764i −0.980237 + 0.565940i
\(818\) 13.9683 0.488390
\(819\) 0 0
\(820\) 0 0
\(821\) 27.5430 15.9020i 0.961257 0.554982i 0.0646976 0.997905i \(-0.479392\pi\)
0.896560 + 0.442923i \(0.146058\pi\)
\(822\) 0 0
\(823\) −18.3186 + 31.7287i −0.638545 + 1.10599i 0.347207 + 0.937788i \(0.387130\pi\)
−0.985752 + 0.168204i \(0.946203\pi\)
\(824\) −5.18220 8.97583i −0.180530 0.312688i
\(825\) 0 0
\(826\) −3.68100 2.07018i −0.128078 0.0720308i
\(827\) 21.9864i 0.764541i 0.924050 + 0.382271i \(0.124858\pi\)
−0.924050 + 0.382271i \(0.875142\pi\)
\(828\) 0 0
\(829\) 21.0498 + 12.1531i 0.731090 + 0.422095i 0.818821 0.574049i \(-0.194628\pi\)
−0.0877305 + 0.996144i \(0.527961\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 6.14864i 0.213166i
\(833\) 45.6463 1.03076i 1.58155 0.0357136i
\(834\) 0 0
\(835\) 0 0
\(836\) −3.87339 + 6.70891i −0.133964 + 0.232033i
\(837\) 0 0
\(838\) 9.80175 5.65904i 0.338596 0.195488i
\(839\) 27.3914 0.945655 0.472827 0.881155i \(-0.343233\pi\)
0.472827 + 0.881155i \(0.343233\pi\)
\(840\) 0 0
\(841\) 27.1761 0.937107
\(842\) 12.0463 6.95496i 0.415145 0.239684i
\(843\) 0 0
\(844\) −7.18100 + 12.4379i −0.247180 + 0.428129i
\(845\) 0 0
\(846\) 0 0
\(847\) 24.7459 0.279362i 0.850278 0.00959899i
\(848\) 6.66826i 0.228989i
\(849\) 0 0
\(850\) 0 0
\(851\) −23.7719 13.7247i −0.814890 0.470477i
\(852\) 0 0
\(853\) 22.6073i 0.774060i 0.922067 + 0.387030i \(0.126499\pi\)
−0.922067 + 0.387030i \(0.873501\pi\)
\(854\) 8.56884 + 14.4622i 0.293220 + 0.494885i
\(855\) 0 0
\(856\) 5.75680 + 9.97106i 0.196763 + 0.340804i
\(857\) −23.9289 + 41.4461i −0.817396 + 1.41577i 0.0901984 + 0.995924i \(0.471250\pi\)
−0.907595 + 0.419848i \(0.862083\pi\)
\(858\) 0 0
\(859\) −41.5770 + 24.0045i −1.41859 + 0.819022i −0.996175 0.0873810i \(-0.972150\pi\)
−0.422413 + 0.906403i \(0.638817\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −26.0901 −0.888634
\(863\) 41.1855 23.7785i 1.40197 0.809428i 0.407376 0.913260i \(-0.366444\pi\)
0.994595 + 0.103832i \(0.0331104\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −4.21307 7.29726i −0.143166 0.247971i
\(867\) 0 0
\(868\) −0.258500 22.8979i −0.00877406 0.777206i
\(869\) 14.3474i 0.486703i
\(870\) 0 0
\(871\) 28.7257 + 16.5848i 0.973334 + 0.561955i
\(872\) 1.73205 + 1.00000i 0.0586546 + 0.0338643i
\(873\) 0 0
\(874\) 17.3831i 0.587993i
\(875\) 0 0
\(876\) 0 0
\(877\) −18.5002 32.0433i −0.624707 1.08202i −0.988597 0.150583i \(-0.951885\pi\)
0.363890 0.931442i \(-0.381448\pi\)
\(878\) −13.8292 + 23.9529i −0.466714 + 0.808372i
\(879\) 0 0
\(880\) 0 0
\(881\) 5.97213 0.201206 0.100603 0.994927i \(-0.467923\pi\)
0.100603 + 0.994927i \(0.467923\pi\)
\(882\) 0 0
\(883\) −11.0589 −0.372163 −0.186081 0.982534i \(-0.559579\pi\)
−0.186081 + 0.982534i \(0.559579\pi\)
\(884\) −34.7319 + 20.0524i −1.16816 + 0.674437i
\(885\) 0 0
\(886\) −1.17861 + 2.04142i −0.0395962 + 0.0685827i
\(887\) 2.97535 + 5.15346i 0.0999026 + 0.173036i 0.911644 0.410980i \(-0.134814\pi\)
−0.811742 + 0.584017i \(0.801480\pi\)
\(888\) 0 0
\(889\) −7.33169 + 13.0365i −0.245897 + 0.437231i
\(890\) 0 0
\(891\) 0 0
\(892\) −11.7758 6.79876i −0.394283 0.227639i
\(893\) 4.21521 + 2.43365i 0.141057 + 0.0814391i
\(894\) 0 0
\(895\) 0 0
\(896\) 0.0298666 + 2.64558i 0.000997774 + 0.0883827i
\(897\) 0 0
\(898\) 6.40105 + 11.0869i 0.213606 + 0.369976i
\(899\) 5.84448 10.1229i 0.194924 0.337619i
\(900\) 0 0
\(901\) −37.6671 + 21.7471i −1.25487 + 0.724500i
\(902\) −11.1855 −0.372438
\(903\) 0 0
\(904\) −13.3875 −0.445261
\(905\) 0 0
\(906\) 0 0
\(907\) 27.6572 47.9037i 0.918343 1.59062i 0.116411 0.993201i \(-0.462861\pi\)
0.801932 0.597415i \(-0.203805\pi\)
\(908\) 6.17797 + 10.7006i 0.205023 + 0.355110i
\(909\) 0 0
\(910\) 0 0
\(911\) 35.2080i 1.16649i 0.812295 + 0.583246i \(0.198218\pi\)
−0.812295 + 0.583246i \(0.801782\pi\)
\(912\) 0 0
\(913\) −4.16135 2.40256i −0.137721 0.0795131i
\(914\) 29.8989 + 17.2621i 0.988966 + 0.570980i
\(915\) 0 0
\(916\) 2.41341i 0.0797414i
\(917\) 32.9833 0.372357i 1.08921 0.0122963i
\(918\) 0 0
\(919\) −25.4437 44.0698i −0.839311 1.45373i −0.890471 0.455039i \(-0.849625\pi\)
0.0511601 0.998690i \(-0.483708\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −17.5537 + 10.1346i −0.578099 + 0.333766i
\(923\) 96.4026 3.17313
\(924\) 0 0
\(925\) 0 0
\(926\) 11.3662 6.56230i 0.373518 0.215651i
\(927\) 0 0
\(928\) −0.675260 + 1.16959i −0.0221665 + 0.0383935i
\(929\) −29.8405 51.6853i −0.979036 1.69574i −0.665918 0.746025i \(-0.731960\pi\)
−0.313118 0.949714i \(-0.601373\pi\)
\(930\) 0 0
\(931\) 37.0685 + 20.2998i 1.21487 + 0.665298i
\(932\) 12.8756i 0.421754i
\(933\) 0 0
\(934\) 1.32647 + 0.765836i 0.0434033 + 0.0250589i
\(935\) 0 0
\(936\) 0 0
\(937\) 24.2579i 0.792471i −0.918149 0.396235i \(-0.870316\pi\)
0.918149 0.396235i \(-0.129684\pi\)
\(938\) −12.4404 6.99643i −0.406194 0.228442i
\(939\) 0 0
\(940\) 0 0
\(941\) 15.0539 26.0742i 0.490744 0.849994i −0.509199 0.860649i \(-0.670058\pi\)
0.999943 + 0.0106549i \(0.00339164\pi\)
\(942\) 0 0
\(943\) 21.7367 12.5497i 0.707845 0.408675i
\(944\) −1.59622 −0.0519525
\(945\) 0 0
\(946\) −6.87560 −0.223545
\(947\) 39.9779 23.0812i 1.29911 0.750039i 0.318857 0.947803i \(-0.396701\pi\)
0.980250 + 0.197764i \(0.0633678\pi\)
\(948\) 0 0
\(949\) 38.1730 66.1176i 1.23915 2.14627i
\(950\) 0 0
\(951\) 0 0
\(952\) 14.8467 8.79670i 0.481185 0.285103i
\(953\) 23.7121i 0.768110i 0.923310 + 0.384055i \(0.125473\pi\)
−0.923310 + 0.384055i \(0.874527\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 23.6032 + 13.6273i 0.763382 + 0.440739i
\(957\) 0 0
\(958\) 29.3170i 0.947190i
\(959\) 0.116015 0.0687391i 0.00374632 0.00221970i
\(960\) 0 0
\(961\) 21.9558 + 38.0286i 0.708252 + 1.22673i
\(962\) −29.3100 + 50.7663i −0.944991 + 1.63677i
\(963\) 0 0
\(964\) 2.26690 1.30880i 0.0730120 0.0421535i
\(965\) 0 0
\(966\) 0 0
\(967\) −0.0922780 −0.00296746 −0.00148373 0.999999i \(-0.500472\pi\)
−0.00148373 + 0.999999i \(0.500472\pi\)
\(968\) 8.10050 4.67683i 0.260360 0.150319i
\(969\) 0 0
\(970\) 0 0
\(971\) 19.8502 + 34.3816i 0.637024 + 1.10336i 0.986082 + 0.166257i \(0.0531683\pi\)
−0.349058 + 0.937101i \(0.613498\pi\)
\(972\) 0 0
\(973\) 2.42297 + 1.36267i 0.0776769 + 0.0436851i
\(974\) 8.19540i 0.262598i
\(975\) 0 0
\(976\) 5.50239 + 3.17681i 0.176127 + 0.101687i
\(977\) 31.8758 + 18.4035i 1.01980 + 0.588779i 0.914045 0.405613i \(-0.132942\pi\)
0.105751 + 0.994393i \(0.466275\pi\)
\(978\) 0 0
\(979\) 4.66973i 0.149245i
\(980\) 0 0
\(981\) 0 0
\(982\) −20.2191 35.0206i −0.645218 1.11755i
\(983\) 31.2865 54.1899i 0.997885 1.72839i 0.442650 0.896694i \(-0.354038\pi\)
0.555235 0.831693i \(-0.312628\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 8.80886 0.280531
\(987\) 0 0
\(988\) −37.1227 −1.18103
\(989\) 13.3613 7.71414i 0.424864 0.245295i
\(990\) 0 0
\(991\) 17.4019 30.1410i 0.552791 0.957462i −0.445281 0.895391i \(-0.646896\pi\)
0.998072 0.0620708i \(-0.0197704\pi\)
\(992\) −4.32758 7.49558i −0.137401 0.237985i
\(993\) 0 0
\(994\) −41.4793 + 0.468269i −1.31564 + 0.0148526i
\(995\) 0 0
\(996\) 0 0
\(997\) 42.3167 + 24.4316i 1.34018 + 0.773755i 0.986834 0.161736i \(-0.0517094\pi\)
0.353349 + 0.935492i \(0.385043\pi\)
\(998\) −15.1113 8.72450i −0.478339 0.276169i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.2.bf.f.1151.7 32
3.2 odd 2 inner 3150.2.bf.f.1151.9 32
5.2 odd 4 630.2.bo.a.269.3 yes 16
5.3 odd 4 630.2.bo.b.269.8 yes 16
5.4 even 2 inner 3150.2.bf.f.1151.10 32
7.5 odd 6 inner 3150.2.bf.f.1601.9 32
15.2 even 4 630.2.bo.b.269.6 yes 16
15.8 even 4 630.2.bo.a.269.1 yes 16
15.14 odd 2 inner 3150.2.bf.f.1151.8 32
21.5 even 6 inner 3150.2.bf.f.1601.7 32
35.3 even 12 4410.2.d.a.4409.9 16
35.12 even 12 630.2.bo.a.89.1 16
35.17 even 12 4410.2.d.b.4409.10 16
35.18 odd 12 4410.2.d.a.4409.8 16
35.19 odd 6 inner 3150.2.bf.f.1601.8 32
35.32 odd 12 4410.2.d.b.4409.7 16
35.33 even 12 630.2.bo.b.89.6 yes 16
105.17 odd 12 4410.2.d.a.4409.7 16
105.32 even 12 4410.2.d.a.4409.10 16
105.38 odd 12 4410.2.d.b.4409.8 16
105.47 odd 12 630.2.bo.b.89.8 yes 16
105.53 even 12 4410.2.d.b.4409.9 16
105.68 odd 12 630.2.bo.a.89.3 yes 16
105.89 even 6 inner 3150.2.bf.f.1601.10 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.bo.a.89.1 16 35.12 even 12
630.2.bo.a.89.3 yes 16 105.68 odd 12
630.2.bo.a.269.1 yes 16 15.8 even 4
630.2.bo.a.269.3 yes 16 5.2 odd 4
630.2.bo.b.89.6 yes 16 35.33 even 12
630.2.bo.b.89.8 yes 16 105.47 odd 12
630.2.bo.b.269.6 yes 16 15.2 even 4
630.2.bo.b.269.8 yes 16 5.3 odd 4
3150.2.bf.f.1151.7 32 1.1 even 1 trivial
3150.2.bf.f.1151.8 32 15.14 odd 2 inner
3150.2.bf.f.1151.9 32 3.2 odd 2 inner
3150.2.bf.f.1151.10 32 5.4 even 2 inner
3150.2.bf.f.1601.7 32 21.5 even 6 inner
3150.2.bf.f.1601.8 32 35.19 odd 6 inner
3150.2.bf.f.1601.9 32 7.5 odd 6 inner
3150.2.bf.f.1601.10 32 105.89 even 6 inner
4410.2.d.a.4409.7 16 105.17 odd 12
4410.2.d.a.4409.8 16 35.18 odd 12
4410.2.d.a.4409.9 16 35.3 even 12
4410.2.d.a.4409.10 16 105.32 even 12
4410.2.d.b.4409.7 16 35.32 odd 12
4410.2.d.b.4409.8 16 105.38 odd 12
4410.2.d.b.4409.9 16 105.53 even 12
4410.2.d.b.4409.10 16 35.17 even 12