Properties

Label 630.2.bo.a.89.3
Level $630$
Weight $2$
Character 630.89
Analytic conductor $5.031$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,2,Mod(89,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.89");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bo (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 21 x^{14} - 54 x^{13} + 113 x^{12} - 168 x^{11} + 186 x^{10} - 84 x^{9} + \cdots + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.3
Root \(1.68760 - 1.46697i\) of defining polynomial
Character \(\chi\) \(=\) 630.89
Dual form 630.2.bo.a.269.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-1.68760 - 1.46697i) q^{5} +(-2.30608 + 1.29693i) q^{7} +1.00000 q^{8} +(2.11423 - 0.728019i) q^{10} +(1.11120 - 0.641550i) q^{11} +6.14864 q^{13} +(0.0298666 - 2.64558i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-5.64871 + 3.26128i) q^{17} +(5.22868 + 3.01878i) q^{19} +(-0.426635 + 2.19499i) q^{20} +1.28310i q^{22} +(-1.43958 + 2.49343i) q^{23} +(0.695987 + 4.95132i) q^{25} +(-3.07432 + 5.32488i) q^{26} +(2.27621 + 1.34866i) q^{28} +1.35052i q^{29} +(-7.49558 + 4.32758i) q^{31} +(-0.500000 - 0.866025i) q^{32} -6.52257i q^{34} +(5.79429 + 1.19425i) q^{35} +(8.25652 + 4.76690i) q^{37} +(-5.22868 + 3.01878i) q^{38} +(-1.68760 - 1.46697i) q^{40} +8.71759 q^{41} +5.35859i q^{43} +(-1.11120 - 0.641550i) q^{44} +(-1.43958 - 2.49343i) q^{46} +(0.698165 + 0.403086i) q^{47} +(3.63597 - 5.98162i) q^{49} +(-4.63597 - 1.87292i) q^{50} +(-3.07432 - 5.32488i) q^{52} +(3.33413 + 5.77488i) q^{53} +(-2.81639 - 0.547415i) q^{55} +(-2.30608 + 1.29693i) q^{56} +(-1.16959 - 0.675260i) q^{58} +(-0.798110 - 1.38237i) q^{59} +(-5.50239 - 3.17681i) q^{61} -8.65515i q^{62} +1.00000 q^{64} +(-10.3764 - 9.01988i) q^{65} +(4.67188 - 2.69731i) q^{67} +(5.64871 + 3.26128i) q^{68} +(-3.93140 + 4.42087i) q^{70} +15.6787i q^{71} +(-6.20837 - 10.7532i) q^{73} +(-8.25652 + 4.76690i) q^{74} -6.03756i q^{76} +(-1.73046 + 2.92060i) q^{77} +(-5.59093 + 9.68377i) q^{79} +(2.11423 - 0.728019i) q^{80} +(-4.35880 + 7.54966i) q^{82} -3.74493i q^{83} +(14.3170 + 2.78275i) q^{85} +(-4.64067 - 2.67929i) q^{86} +(1.11120 - 0.641550i) q^{88} +(1.81971 - 3.15183i) q^{89} +(-14.1792 + 7.97433i) q^{91} +2.87917 q^{92} +(-0.698165 + 0.403086i) q^{94} +(-4.39545 - 12.7648i) q^{95} -8.76818 q^{97} +(3.36225 + 6.13965i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} - 8 q^{4} - 6 q^{5} + 16 q^{8} + 6 q^{10} - 8 q^{16} + 24 q^{19} - 8 q^{23} - 6 q^{25} + 12 q^{31} - 8 q^{32} + 4 q^{35} - 24 q^{38} - 6 q^{40} - 8 q^{46} + 60 q^{47} - 28 q^{49} + 12 q^{50}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.68760 1.46697i −0.754718 0.656050i
\(6\) 0 0
\(7\) −2.30608 + 1.29693i −0.871614 + 0.490192i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.11423 0.728019i 0.668580 0.230220i
\(11\) 1.11120 0.641550i 0.335038 0.193435i −0.323037 0.946386i \(-0.604704\pi\)
0.658076 + 0.752952i \(0.271371\pi\)
\(12\) 0 0
\(13\) 6.14864 1.70533 0.852663 0.522462i \(-0.174986\pi\)
0.852663 + 0.522462i \(0.174986\pi\)
\(14\) 0.0298666 2.64558i 0.00798219 0.707062i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −5.64871 + 3.26128i −1.37001 + 0.790977i −0.990929 0.134385i \(-0.957094\pi\)
−0.379084 + 0.925362i \(0.623761\pi\)
\(18\) 0 0
\(19\) 5.22868 + 3.01878i 1.19954 + 0.692555i 0.960453 0.278443i \(-0.0898183\pi\)
0.239088 + 0.970998i \(0.423152\pi\)
\(20\) −0.426635 + 2.19499i −0.0953985 + 0.490815i
\(21\) 0 0
\(22\) 1.28310i 0.273558i
\(23\) −1.43958 + 2.49343i −0.300174 + 0.519917i −0.976175 0.216984i \(-0.930378\pi\)
0.676001 + 0.736901i \(0.263711\pi\)
\(24\) 0 0
\(25\) 0.695987 + 4.95132i 0.139197 + 0.990265i
\(26\) −3.07432 + 5.32488i −0.602923 + 1.04429i
\(27\) 0 0
\(28\) 2.27621 + 1.34866i 0.430163 + 0.254872i
\(29\) 1.35052i 0.250785i 0.992107 + 0.125393i \(0.0400191\pi\)
−0.992107 + 0.125393i \(0.959981\pi\)
\(30\) 0 0
\(31\) −7.49558 + 4.32758i −1.34625 + 0.777255i −0.987716 0.156263i \(-0.950055\pi\)
−0.358530 + 0.933518i \(0.616722\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 6.52257i 1.11861i
\(35\) 5.79429 + 1.19425i 0.979413 + 0.201866i
\(36\) 0 0
\(37\) 8.25652 + 4.76690i 1.35736 + 0.783674i 0.989268 0.146114i \(-0.0466766\pi\)
0.368095 + 0.929788i \(0.380010\pi\)
\(38\) −5.22868 + 3.01878i −0.848203 + 0.489710i
\(39\) 0 0
\(40\) −1.68760 1.46697i −0.266833 0.231949i
\(41\) 8.71759 1.36146 0.680730 0.732535i \(-0.261663\pi\)
0.680730 + 0.732535i \(0.261663\pi\)
\(42\) 0 0
\(43\) 5.35859i 0.817177i 0.912719 + 0.408588i \(0.133979\pi\)
−0.912719 + 0.408588i \(0.866021\pi\)
\(44\) −1.11120 0.641550i −0.167519 0.0967173i
\(45\) 0 0
\(46\) −1.43958 2.49343i −0.212255 0.367637i
\(47\) 0.698165 + 0.403086i 0.101838 + 0.0587961i 0.550054 0.835129i \(-0.314607\pi\)
−0.448216 + 0.893925i \(0.647940\pi\)
\(48\) 0 0
\(49\) 3.63597 5.98162i 0.519424 0.854517i
\(50\) −4.63597 1.87292i −0.655625 0.264871i
\(51\) 0 0
\(52\) −3.07432 5.32488i −0.426331 0.738427i
\(53\) 3.33413 + 5.77488i 0.457978 + 0.793241i 0.998854 0.0478611i \(-0.0152405\pi\)
−0.540876 + 0.841102i \(0.681907\pi\)
\(54\) 0 0
\(55\) −2.81639 0.547415i −0.379762 0.0738134i
\(56\) −2.30608 + 1.29693i −0.308162 + 0.173309i
\(57\) 0 0
\(58\) −1.16959 0.675260i −0.153574 0.0886660i
\(59\) −0.798110 1.38237i −0.103905 0.179969i 0.809385 0.587278i \(-0.199800\pi\)
−0.913290 + 0.407309i \(0.866467\pi\)
\(60\) 0 0
\(61\) −5.50239 3.17681i −0.704509 0.406748i 0.104516 0.994523i \(-0.466671\pi\)
−0.809025 + 0.587775i \(0.800004\pi\)
\(62\) 8.65515i 1.09921i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −10.3764 9.01988i −1.28704 1.11878i
\(66\) 0 0
\(67\) 4.67188 2.69731i 0.570761 0.329529i −0.186692 0.982418i \(-0.559777\pi\)
0.757453 + 0.652889i \(0.226443\pi\)
\(68\) 5.64871 + 3.26128i 0.685006 + 0.395489i
\(69\) 0 0
\(70\) −3.93140 + 4.42087i −0.469892 + 0.528395i
\(71\) 15.6787i 1.86072i 0.366650 + 0.930359i \(0.380505\pi\)
−0.366650 + 0.930359i \(0.619495\pi\)
\(72\) 0 0
\(73\) −6.20837 10.7532i −0.726635 1.25857i −0.958298 0.285772i \(-0.907750\pi\)
0.231663 0.972796i \(-0.425583\pi\)
\(74\) −8.25652 + 4.76690i −0.959801 + 0.554141i
\(75\) 0 0
\(76\) 6.03756i 0.692555i
\(77\) −1.73046 + 2.92060i −0.197204 + 0.332834i
\(78\) 0 0
\(79\) −5.59093 + 9.68377i −0.629028 + 1.08951i 0.358719 + 0.933446i \(0.383214\pi\)
−0.987747 + 0.156064i \(0.950120\pi\)
\(80\) 2.11423 0.728019i 0.236379 0.0813949i
\(81\) 0 0
\(82\) −4.35880 + 7.54966i −0.481349 + 0.833720i
\(83\) 3.74493i 0.411059i −0.978651 0.205530i \(-0.934108\pi\)
0.978651 0.205530i \(-0.0658917\pi\)
\(84\) 0 0
\(85\) 14.3170 + 2.78275i 1.55289 + 0.301832i
\(86\) −4.64067 2.67929i −0.500417 0.288916i
\(87\) 0 0
\(88\) 1.11120 0.641550i 0.118454 0.0683894i
\(89\) 1.81971 3.15183i 0.192889 0.334093i −0.753318 0.657657i \(-0.771548\pi\)
0.946206 + 0.323564i \(0.104881\pi\)
\(90\) 0 0
\(91\) −14.1792 + 7.97433i −1.48639 + 0.835937i
\(92\) 2.87917 0.300174
\(93\) 0 0
\(94\) −0.698165 + 0.403086i −0.0720102 + 0.0415751i
\(95\) −4.39545 12.7648i −0.450964 1.30964i
\(96\) 0 0
\(97\) −8.76818 −0.890274 −0.445137 0.895463i \(-0.646845\pi\)
−0.445137 + 0.895463i \(0.646845\pi\)
\(98\) 3.36225 + 6.13965i 0.339639 + 0.620198i
\(99\) 0 0
\(100\) 3.93998 3.07840i 0.393998 0.307840i
\(101\) 0.853270 + 1.47791i 0.0849035 + 0.147057i 0.905350 0.424666i \(-0.139608\pi\)
−0.820447 + 0.571723i \(0.806275\pi\)
\(102\) 0 0
\(103\) 5.18220 8.97583i 0.510617 0.884415i −0.489307 0.872112i \(-0.662750\pi\)
0.999924 0.0123035i \(-0.00391643\pi\)
\(104\) 6.14864 0.602923
\(105\) 0 0
\(106\) −6.66826 −0.647679
\(107\) 5.75680 9.97106i 0.556531 0.963939i −0.441252 0.897383i \(-0.645466\pi\)
0.997783 0.0665560i \(-0.0212011\pi\)
\(108\) 0 0
\(109\) −1.00000 1.73205i −0.0957826 0.165900i 0.814152 0.580651i \(-0.197202\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 1.88227 2.16536i 0.179468 0.206459i
\(111\) 0 0
\(112\) 0.0298666 2.64558i 0.00282213 0.249984i
\(113\) 13.3875 1.25939 0.629695 0.776843i \(-0.283180\pi\)
0.629695 + 0.776843i \(0.283180\pi\)
\(114\) 0 0
\(115\) 6.08724 2.09609i 0.567638 0.195461i
\(116\) 1.16959 0.675260i 0.108593 0.0626963i
\(117\) 0 0
\(118\) 1.59622 0.146944
\(119\) 8.79670 14.8467i 0.806392 1.36100i
\(120\) 0 0
\(121\) −4.67683 + 8.10050i −0.425166 + 0.736409i
\(122\) 5.50239 3.17681i 0.498163 0.287615i
\(123\) 0 0
\(124\) 7.49558 + 4.32758i 0.673123 + 0.388628i
\(125\) 6.08890 9.37685i 0.544608 0.838691i
\(126\) 0 0
\(127\) 5.65313i 0.501634i −0.968035 0.250817i \(-0.919301\pi\)
0.968035 0.250817i \(-0.0806992\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 12.9997 4.47632i 1.14015 0.392599i
\(131\) −6.23366 + 10.7970i −0.544638 + 0.943340i 0.453992 + 0.891006i \(0.349999\pi\)
−0.998630 + 0.0523344i \(0.983334\pi\)
\(132\) 0 0
\(133\) −15.9729 0.180321i −1.38502 0.0156358i
\(134\) 5.39463i 0.466025i
\(135\) 0 0
\(136\) −5.64871 + 3.26128i −0.484373 + 0.279653i
\(137\) 0.0254843 + 0.0441401i 0.00217727 + 0.00377114i 0.867112 0.498113i \(-0.165974\pi\)
−0.864935 + 0.501884i \(0.832640\pi\)
\(138\) 0 0
\(139\) 1.05069i 0.0891184i −0.999007 0.0445592i \(-0.985812\pi\)
0.999007 0.0445592i \(-0.0141883\pi\)
\(140\) −1.86289 5.61513i −0.157443 0.474565i
\(141\) 0 0
\(142\) −13.5781 7.83934i −1.13945 0.657863i
\(143\) 6.83235 3.94466i 0.571350 0.329869i
\(144\) 0 0
\(145\) 1.98118 2.27914i 0.164528 0.189272i
\(146\) 12.4167 1.02762
\(147\) 0 0
\(148\) 9.53381i 0.783674i
\(149\) −7.12137 4.11153i −0.583406 0.336829i 0.179080 0.983835i \(-0.442688\pi\)
−0.762486 + 0.647005i \(0.776021\pi\)
\(150\) 0 0
\(151\) 2.13357 + 3.69546i 0.173628 + 0.300732i 0.939686 0.342040i \(-0.111118\pi\)
−0.766058 + 0.642772i \(0.777784\pi\)
\(152\) 5.22868 + 3.01878i 0.424102 + 0.244855i
\(153\) 0 0
\(154\) −1.66409 2.95892i −0.134096 0.238437i
\(155\) 18.9980 + 3.69259i 1.52595 + 0.296596i
\(156\) 0 0
\(157\) 2.41601 + 4.18466i 0.192819 + 0.333972i 0.946183 0.323631i \(-0.104904\pi\)
−0.753364 + 0.657603i \(0.771570\pi\)
\(158\) −5.59093 9.68377i −0.444790 0.770399i
\(159\) 0 0
\(160\) −0.426635 + 2.19499i −0.0337285 + 0.173529i
\(161\) 0.0859910 7.61708i 0.00677704 0.600310i
\(162\) 0 0
\(163\) 9.31256 + 5.37661i 0.729416 + 0.421128i 0.818208 0.574922i \(-0.194968\pi\)
−0.0887927 + 0.996050i \(0.528301\pi\)
\(164\) −4.35880 7.54966i −0.340365 0.589529i
\(165\) 0 0
\(166\) 3.24320 + 1.87246i 0.251721 + 0.145331i
\(167\) 18.9267i 1.46459i 0.680988 + 0.732295i \(0.261551\pi\)
−0.680988 + 0.732295i \(0.738449\pi\)
\(168\) 0 0
\(169\) 24.8057 1.90813
\(170\) −9.56842 + 11.0075i −0.733864 + 0.844235i
\(171\) 0 0
\(172\) 4.64067 2.67929i 0.353848 0.204294i
\(173\) −10.2568 5.92176i −0.779810 0.450223i 0.0565531 0.998400i \(-0.481989\pi\)
−0.836363 + 0.548176i \(0.815322\pi\)
\(174\) 0 0
\(175\) −8.02650 10.5155i −0.606746 0.794896i
\(176\) 1.28310i 0.0967173i
\(177\) 0 0
\(178\) 1.81971 + 3.15183i 0.136393 + 0.236239i
\(179\) −3.27843 + 1.89280i −0.245041 + 0.141475i −0.617492 0.786577i \(-0.711851\pi\)
0.372450 + 0.928052i \(0.378518\pi\)
\(180\) 0 0
\(181\) 19.0033i 1.41251i −0.707960 0.706253i \(-0.750384\pi\)
0.707960 0.706253i \(-0.249616\pi\)
\(182\) 0.183639 16.2667i 0.0136122 1.20577i
\(183\) 0 0
\(184\) −1.43958 + 2.49343i −0.106128 + 0.183818i
\(185\) −6.94079 20.1567i −0.510297 1.48195i
\(186\) 0 0
\(187\) −4.18455 + 7.24785i −0.306005 + 0.530016i
\(188\) 0.806172i 0.0587961i
\(189\) 0 0
\(190\) 13.2524 + 2.57583i 0.961428 + 0.186871i
\(191\) −2.44949 1.41421i −0.177239 0.102329i 0.408756 0.912644i \(-0.365963\pi\)
−0.585995 + 0.810315i \(0.699296\pi\)
\(192\) 0 0
\(193\) 3.06479 1.76946i 0.220608 0.127368i −0.385623 0.922656i \(-0.626014\pi\)
0.606232 + 0.795288i \(0.292680\pi\)
\(194\) 4.38409 7.59347i 0.314759 0.545179i
\(195\) 0 0
\(196\) −6.99822 0.158029i −0.499873 0.0112878i
\(197\) −2.36728 −0.168662 −0.0843308 0.996438i \(-0.526875\pi\)
−0.0843308 + 0.996438i \(0.526875\pi\)
\(198\) 0 0
\(199\) −3.00000 + 1.73205i −0.212664 + 0.122782i −0.602549 0.798082i \(-0.705848\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(200\) 0.695987 + 4.95132i 0.0492137 + 0.350111i
\(201\) 0 0
\(202\) −1.70654 −0.120072
\(203\) −1.75153 3.11440i −0.122933 0.218588i
\(204\) 0 0
\(205\) −14.7118 12.7885i −1.02752 0.893185i
\(206\) 5.18220 + 8.97583i 0.361061 + 0.625376i
\(207\) 0 0
\(208\) −3.07432 + 5.32488i −0.213166 + 0.369214i
\(209\) 7.74679 0.535856
\(210\) 0 0
\(211\) −14.3620 −0.988721 −0.494361 0.869257i \(-0.664598\pi\)
−0.494361 + 0.869257i \(0.664598\pi\)
\(212\) 3.33413 5.77488i 0.228989 0.396621i
\(213\) 0 0
\(214\) 5.75680 + 9.97106i 0.393527 + 0.681608i
\(215\) 7.86090 9.04315i 0.536109 0.616738i
\(216\) 0 0
\(217\) 11.6728 19.7009i 0.792403 1.33739i
\(218\) 2.00000 0.135457
\(219\) 0 0
\(220\) 0.934120 + 2.71277i 0.0629784 + 0.182895i
\(221\) −34.7319 + 20.0524i −2.33632 + 1.34887i
\(222\) 0 0
\(223\) −13.5975 −0.910557 −0.455279 0.890349i \(-0.650460\pi\)
−0.455279 + 0.890349i \(0.650460\pi\)
\(224\) 2.27621 + 1.34866i 0.152086 + 0.0901109i
\(225\) 0 0
\(226\) −6.69375 + 11.5939i −0.445261 + 0.771215i
\(227\) −10.7006 + 6.17797i −0.710221 + 0.410046i −0.811143 0.584848i \(-0.801154\pi\)
0.100922 + 0.994894i \(0.467821\pi\)
\(228\) 0 0
\(229\) −2.09008 1.20671i −0.138116 0.0797414i 0.429350 0.903138i \(-0.358743\pi\)
−0.567466 + 0.823397i \(0.692076\pi\)
\(230\) −1.22835 + 6.31975i −0.0809952 + 0.416712i
\(231\) 0 0
\(232\) 1.35052i 0.0886660i
\(233\) 6.43780 11.1506i 0.421754 0.730500i −0.574357 0.818605i \(-0.694748\pi\)
0.996111 + 0.0881051i \(0.0280811\pi\)
\(234\) 0 0
\(235\) −0.586908 1.70444i −0.0382857 0.111185i
\(236\) −0.798110 + 1.38237i −0.0519525 + 0.0899844i
\(237\) 0 0
\(238\) 8.45929 + 15.0415i 0.548334 + 0.974997i
\(239\) 27.2546i 1.76296i 0.472226 + 0.881478i \(0.343451\pi\)
−0.472226 + 0.881478i \(0.656549\pi\)
\(240\) 0 0
\(241\) 2.26690 1.30880i 0.146024 0.0843070i −0.425208 0.905096i \(-0.639799\pi\)
0.571232 + 0.820789i \(0.306466\pi\)
\(242\) −4.67683 8.10050i −0.300638 0.520720i
\(243\) 0 0
\(244\) 6.35361i 0.406748i
\(245\) −14.9109 + 4.76072i −0.952624 + 0.304151i
\(246\) 0 0
\(247\) 32.1492 + 18.5614i 2.04561 + 1.18103i
\(248\) −7.49558 + 4.32758i −0.475970 + 0.274801i
\(249\) 0 0
\(250\) 5.07614 + 9.96157i 0.321043 + 0.630025i
\(251\) 26.7173 1.68638 0.843190 0.537615i \(-0.180675\pi\)
0.843190 + 0.537615i \(0.180675\pi\)
\(252\) 0 0
\(253\) 3.69426i 0.232256i
\(254\) 4.89575 + 2.82656i 0.307187 + 0.177354i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 9.14632 + 5.28063i 0.570532 + 0.329397i 0.757362 0.652996i \(-0.226488\pi\)
−0.186830 + 0.982392i \(0.559821\pi\)
\(258\) 0 0
\(259\) −25.2225 0.284743i −1.56725 0.0176930i
\(260\) −2.62322 + 13.4962i −0.162685 + 0.836999i
\(261\) 0 0
\(262\) −6.23366 10.7970i −0.385117 0.667042i
\(263\) 4.16587 + 7.21550i 0.256879 + 0.444927i 0.965404 0.260759i \(-0.0839726\pi\)
−0.708526 + 0.705685i \(0.750639\pi\)
\(264\) 0 0
\(265\) 2.84491 14.6368i 0.174762 0.899130i
\(266\) 8.14259 13.7427i 0.499254 0.842621i
\(267\) 0 0
\(268\) −4.67188 2.69731i −0.285381 0.164765i
\(269\) −7.14171 12.3698i −0.435438 0.754201i 0.561893 0.827210i \(-0.310073\pi\)
−0.997331 + 0.0730091i \(0.976740\pi\)
\(270\) 0 0
\(271\) −6.58566 3.80223i −0.400050 0.230969i 0.286456 0.958094i \(-0.407523\pi\)
−0.686506 + 0.727125i \(0.740856\pi\)
\(272\) 6.52257i 0.395489i
\(273\) 0 0
\(274\) −0.0509686 −0.00307912
\(275\) 3.94990 + 5.05538i 0.238188 + 0.304851i
\(276\) 0 0
\(277\) −10.4270 + 6.02002i −0.626497 + 0.361708i −0.779394 0.626534i \(-0.784473\pi\)
0.152897 + 0.988242i \(0.451140\pi\)
\(278\) 0.909924 + 0.525345i 0.0545736 + 0.0315081i
\(279\) 0 0
\(280\) 5.79429 + 1.19425i 0.346275 + 0.0713704i
\(281\) 12.7879i 0.762861i −0.924397 0.381431i \(-0.875431\pi\)
0.924397 0.381431i \(-0.124569\pi\)
\(282\) 0 0
\(283\) 7.77607 + 13.4685i 0.462239 + 0.800622i 0.999072 0.0430666i \(-0.0137128\pi\)
−0.536833 + 0.843689i \(0.680379\pi\)
\(284\) 13.5781 7.83934i 0.805715 0.465180i
\(285\) 0 0
\(286\) 7.88931i 0.466505i
\(287\) −20.1034 + 11.3061i −1.18667 + 0.667376i
\(288\) 0 0
\(289\) 12.7719 22.1216i 0.751290 1.30127i
\(290\) 0.983204 + 2.85532i 0.0577357 + 0.167670i
\(291\) 0 0
\(292\) −6.20837 + 10.7532i −0.363317 + 0.629284i
\(293\) 11.5536i 0.674967i −0.941331 0.337483i \(-0.890424\pi\)
0.941331 0.337483i \(-0.109576\pi\)
\(294\) 0 0
\(295\) −0.681003 + 3.50369i −0.0396495 + 0.203993i
\(296\) 8.25652 + 4.76690i 0.479900 + 0.277071i
\(297\) 0 0
\(298\) 7.12137 4.11153i 0.412530 0.238174i
\(299\) −8.85148 + 15.3312i −0.511894 + 0.886627i
\(300\) 0 0
\(301\) −6.94969 12.3573i −0.400573 0.712263i
\(302\) −4.26715 −0.245547
\(303\) 0 0
\(304\) −5.22868 + 3.01878i −0.299885 + 0.173139i
\(305\) 4.62555 + 13.4330i 0.264858 + 0.769173i
\(306\) 0 0
\(307\) −2.57617 −0.147030 −0.0735150 0.997294i \(-0.523422\pi\)
−0.0735150 + 0.997294i \(0.523422\pi\)
\(308\) 3.39455 + 0.0383219i 0.193422 + 0.00218359i
\(309\) 0 0
\(310\) −12.6969 + 14.6064i −0.721133 + 0.829590i
\(311\) 12.3570 + 21.4030i 0.700702 + 1.21365i 0.968220 + 0.250098i \(0.0804629\pi\)
−0.267519 + 0.963553i \(0.586204\pi\)
\(312\) 0 0
\(313\) 4.50087 7.79573i 0.254404 0.440641i −0.710329 0.703869i \(-0.751454\pi\)
0.964733 + 0.263229i \(0.0847874\pi\)
\(314\) −4.83203 −0.272687
\(315\) 0 0
\(316\) 11.1819 0.629028
\(317\) −11.9529 + 20.7031i −0.671344 + 1.16280i 0.306180 + 0.951974i \(0.400949\pi\)
−0.977523 + 0.210828i \(0.932384\pi\)
\(318\) 0 0
\(319\) 0.866426 + 1.50069i 0.0485106 + 0.0840227i
\(320\) −1.68760 1.46697i −0.0943397 0.0820062i
\(321\) 0 0
\(322\) 6.55359 + 3.88301i 0.365217 + 0.216392i
\(323\) −39.3804 −2.19118
\(324\) 0 0
\(325\) 4.27937 + 30.4439i 0.237377 + 1.68872i
\(326\) −9.31256 + 5.37661i −0.515775 + 0.297783i
\(327\) 0 0
\(328\) 8.71759 0.481349
\(329\) −2.13279 0.0240776i −0.117585 0.00132744i
\(330\) 0 0
\(331\) −2.18364 + 3.78217i −0.120024 + 0.207887i −0.919777 0.392442i \(-0.871630\pi\)
0.799753 + 0.600329i \(0.204964\pi\)
\(332\) −3.24320 + 1.87246i −0.177994 + 0.102765i
\(333\) 0 0
\(334\) −16.3910 9.46334i −0.896874 0.517811i
\(335\) −11.8412 2.30154i −0.646951 0.125746i
\(336\) 0 0
\(337\) 19.5159i 1.06310i 0.847028 + 0.531549i \(0.178390\pi\)
−0.847028 + 0.531549i \(0.821610\pi\)
\(338\) −12.4029 + 21.4824i −0.674627 + 1.16849i
\(339\) 0 0
\(340\) −4.74855 13.7902i −0.257526 0.747881i
\(341\) −5.55271 + 9.61758i −0.300696 + 0.520821i
\(342\) 0 0
\(343\) −0.627092 + 18.5096i −0.0338598 + 0.999427i
\(344\) 5.35859i 0.288916i
\(345\) 0 0
\(346\) 10.2568 5.92176i 0.551409 0.318356i
\(347\) 13.4574 + 23.3088i 0.722429 + 1.25128i 0.960024 + 0.279919i \(0.0903075\pi\)
−0.237595 + 0.971364i \(0.576359\pi\)
\(348\) 0 0
\(349\) 10.3821i 0.555741i −0.960619 0.277870i \(-0.910371\pi\)
0.960619 0.277870i \(-0.0896286\pi\)
\(350\) 13.1199 1.69341i 0.701289 0.0905167i
\(351\) 0 0
\(352\) −1.11120 0.641550i −0.0592270 0.0341947i
\(353\) −0.146316 + 0.0844756i −0.00778761 + 0.00449618i −0.503889 0.863769i \(-0.668098\pi\)
0.496101 + 0.868265i \(0.334765\pi\)
\(354\) 0 0
\(355\) 23.0002 26.4594i 1.22072 1.40432i
\(356\) −3.63941 −0.192889
\(357\) 0 0
\(358\) 3.78561i 0.200075i
\(359\) −32.6198 18.8330i −1.72161 0.993970i −0.915631 0.402021i \(-0.868308\pi\)
−0.805975 0.591949i \(-0.798359\pi\)
\(360\) 0 0
\(361\) 8.72604 + 15.1139i 0.459265 + 0.795471i
\(362\) 16.4574 + 9.50166i 0.864979 + 0.499396i
\(363\) 0 0
\(364\) 13.9956 + 8.29240i 0.733568 + 0.434640i
\(365\) −5.29741 + 27.2546i −0.277279 + 1.42657i
\(366\) 0 0
\(367\) −7.57787 13.1253i −0.395562 0.685133i 0.597611 0.801786i \(-0.296117\pi\)
−0.993173 + 0.116653i \(0.962783\pi\)
\(368\) −1.43958 2.49343i −0.0750435 0.129979i
\(369\) 0 0
\(370\) 20.9266 + 4.06745i 1.08792 + 0.211457i
\(371\) −15.1784 8.99319i −0.788021 0.466903i
\(372\) 0 0
\(373\) −10.4270 6.02002i −0.539889 0.311705i 0.205145 0.978732i \(-0.434233\pi\)
−0.745034 + 0.667027i \(0.767567\pi\)
\(374\) −4.18455 7.24785i −0.216378 0.374778i
\(375\) 0 0
\(376\) 0.698165 + 0.403086i 0.0360051 + 0.0207876i
\(377\) 8.30386i 0.427671i
\(378\) 0 0
\(379\) 18.0918 0.929312 0.464656 0.885491i \(-0.346178\pi\)
0.464656 + 0.885491i \(0.346178\pi\)
\(380\) −8.85692 + 10.1890i −0.454351 + 0.522684i
\(381\) 0 0
\(382\) 2.44949 1.41421i 0.125327 0.0723575i
\(383\) −25.2480 14.5769i −1.29011 0.744846i −0.311437 0.950267i \(-0.600810\pi\)
−0.978674 + 0.205421i \(0.934144\pi\)
\(384\) 0 0
\(385\) 7.20477 2.39027i 0.367189 0.121819i
\(386\) 3.53892i 0.180126i
\(387\) 0 0
\(388\) 4.38409 + 7.59347i 0.222568 + 0.385500i
\(389\) 17.0297 9.83207i 0.863438 0.498506i −0.00172432 0.999999i \(-0.500549\pi\)
0.865162 + 0.501493i \(0.167216\pi\)
\(390\) 0 0
\(391\) 18.7796i 0.949723i
\(392\) 3.63597 5.98162i 0.183644 0.302117i
\(393\) 0 0
\(394\) 1.18364 2.05012i 0.0596309 0.103284i
\(395\) 23.6411 8.14060i 1.18951 0.409598i
\(396\) 0 0
\(397\) 2.84227 4.92295i 0.142649 0.247076i −0.785844 0.618425i \(-0.787771\pi\)
0.928493 + 0.371349i \(0.121105\pi\)
\(398\) 3.46410i 0.173640i
\(399\) 0 0
\(400\) −4.63597 1.87292i −0.231798 0.0936460i
\(401\) −8.84787 5.10832i −0.441842 0.255097i 0.262537 0.964922i \(-0.415441\pi\)
−0.704378 + 0.709825i \(0.748774\pi\)
\(402\) 0 0
\(403\) −46.0876 + 26.6087i −2.29579 + 1.32547i
\(404\) 0.853270 1.47791i 0.0424518 0.0735286i
\(405\) 0 0
\(406\) 3.57291 + 0.0403355i 0.177321 + 0.00200182i
\(407\) 12.2328 0.606359
\(408\) 0 0
\(409\) 12.0969 6.98414i 0.598153 0.345344i −0.170162 0.985416i \(-0.554429\pi\)
0.768314 + 0.640073i \(0.221096\pi\)
\(410\) 18.4310 6.34657i 0.910244 0.313435i
\(411\) 0 0
\(412\) −10.3644 −0.510617
\(413\) 3.63333 + 2.15275i 0.178784 + 0.105930i
\(414\) 0 0
\(415\) −5.49370 + 6.31994i −0.269675 + 0.310234i
\(416\) −3.07432 5.32488i −0.150731 0.261074i
\(417\) 0 0
\(418\) −3.87339 + 6.70891i −0.189454 + 0.328144i
\(419\) 11.3181 0.552924 0.276462 0.961025i \(-0.410838\pi\)
0.276462 + 0.961025i \(0.410838\pi\)
\(420\) 0 0
\(421\) −13.9099 −0.677928 −0.338964 0.940799i \(-0.610077\pi\)
−0.338964 + 0.940799i \(0.610077\pi\)
\(422\) 7.18100 12.4379i 0.349566 0.605466i
\(423\) 0 0
\(424\) 3.33413 + 5.77488i 0.161920 + 0.280453i
\(425\) −20.0791 25.6988i −0.973979 1.24657i
\(426\) 0 0
\(427\) 16.8090 + 0.189761i 0.813445 + 0.00918318i
\(428\) −11.5136 −0.556531
\(429\) 0 0
\(430\) 3.90115 + 11.3293i 0.188130 + 0.546348i
\(431\) 22.5947 13.0451i 1.08835 0.628359i 0.155213 0.987881i \(-0.450394\pi\)
0.933137 + 0.359522i \(0.117060\pi\)
\(432\) 0 0
\(433\) 8.42614 0.404935 0.202467 0.979289i \(-0.435104\pi\)
0.202467 + 0.979289i \(0.435104\pi\)
\(434\) 11.2251 + 19.9594i 0.538822 + 0.958083i
\(435\) 0 0
\(436\) −1.00000 + 1.73205i −0.0478913 + 0.0829502i
\(437\) −15.0542 + 8.69157i −0.720142 + 0.415774i
\(438\) 0 0
\(439\) −23.9529 13.8292i −1.14321 0.660033i −0.195987 0.980606i \(-0.562791\pi\)
−0.947224 + 0.320573i \(0.896125\pi\)
\(440\) −2.81639 0.547415i −0.134266 0.0260970i
\(441\) 0 0
\(442\) 40.1049i 1.90759i
\(443\) −1.17861 + 2.04142i −0.0559975 + 0.0969906i −0.892665 0.450720i \(-0.851167\pi\)
0.836668 + 0.547711i \(0.184501\pi\)
\(444\) 0 0
\(445\) −7.69458 + 2.64956i −0.364758 + 0.125601i
\(446\) 6.79876 11.7758i 0.321931 0.557600i
\(447\) 0 0
\(448\) −2.30608 + 1.29693i −0.108952 + 0.0612740i
\(449\) 12.8021i 0.604169i −0.953281 0.302084i \(-0.902318\pi\)
0.953281 0.302084i \(-0.0976824\pi\)
\(450\) 0 0
\(451\) 9.68696 5.59277i 0.456141 0.263353i
\(452\) −6.69375 11.5939i −0.314847 0.545332i
\(453\) 0 0
\(454\) 12.3559i 0.579893i
\(455\) 35.6270 + 7.34304i 1.67022 + 0.344247i
\(456\) 0 0
\(457\) 29.8989 + 17.2621i 1.39861 + 0.807488i 0.994247 0.107111i \(-0.0341601\pi\)
0.404363 + 0.914599i \(0.367493\pi\)
\(458\) 2.09008 1.20671i 0.0976628 0.0563857i
\(459\) 0 0
\(460\) −4.85888 4.22366i −0.226547 0.196929i
\(461\) 20.2692 0.944032 0.472016 0.881590i \(-0.343526\pi\)
0.472016 + 0.881590i \(0.343526\pi\)
\(462\) 0 0
\(463\) 13.1246i 0.609952i −0.952360 0.304976i \(-0.901352\pi\)
0.952360 0.304976i \(-0.0986485\pi\)
\(464\) −1.16959 0.675260i −0.0542966 0.0313482i
\(465\) 0 0
\(466\) 6.43780 + 11.1506i 0.298225 + 0.516541i
\(467\) 1.32647 + 0.765836i 0.0613816 + 0.0354387i 0.530377 0.847762i \(-0.322050\pi\)
−0.468995 + 0.883201i \(0.655384\pi\)
\(468\) 0 0
\(469\) −7.27550 + 12.2793i −0.335951 + 0.567005i
\(470\) 1.76954 + 0.343941i 0.0816228 + 0.0158648i
\(471\) 0 0
\(472\) −0.798110 1.38237i −0.0367360 0.0636286i
\(473\) 3.43780 + 5.95444i 0.158070 + 0.273786i
\(474\) 0 0
\(475\) −11.3079 + 27.9899i −0.518840 + 1.28426i
\(476\) −17.2560 0.194807i −0.790927 0.00892896i
\(477\) 0 0
\(478\) −23.6032 13.6273i −1.07959 0.623299i
\(479\) 14.6585 + 25.3893i 0.669764 + 1.16007i 0.977970 + 0.208746i \(0.0669382\pi\)
−0.308205 + 0.951320i \(0.599728\pi\)
\(480\) 0 0
\(481\) 50.7663 + 29.3100i 2.31475 + 1.33642i
\(482\) 2.61759i 0.119228i
\(483\) 0 0
\(484\) 9.35366 0.425166
\(485\) 14.7972 + 12.8627i 0.671905 + 0.584064i
\(486\) 0 0
\(487\) −7.09743 + 4.09770i −0.321615 + 0.185685i −0.652112 0.758122i \(-0.726117\pi\)
0.330497 + 0.943807i \(0.392784\pi\)
\(488\) −5.50239 3.17681i −0.249082 0.143807i
\(489\) 0 0
\(490\) 3.33256 15.2936i 0.150550 0.690894i
\(491\) 40.4383i 1.82495i −0.409129 0.912477i \(-0.634167\pi\)
0.409129 0.912477i \(-0.365833\pi\)
\(492\) 0 0
\(493\) −4.40443 7.62869i −0.198366 0.343579i
\(494\) −32.1492 + 18.5614i −1.44646 + 0.835116i
\(495\) 0 0
\(496\) 8.65515i 0.388628i
\(497\) −20.3341 36.1562i −0.912109 1.62183i
\(498\) 0 0
\(499\) −8.72450 + 15.1113i −0.390562 + 0.676474i −0.992524 0.122051i \(-0.961053\pi\)
0.601961 + 0.798525i \(0.294386\pi\)
\(500\) −11.1650 0.584722i −0.499316 0.0261496i
\(501\) 0 0
\(502\) −13.3586 + 23.1379i −0.596226 + 1.03269i
\(503\) 1.91949i 0.0855860i −0.999084 0.0427930i \(-0.986374\pi\)
0.999084 0.0427930i \(-0.0136256\pi\)
\(504\) 0 0
\(505\) 0.728069 3.74584i 0.0323987 0.166688i
\(506\) −3.19932 1.84713i −0.142227 0.0821149i
\(507\) 0 0
\(508\) −4.89575 + 2.82656i −0.217214 + 0.125408i
\(509\) −5.54549 + 9.60508i −0.245800 + 0.425737i −0.962356 0.271792i \(-0.912384\pi\)
0.716556 + 0.697529i \(0.245717\pi\)
\(510\) 0 0
\(511\) 28.2631 + 16.7459i 1.25029 + 0.740796i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −9.14632 + 5.28063i −0.403427 + 0.232919i
\(515\) −21.9128 + 7.54547i −0.965592 + 0.332493i
\(516\) 0 0
\(517\) 1.03440 0.0454928
\(518\) 12.8578 21.7009i 0.564941 0.953484i
\(519\) 0 0
\(520\) −10.3764 9.01988i −0.455037 0.395548i
\(521\) −19.8706 34.4168i −0.870546 1.50783i −0.861433 0.507871i \(-0.830433\pi\)
−0.00911254 0.999958i \(-0.502901\pi\)
\(522\) 0 0
\(523\) 15.6404 27.0900i 0.683907 1.18456i −0.289872 0.957065i \(-0.593613\pi\)
0.973779 0.227496i \(-0.0730538\pi\)
\(524\) 12.4673 0.544638
\(525\) 0 0
\(526\) −8.33174 −0.363281
\(527\) 28.2269 48.8904i 1.22958 2.12970i
\(528\) 0 0
\(529\) 7.35519 + 12.7396i 0.319791 + 0.553894i
\(530\) 11.2534 + 9.78215i 0.488815 + 0.424909i
\(531\) 0 0
\(532\) 7.83026 + 13.9231i 0.339485 + 0.603641i
\(533\) 53.6013 2.32173
\(534\) 0 0
\(535\) −24.3424 + 8.38211i −1.05242 + 0.362390i
\(536\) 4.67188 2.69731i 0.201795 0.116506i
\(537\) 0 0
\(538\) 14.2834 0.615802
\(539\) 0.202767 8.97941i 0.00873380 0.386771i
\(540\) 0 0
\(541\) 12.3987 21.4752i 0.533061 0.923290i −0.466193 0.884683i \(-0.654375\pi\)
0.999254 0.0386065i \(-0.0122919\pi\)
\(542\) 6.58566 3.80223i 0.282878 0.163320i
\(543\) 0 0
\(544\) 5.64871 + 3.26128i 0.242186 + 0.139826i
\(545\) −0.853270 + 4.38998i −0.0365501 + 0.188046i
\(546\) 0 0
\(547\) 40.5380i 1.73328i −0.498934 0.866640i \(-0.666275\pi\)
0.498934 0.866640i \(-0.333725\pi\)
\(548\) 0.0254843 0.0441401i 0.00108863 0.00188557i
\(549\) 0 0
\(550\) −6.35304 + 0.893021i −0.270895 + 0.0380785i
\(551\) −4.07692 + 7.06144i −0.173683 + 0.300827i
\(552\) 0 0
\(553\) 0.333964 29.5825i 0.0142016 1.25798i
\(554\) 12.0400i 0.511532i
\(555\) 0 0
\(556\) −0.909924 + 0.525345i −0.0385894 + 0.0222796i
\(557\) 11.8732 + 20.5650i 0.503084 + 0.871367i 0.999994 + 0.00356477i \(0.00113470\pi\)
−0.496910 + 0.867802i \(0.665532\pi\)
\(558\) 0 0
\(559\) 32.9480i 1.39355i
\(560\) −3.93140 + 4.42087i −0.166132 + 0.186816i
\(561\) 0 0
\(562\) 11.0746 + 6.39394i 0.467155 + 0.269712i
\(563\) 7.29944 4.21434i 0.307635 0.177613i −0.338233 0.941062i \(-0.609829\pi\)
0.645868 + 0.763449i \(0.276496\pi\)
\(564\) 0 0
\(565\) −22.5927 19.6391i −0.950483 0.826222i
\(566\) −15.5521 −0.653705
\(567\) 0 0
\(568\) 15.6787i 0.657863i
\(569\) 20.3139 + 11.7283i 0.851605 + 0.491674i 0.861192 0.508280i \(-0.169718\pi\)
−0.00958727 + 0.999954i \(0.503052\pi\)
\(570\) 0 0
\(571\) −7.67946 13.3012i −0.321376 0.556639i 0.659397 0.751795i \(-0.270812\pi\)
−0.980772 + 0.195157i \(0.937479\pi\)
\(572\) −6.83235 3.94466i −0.285675 0.164934i
\(573\) 0 0
\(574\) 0.260365 23.0631i 0.0108674 0.962636i
\(575\) −13.3477 5.39245i −0.556639 0.224881i
\(576\) 0 0
\(577\) −7.12041 12.3329i −0.296426 0.513426i 0.678889 0.734241i \(-0.262462\pi\)
−0.975316 + 0.220815i \(0.929128\pi\)
\(578\) 12.7719 + 22.1216i 0.531242 + 0.920139i
\(579\) 0 0
\(580\) −2.96438 0.576179i −0.123089 0.0239245i
\(581\) 4.85690 + 8.63609i 0.201498 + 0.358285i
\(582\) 0 0
\(583\) 7.40975 + 4.27802i 0.306881 + 0.177178i
\(584\) −6.20837 10.7532i −0.256904 0.444971i
\(585\) 0 0
\(586\) 10.0057 + 5.77679i 0.413331 + 0.238637i
\(587\) 12.5249i 0.516958i 0.966017 + 0.258479i \(0.0832212\pi\)
−0.966017 + 0.258479i \(0.916779\pi\)
\(588\) 0 0
\(589\) −52.2560 −2.15317
\(590\) −2.69378 2.34161i −0.110901 0.0964025i
\(591\) 0 0
\(592\) −8.25652 + 4.76690i −0.339341 + 0.195919i
\(593\) 12.7436 + 7.35750i 0.523316 + 0.302136i 0.738290 0.674483i \(-0.235634\pi\)
−0.214975 + 0.976620i \(0.568967\pi\)
\(594\) 0 0
\(595\) −36.6250 + 12.1508i −1.50148 + 0.498135i
\(596\) 8.22305i 0.336829i
\(597\) 0 0
\(598\) −8.85148 15.3312i −0.361964 0.626940i
\(599\) 23.9304 13.8162i 0.977769 0.564515i 0.0761732 0.997095i \(-0.475730\pi\)
0.901596 + 0.432579i \(0.142396\pi\)
\(600\) 0 0
\(601\) 8.82137i 0.359831i −0.983682 0.179916i \(-0.942418\pi\)
0.983682 0.179916i \(-0.0575825\pi\)
\(602\) 14.1766 + 0.160043i 0.577794 + 0.00652286i
\(603\) 0 0
\(604\) 2.13357 3.69546i 0.0868139 0.150366i
\(605\) 19.7758 6.80963i 0.804002 0.276851i
\(606\) 0 0
\(607\) −13.2677 + 22.9803i −0.538519 + 0.932743i 0.460465 + 0.887678i \(0.347683\pi\)
−0.998984 + 0.0450649i \(0.985651\pi\)
\(608\) 6.03756i 0.244855i
\(609\) 0 0
\(610\) −13.9461 2.71067i −0.564662 0.109752i
\(611\) 4.29276 + 2.47843i 0.173667 + 0.100266i
\(612\) 0 0
\(613\) 0.791273 0.456842i 0.0319592 0.0184517i −0.483935 0.875104i \(-0.660793\pi\)
0.515894 + 0.856652i \(0.327460\pi\)
\(614\) 1.28809 2.23103i 0.0519830 0.0900371i
\(615\) 0 0
\(616\) −1.73046 + 2.92060i −0.0697223 + 0.117674i
\(617\) −35.0558 −1.41129 −0.705646 0.708565i \(-0.749343\pi\)
−0.705646 + 0.708565i \(0.749343\pi\)
\(618\) 0 0
\(619\) 16.5382 9.54835i 0.664727 0.383781i −0.129348 0.991599i \(-0.541289\pi\)
0.794076 + 0.607819i \(0.207955\pi\)
\(620\) −6.30111 18.2990i −0.253059 0.734906i
\(621\) 0 0
\(622\) −24.7140 −0.990942
\(623\) −0.108697 + 9.62837i −0.00435485 + 0.385753i
\(624\) 0 0
\(625\) −24.0312 + 6.89212i −0.961248 + 0.275685i
\(626\) 4.50087 + 7.79573i 0.179891 + 0.311580i
\(627\) 0 0
\(628\) 2.41601 4.18466i 0.0964095 0.166986i
\(629\) −62.1849 −2.47947
\(630\) 0 0
\(631\) 21.5350 0.857296 0.428648 0.903472i \(-0.358990\pi\)
0.428648 + 0.903472i \(0.358990\pi\)
\(632\) −5.59093 + 9.68377i −0.222395 + 0.385200i
\(633\) 0 0
\(634\) −11.9529 20.7031i −0.474712 0.822225i
\(635\) −8.29298 + 9.54022i −0.329097 + 0.378592i
\(636\) 0 0
\(637\) 22.3562 36.7788i 0.885786 1.45723i
\(638\) −1.73285 −0.0686043
\(639\) 0 0
\(640\) 2.11423 0.728019i 0.0835725 0.0287775i
\(641\) 28.6767 16.5565i 1.13266 0.653943i 0.188060 0.982158i \(-0.439780\pi\)
0.944603 + 0.328214i \(0.106447\pi\)
\(642\) 0 0
\(643\) −3.31191 −0.130609 −0.0653044 0.997865i \(-0.520802\pi\)
−0.0653044 + 0.997865i \(0.520802\pi\)
\(644\) −6.63958 + 3.73407i −0.261636 + 0.147143i
\(645\) 0 0
\(646\) 19.6902 34.1044i 0.774700 1.34182i
\(647\) 20.2077 11.6669i 0.794447 0.458674i −0.0470789 0.998891i \(-0.514991\pi\)
0.841526 + 0.540217i \(0.181658\pi\)
\(648\) 0 0
\(649\) −1.77371 1.02405i −0.0696244 0.0401977i
\(650\) −28.5049 11.5159i −1.11805 0.451691i
\(651\) 0 0
\(652\) 10.7532i 0.421128i
\(653\) 8.73019 15.1211i 0.341639 0.591735i −0.643099 0.765783i \(-0.722351\pi\)
0.984737 + 0.174048i \(0.0556848\pi\)
\(654\) 0 0
\(655\) 26.3589 9.07644i 1.02993 0.354646i
\(656\) −4.35880 + 7.54966i −0.170182 + 0.294765i
\(657\) 0 0
\(658\) 1.08725 1.83501i 0.0423854 0.0715363i
\(659\) 1.29864i 0.0505877i 0.999680 + 0.0252939i \(0.00805215\pi\)
−0.999680 + 0.0252939i \(0.991948\pi\)
\(660\) 0 0
\(661\) 4.39869 2.53959i 0.171089 0.0987785i −0.412010 0.911179i \(-0.635173\pi\)
0.583099 + 0.812401i \(0.301840\pi\)
\(662\) −2.18364 3.78217i −0.0848695 0.146998i
\(663\) 0 0
\(664\) 3.74493i 0.145331i
\(665\) 26.6913 + 23.7360i 1.03504 + 0.920444i
\(666\) 0 0
\(667\) −3.36743 1.94419i −0.130387 0.0752793i
\(668\) 16.3910 9.46334i 0.634186 0.366147i
\(669\) 0 0
\(670\) 7.91377 9.10397i 0.305735 0.351717i
\(671\) −8.15232 −0.314717
\(672\) 0 0
\(673\) 18.4124i 0.709747i 0.934914 + 0.354873i \(0.115476\pi\)
−0.934914 + 0.354873i \(0.884524\pi\)
\(674\) −16.9012 9.75794i −0.651012 0.375862i
\(675\) 0 0
\(676\) −12.4029 21.4824i −0.477033 0.826246i
\(677\) 35.7491 + 20.6397i 1.37395 + 0.793250i 0.991423 0.130695i \(-0.0417208\pi\)
0.382526 + 0.923945i \(0.375054\pi\)
\(678\) 0 0
\(679\) 20.2201 11.3717i 0.775976 0.436405i
\(680\) 14.3170 + 2.78275i 0.549031 + 0.106714i
\(681\) 0 0
\(682\) −5.55271 9.61758i −0.212624 0.368276i
\(683\) −11.4896 19.9007i −0.439639 0.761477i 0.558022 0.829826i \(-0.311560\pi\)
−0.997662 + 0.0683485i \(0.978227\pi\)
\(684\) 0 0
\(685\) 0.0217450 0.111876i 0.000830833 0.00427454i
\(686\) −15.7163 9.79790i −0.600050 0.374085i
\(687\) 0 0
\(688\) −4.64067 2.67929i −0.176924 0.102147i
\(689\) 20.5004 + 35.5077i 0.781001 + 1.35273i
\(690\) 0 0
\(691\) 11.0048 + 6.35361i 0.418642 + 0.241703i 0.694496 0.719497i \(-0.255627\pi\)
−0.275854 + 0.961199i \(0.588961\pi\)
\(692\) 11.8435i 0.450223i
\(693\) 0 0
\(694\) −26.9147 −1.02167
\(695\) −1.54133 + 1.77314i −0.0584661 + 0.0672592i
\(696\) 0 0
\(697\) −49.2431 + 28.4305i −1.86522 + 1.07688i
\(698\) 8.99116 + 5.19105i 0.340320 + 0.196484i
\(699\) 0 0
\(700\) −5.09342 + 12.2089i −0.192513 + 0.461453i
\(701\) 26.5441i 1.00256i −0.865286 0.501279i \(-0.832863\pi\)
0.865286 0.501279i \(-0.167137\pi\)
\(702\) 0 0
\(703\) 28.7804 + 49.8492i 1.08548 + 1.88010i
\(704\) 1.11120 0.641550i 0.0418798 0.0241793i
\(705\) 0 0
\(706\) 0.168951i 0.00635856i
\(707\) −3.88444 2.30154i −0.146089 0.0865582i
\(708\) 0 0
\(709\) −21.1766 + 36.6789i −0.795303 + 1.37751i 0.127343 + 0.991859i \(0.459355\pi\)
−0.922646 + 0.385647i \(0.873978\pi\)
\(710\) 11.4144 + 33.1484i 0.428374 + 1.24404i
\(711\) 0 0
\(712\) 1.81971 3.15183i 0.0681964 0.118120i
\(713\) 24.9196i 0.933248i
\(714\) 0 0
\(715\) −17.3170 3.36586i −0.647618 0.125876i
\(716\) 3.27843 + 1.89280i 0.122521 + 0.0707374i
\(717\) 0 0
\(718\) 32.6198 18.8330i 1.21736 0.702843i
\(719\) 11.9507 20.6992i 0.445686 0.771951i −0.552413 0.833570i \(-0.686293\pi\)
0.998100 + 0.0616189i \(0.0196263\pi\)
\(720\) 0 0
\(721\) −0.309550 + 27.4199i −0.0115282 + 1.02117i
\(722\) −17.4521 −0.649499
\(723\) 0 0
\(724\) −16.4574 + 9.50166i −0.611633 + 0.353126i
\(725\) −6.68686 + 0.939945i −0.248344 + 0.0349087i
\(726\) 0 0
\(727\) −22.4529 −0.832731 −0.416365 0.909197i \(-0.636696\pi\)
−0.416365 + 0.909197i \(0.636696\pi\)
\(728\) −14.1792 + 7.97433i −0.525517 + 0.295548i
\(729\) 0 0
\(730\) −20.9545 18.2150i −0.775560 0.674168i
\(731\) −17.4759 30.2691i −0.646368 1.11954i
\(732\) 0 0
\(733\) 13.7725 23.8547i 0.508700 0.881094i −0.491249 0.871019i \(-0.663460\pi\)
0.999949 0.0100750i \(-0.00320702\pi\)
\(734\) 15.1557 0.559409
\(735\) 0 0
\(736\) 2.87917 0.106128
\(737\) 3.46092 5.99449i 0.127485 0.220810i
\(738\) 0 0
\(739\) −15.5456 26.9258i −0.571856 0.990483i −0.996375 0.0850646i \(-0.972890\pi\)
0.424520 0.905419i \(-0.360443\pi\)
\(740\) −13.9858 + 16.0893i −0.514129 + 0.591453i
\(741\) 0 0
\(742\) 15.3775 8.64824i 0.564526 0.317487i
\(743\) 1.12610 0.0413127 0.0206564 0.999787i \(-0.493424\pi\)
0.0206564 + 0.999787i \(0.493424\pi\)
\(744\) 0 0
\(745\) 5.98654 + 17.3855i 0.219330 + 0.636954i
\(746\) 10.4270 6.02002i 0.381759 0.220409i
\(747\) 0 0
\(748\) 8.36910 0.306005
\(749\) −0.343872 + 30.4602i −0.0125648 + 1.11299i
\(750\) 0 0
\(751\) 4.77108 8.26375i 0.174099 0.301549i −0.765750 0.643138i \(-0.777632\pi\)
0.939849 + 0.341590i \(0.110965\pi\)
\(752\) −0.698165 + 0.403086i −0.0254595 + 0.0146990i
\(753\) 0 0
\(754\) −7.19135 4.15193i −0.261894 0.151204i
\(755\) 1.82051 9.36635i 0.0662553 0.340876i
\(756\) 0 0
\(757\) 33.1687i 1.20554i 0.797917 + 0.602768i \(0.205935\pi\)
−0.797917 + 0.602768i \(0.794065\pi\)
\(758\) −9.04589 + 15.6679i −0.328562 + 0.569085i
\(759\) 0 0
\(760\) −4.39545 12.7648i −0.159440 0.463028i
\(761\) −2.17122 + 3.76067i −0.0787068 + 0.136324i −0.902692 0.430287i \(-0.858412\pi\)
0.823985 + 0.566611i \(0.191746\pi\)
\(762\) 0 0
\(763\) 4.55242 + 2.69731i 0.164809 + 0.0976493i
\(764\) 2.82843i 0.102329i
\(765\) 0 0
\(766\) 25.2480 14.5769i 0.912246 0.526685i
\(767\) −4.90729 8.49967i −0.177192 0.306905i
\(768\) 0 0
\(769\) 46.1795i 1.66528i 0.553818 + 0.832638i \(0.313170\pi\)
−0.553818 + 0.832638i \(0.686830\pi\)
\(770\) −1.53235 + 7.43465i −0.0552220 + 0.267926i
\(771\) 0 0
\(772\) −3.06479 1.76946i −0.110304 0.0636842i
\(773\) 15.5663 8.98723i 0.559883 0.323248i −0.193216 0.981156i \(-0.561892\pi\)
0.753098 + 0.657908i \(0.228558\pi\)
\(774\) 0 0
\(775\) −26.6441 34.1011i −0.957083 1.22495i
\(776\) −8.76818 −0.314759
\(777\) 0 0
\(778\) 19.6641i 0.704994i
\(779\) 45.5815 + 26.3165i 1.63313 + 0.942886i
\(780\) 0 0
\(781\) 10.0587 + 17.4221i 0.359927 + 0.623412i
\(782\) 16.2636 + 9.38978i 0.581584 + 0.335778i
\(783\) 0 0
\(784\) 3.36225 + 6.13965i 0.120080 + 0.219273i
\(785\) 2.06151 10.6063i 0.0735785 0.378554i
\(786\) 0 0
\(787\) −6.92087 11.9873i −0.246702 0.427301i 0.715907 0.698196i \(-0.246014\pi\)
−0.962609 + 0.270895i \(0.912680\pi\)
\(788\) 1.18364 + 2.05012i 0.0421654 + 0.0730326i
\(789\) 0 0
\(790\) −4.77057 + 24.5441i −0.169729 + 0.873239i
\(791\) −30.8726 + 17.3626i −1.09770 + 0.617342i
\(792\) 0 0
\(793\) −33.8322 19.5330i −1.20142 0.693638i
\(794\) 2.84227 + 4.92295i 0.100868 + 0.174709i
\(795\) 0 0
\(796\) 3.00000 + 1.73205i 0.106332 + 0.0613909i
\(797\) 7.46138i 0.264296i −0.991230 0.132148i \(-0.957813\pi\)
0.991230 0.132148i \(-0.0421874\pi\)
\(798\) 0 0
\(799\) −5.25831 −0.186026
\(800\) 3.93998 3.07840i 0.139299 0.108838i
\(801\) 0 0
\(802\) 8.84787 5.10832i 0.312429 0.180381i
\(803\) −13.7974 7.96596i −0.486901 0.281113i
\(804\) 0 0
\(805\) −11.3192 + 12.7284i −0.398948 + 0.448618i
\(806\) 53.2174i 1.87450i
\(807\) 0 0
\(808\) 0.853270 + 1.47791i 0.0300179 + 0.0519926i
\(809\) 1.28750 0.743340i 0.0452662 0.0261344i −0.477196 0.878797i \(-0.658347\pi\)
0.522462 + 0.852662i \(0.325014\pi\)
\(810\) 0 0
\(811\) 31.5494i 1.10785i 0.832567 + 0.553925i \(0.186871\pi\)
−0.832567 + 0.553925i \(0.813129\pi\)
\(812\) −1.82139 + 3.07407i −0.0639182 + 0.107879i
\(813\) 0 0
\(814\) −6.11641 + 10.5939i −0.214380 + 0.371317i
\(815\) −7.82854 22.7348i −0.274222 0.796366i
\(816\) 0 0
\(817\) −16.1764 + 28.0183i −0.565940 + 0.980237i
\(818\) 13.9683i 0.488390i
\(819\) 0 0
\(820\) −3.71923 + 19.1350i −0.129881 + 0.668224i
\(821\) 27.5430 + 15.9020i 0.961257 + 0.554982i 0.896560 0.442923i \(-0.146058\pi\)
0.0646976 + 0.997905i \(0.479392\pi\)
\(822\) 0 0
\(823\) 31.7287 18.3186i 1.10599 0.638545i 0.168204 0.985752i \(-0.446203\pi\)
0.937788 + 0.347207i \(0.112870\pi\)
\(824\) 5.18220 8.97583i 0.180530 0.312688i
\(825\) 0 0
\(826\) −3.68100 + 2.07018i −0.128078 + 0.0720308i
\(827\) −21.9864 −0.764541 −0.382271 0.924050i \(-0.624858\pi\)
−0.382271 + 0.924050i \(0.624858\pi\)
\(828\) 0 0
\(829\) −21.0498 + 12.1531i −0.731090 + 0.422095i −0.818821 0.574049i \(-0.805372\pi\)
0.0877305 + 0.996144i \(0.472039\pi\)
\(830\) −2.72638 7.91766i −0.0946339 0.274826i
\(831\) 0 0
\(832\) 6.14864 0.213166
\(833\) −1.03076 + 45.6463i −0.0357136 + 1.58155i
\(834\) 0 0
\(835\) 27.7649 31.9406i 0.960844 1.10535i
\(836\) −3.87339 6.70891i −0.133964 0.232033i
\(837\) 0 0
\(838\) −5.65904 + 9.80175i −0.195488 + 0.338596i
\(839\) −27.3914 −0.945655 −0.472827 0.881155i \(-0.656767\pi\)
−0.472827 + 0.881155i \(0.656767\pi\)
\(840\) 0 0
\(841\) 27.1761 0.937107
\(842\) 6.95496 12.0463i 0.239684 0.415145i
\(843\) 0 0
\(844\) 7.18100 + 12.4379i 0.247180 + 0.428129i
\(845\) −41.8622 36.3893i −1.44010 1.25183i
\(846\) 0 0
\(847\) 0.279362 24.7459i 0.00959899 0.850278i
\(848\) −6.66826 −0.228989
\(849\) 0 0
\(850\) 32.2953 4.53962i 1.10772 0.155708i
\(851\) −23.7719 + 13.7247i −0.814890 + 0.470477i
\(852\) 0 0
\(853\) 22.6073 0.774060 0.387030 0.922067i \(-0.373501\pi\)
0.387030 + 0.922067i \(0.373501\pi\)
\(854\) −8.56884 + 14.4622i −0.293220 + 0.494885i
\(855\) 0 0
\(856\) 5.75680 9.97106i 0.196763 0.340804i
\(857\) −41.4461 + 23.9289i −1.41577 + 0.817396i −0.995924 0.0901984i \(-0.971250\pi\)
−0.419848 + 0.907595i \(0.637917\pi\)
\(858\) 0 0
\(859\) 41.5770 + 24.0045i 1.41859 + 0.819022i 0.996175 0.0873810i \(-0.0278498\pi\)
0.422413 + 0.906403i \(0.361183\pi\)
\(860\) −11.7620 2.28616i −0.401082 0.0779574i
\(861\) 0 0
\(862\) 26.0901i 0.888634i
\(863\) −23.7785 + 41.1855i −0.809428 + 1.40197i 0.103832 + 0.994595i \(0.466890\pi\)
−0.913260 + 0.407376i \(0.866444\pi\)
\(864\) 0 0
\(865\) 8.62231 + 25.0400i 0.293167 + 0.851386i
\(866\) −4.21307 + 7.29726i −0.143166 + 0.247971i
\(867\) 0 0
\(868\) −22.8979 0.258500i −0.777206 0.00877406i
\(869\) 14.3474i 0.486703i
\(870\) 0 0
\(871\) 28.7257 16.5848i 0.973334 0.561955i
\(872\) −1.00000 1.73205i −0.0338643 0.0586546i
\(873\) 0 0
\(874\) 17.3831i 0.587993i
\(875\) −1.88039 + 29.5206i −0.0635689 + 0.997977i
\(876\) 0 0
\(877\) 32.0433 + 18.5002i 1.08202 + 0.624707i 0.931442 0.363890i \(-0.118552\pi\)
0.150583 + 0.988597i \(0.451885\pi\)
\(878\) 23.9529 13.8292i 0.808372 0.466714i
\(879\) 0 0
\(880\) 1.88227 2.16536i 0.0634513 0.0729942i
\(881\) 5.97213 0.201206 0.100603 0.994927i \(-0.467923\pi\)
0.100603 + 0.994927i \(0.467923\pi\)
\(882\) 0 0
\(883\) 11.0589i 0.372163i −0.982534 0.186081i \(-0.940421\pi\)
0.982534 0.186081i \(-0.0595788\pi\)
\(884\) 34.7319 + 20.0524i 1.16816 + 0.674437i
\(885\) 0 0
\(886\) −1.17861 2.04142i −0.0395962 0.0685827i
\(887\) −5.15346 2.97535i −0.173036 0.0999026i 0.410980 0.911644i \(-0.365186\pi\)
−0.584017 + 0.811742i \(0.698520\pi\)
\(888\) 0 0
\(889\) 7.33169 + 13.0365i 0.245897 + 0.437231i
\(890\) 1.55270 7.98848i 0.0520467 0.267774i
\(891\) 0 0
\(892\) 6.79876 + 11.7758i 0.227639 + 0.394283i
\(893\) 2.43365 + 4.21521i 0.0814391 + 0.141057i
\(894\) 0 0
\(895\) 8.30937 + 1.61507i 0.277752 + 0.0539859i
\(896\) 0.0298666 2.64558i 0.000997774 0.0883827i
\(897\) 0 0
\(898\) 11.0869 + 6.40105i 0.369976 + 0.213606i
\(899\) −5.84448 10.1229i −0.194924 0.337619i
\(900\) 0 0
\(901\) −37.6671 21.7471i −1.25487 0.724500i
\(902\) 11.1855i 0.372438i
\(903\) 0 0
\(904\) 13.3875 0.445261
\(905\) −27.8773 + 32.0700i −0.926674 + 1.06604i
\(906\) 0 0
\(907\) 47.9037 27.6572i 1.59062 0.918343i 0.597415 0.801932i \(-0.296195\pi\)
0.993201 0.116411i \(-0.0371388\pi\)
\(908\) 10.7006 + 6.17797i 0.355110 + 0.205023i
\(909\) 0 0
\(910\) −24.1727 + 27.1823i −0.801319 + 0.901086i
\(911\) 35.2080i 1.16649i −0.812295 0.583246i \(-0.801782\pi\)
0.812295 0.583246i \(-0.198218\pi\)
\(912\) 0 0
\(913\) −2.40256 4.16135i −0.0795131 0.137721i
\(914\) −29.8989 + 17.2621i −0.988966 + 0.570980i
\(915\) 0 0
\(916\) 2.41341i 0.0797414i
\(917\) 0.372357 32.9833i 0.0122963 1.08921i
\(918\) 0 0
\(919\) 25.4437 44.0698i 0.839311 1.45373i −0.0511601 0.998690i \(-0.516292\pi\)
0.890471 0.455039i \(-0.150375\pi\)
\(920\) 6.08724 2.09609i 0.200690 0.0691060i
\(921\) 0 0
\(922\) −10.1346 + 17.5537i −0.333766 + 0.578099i
\(923\) 96.4026i 3.17313i
\(924\) 0 0
\(925\) −17.8560 + 44.1984i −0.587103 + 1.45323i
\(926\) 11.3662 + 6.56230i 0.373518 + 0.215651i
\(927\) 0 0
\(928\) 1.16959 0.675260i 0.0383935 0.0221665i
\(929\) 29.8405 51.6853i 0.979036 1.69574i 0.313118 0.949714i \(-0.398627\pi\)
0.665918 0.746025i \(-0.268040\pi\)
\(930\) 0 0
\(931\) 37.0685 20.2998i 1.21487 0.665298i
\(932\) −12.8756 −0.421754
\(933\) 0 0
\(934\) −1.32647 + 0.765836i −0.0434033 + 0.0250589i
\(935\) 17.6942 6.09286i 0.578664 0.199258i
\(936\) 0 0
\(937\) 24.2579 0.792471 0.396235 0.918149i \(-0.370316\pi\)
0.396235 + 0.918149i \(0.370316\pi\)
\(938\) −6.99643 12.4404i −0.228442 0.406194i
\(939\) 0 0
\(940\) −1.18263 + 1.36050i −0.0385732 + 0.0443745i
\(941\) 15.0539 + 26.0742i 0.490744 + 0.849994i 0.999943 0.0106549i \(-0.00339164\pi\)
−0.509199 + 0.860649i \(0.670058\pi\)
\(942\) 0 0
\(943\) −12.5497 + 21.7367i −0.408675 + 0.707845i
\(944\) 1.59622 0.0519525
\(945\) 0 0
\(946\) −6.87560 −0.223545
\(947\) 23.0812 39.9779i 0.750039 1.29911i −0.197764 0.980250i \(-0.563368\pi\)
0.947803 0.318857i \(-0.103299\pi\)
\(948\) 0 0
\(949\) −38.1730 66.1176i −1.23915 2.14627i
\(950\) −18.5860 23.7878i −0.603011 0.771779i
\(951\) 0 0
\(952\) 8.79670 14.8467i 0.285103 0.481185i
\(953\) 23.7121 0.768110 0.384055 0.923310i \(-0.374527\pi\)
0.384055 + 0.923310i \(0.374527\pi\)
\(954\) 0 0
\(955\) 2.05915 + 5.97996i 0.0666324 + 0.193507i
\(956\) 23.6032 13.6273i 0.763382 0.440739i
\(957\) 0 0
\(958\) −29.3170 −0.947190
\(959\) −0.116015 0.0687391i −0.00374632 0.00221970i
\(960\) 0 0
\(961\) 21.9558 38.0286i 0.708252 1.22673i
\(962\) −50.7663 + 29.3100i −1.63677 + 0.944991i
\(963\) 0 0
\(964\) −2.26690 1.30880i −0.0730120 0.0421535i
\(965\) −7.76789 1.50983i −0.250057 0.0486030i
\(966\) 0 0
\(967\) 0.0922780i 0.00296746i 0.999999 + 0.00148373i \(0.000472286\pi\)
−0.999999 + 0.00148373i \(0.999528\pi\)
\(968\) −4.67683 + 8.10050i −0.150319 + 0.260360i
\(969\) 0 0
\(970\) −18.5380 + 6.38340i −0.595219 + 0.204959i
\(971\) 19.8502 34.3816i 0.637024 1.10336i −0.349058 0.937101i \(-0.613498\pi\)
0.986082 0.166257i \(-0.0531683\pi\)
\(972\) 0 0
\(973\) 1.36267 + 2.42297i 0.0436851 + 0.0776769i
\(974\) 8.19540i 0.262598i
\(975\) 0 0
\(976\) 5.50239 3.17681i 0.176127 0.101687i
\(977\) −18.4035 31.8758i −0.588779 1.01980i −0.994393 0.105751i \(-0.966275\pi\)
0.405613 0.914045i \(-0.367058\pi\)
\(978\) 0 0
\(979\) 4.66973i 0.149245i
\(980\) 11.5784 + 10.5329i 0.369857 + 0.336460i
\(981\) 0 0
\(982\) 35.0206 + 20.2191i 1.11755 + 0.645218i
\(983\) −54.1899 + 31.2865i −1.72839 + 0.997885i −0.831693 + 0.555235i \(0.812628\pi\)
−0.896694 + 0.442650i \(0.854038\pi\)
\(984\) 0 0
\(985\) 3.99502 + 3.47273i 0.127292 + 0.110650i
\(986\) 8.80886 0.280531
\(987\) 0 0
\(988\) 37.1227i 1.18103i
\(989\) −13.3613 7.71414i −0.424864 0.245295i
\(990\) 0 0
\(991\) 17.4019 + 30.1410i 0.552791 + 0.957462i 0.998072 + 0.0620708i \(0.0197704\pi\)
−0.445281 + 0.895391i \(0.646896\pi\)
\(992\) 7.49558 + 4.32758i 0.237985 + 0.137401i
\(993\) 0 0
\(994\) 41.4793 + 0.468269i 1.31564 + 0.0148526i
\(995\) 7.60367 + 1.47791i 0.241053 + 0.0468528i
\(996\) 0 0
\(997\) −24.4316 42.3167i −0.773755 1.34018i −0.935492 0.353349i \(-0.885043\pi\)
0.161736 0.986834i \(-0.448291\pi\)
\(998\) −8.72450 15.1113i −0.276169 0.478339i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.bo.a.89.3 yes 16
3.2 odd 2 630.2.bo.b.89.6 yes 16
5.2 odd 4 3150.2.bf.f.1601.7 32
5.3 odd 4 3150.2.bf.f.1601.10 32
5.4 even 2 630.2.bo.b.89.8 yes 16
7.2 even 3 4410.2.d.b.4409.8 16
7.3 odd 6 inner 630.2.bo.a.269.1 yes 16
7.5 odd 6 4410.2.d.b.4409.9 16
15.2 even 4 3150.2.bf.f.1601.9 32
15.8 even 4 3150.2.bf.f.1601.8 32
15.14 odd 2 inner 630.2.bo.a.89.1 16
21.2 odd 6 4410.2.d.a.4409.9 16
21.5 even 6 4410.2.d.a.4409.8 16
21.17 even 6 630.2.bo.b.269.8 yes 16
35.3 even 12 3150.2.bf.f.1151.8 32
35.9 even 6 4410.2.d.a.4409.7 16
35.17 even 12 3150.2.bf.f.1151.9 32
35.19 odd 6 4410.2.d.a.4409.10 16
35.24 odd 6 630.2.bo.b.269.6 yes 16
105.17 odd 12 3150.2.bf.f.1151.7 32
105.38 odd 12 3150.2.bf.f.1151.10 32
105.44 odd 6 4410.2.d.b.4409.10 16
105.59 even 6 inner 630.2.bo.a.269.3 yes 16
105.89 even 6 4410.2.d.b.4409.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.bo.a.89.1 16 15.14 odd 2 inner
630.2.bo.a.89.3 yes 16 1.1 even 1 trivial
630.2.bo.a.269.1 yes 16 7.3 odd 6 inner
630.2.bo.a.269.3 yes 16 105.59 even 6 inner
630.2.bo.b.89.6 yes 16 3.2 odd 2
630.2.bo.b.89.8 yes 16 5.4 even 2
630.2.bo.b.269.6 yes 16 35.24 odd 6
630.2.bo.b.269.8 yes 16 21.17 even 6
3150.2.bf.f.1151.7 32 105.17 odd 12
3150.2.bf.f.1151.8 32 35.3 even 12
3150.2.bf.f.1151.9 32 35.17 even 12
3150.2.bf.f.1151.10 32 105.38 odd 12
3150.2.bf.f.1601.7 32 5.2 odd 4
3150.2.bf.f.1601.8 32 15.8 even 4
3150.2.bf.f.1601.9 32 15.2 even 4
3150.2.bf.f.1601.10 32 5.3 odd 4
4410.2.d.a.4409.7 16 35.9 even 6
4410.2.d.a.4409.8 16 21.5 even 6
4410.2.d.a.4409.9 16 21.2 odd 6
4410.2.d.a.4409.10 16 35.19 odd 6
4410.2.d.b.4409.7 16 105.89 even 6
4410.2.d.b.4409.8 16 7.2 even 3
4410.2.d.b.4409.9 16 7.5 odd 6
4410.2.d.b.4409.10 16 105.44 odd 6