Properties

Label 3168.2.f.g.1585.10
Level $3168$
Weight $2$
Character 3168.1585
Analytic conductor $25.297$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3168,2,Mod(1585,3168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3168.1585");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.578281160704.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 2x^{8} - 2x^{7} - 3x^{6} - 6x^{5} - 6x^{4} - 8x^{3} + 16x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1585.10
Root \(0.437403 - 1.34487i\) of defining polynomial
Character \(\chi\) \(=\) 3168.1585
Dual form 3168.2.f.g.1585.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.16794i q^{5} -0.933222 q^{7} -1.00000i q^{11} +2.93322i q^{13} -2.44626 q^{17} +2.68283i q^{19} -3.47129 q^{23} -12.3717 q^{25} +4.57245i q^{29} +3.65781 q^{31} -3.88961i q^{35} -4.53806i q^{37} -4.12618 q^{41} -11.4650i q^{43} +3.26265 q^{47} -6.12910 q^{49} -0.650132i q^{53} +4.16794 q^{55} +2.90965i q^{59} +10.7060i q^{61} -12.2255 q^{65} +5.42623i q^{67} -7.75129 q^{71} +13.0650 q^{73} +0.933222i q^{77} -4.83666 q^{79} +0.659664i q^{83} -10.1959i q^{85} +2.74629 q^{89} -2.73735i q^{91} -11.1819 q^{95} +1.82905 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{17} - 12 q^{23} - 6 q^{25} + 4 q^{31} - 4 q^{41} - 4 q^{47} - 6 q^{49} + 8 q^{55} - 16 q^{65} - 12 q^{71} - 4 q^{73} - 16 q^{79} + 4 q^{89} + 24 q^{95} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.16794i 1.86396i 0.362511 + 0.931979i \(0.381919\pi\)
−0.362511 + 0.931979i \(0.618081\pi\)
\(6\) 0 0
\(7\) −0.933222 −0.352725 −0.176362 0.984325i \(-0.556433\pi\)
−0.176362 + 0.984325i \(0.556433\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 1.00000i − 0.301511i
\(12\) 0 0
\(13\) 2.93322i 0.813530i 0.913533 + 0.406765i \(0.133343\pi\)
−0.913533 + 0.406765i \(0.866657\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.44626 −0.593306 −0.296653 0.954985i \(-0.595870\pi\)
−0.296653 + 0.954985i \(0.595870\pi\)
\(18\) 0 0
\(19\) 2.68283i 0.615484i 0.951470 + 0.307742i \(0.0995734\pi\)
−0.951470 + 0.307742i \(0.900427\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.47129 −0.723813 −0.361907 0.932214i \(-0.617874\pi\)
−0.361907 + 0.932214i \(0.617874\pi\)
\(24\) 0 0
\(25\) −12.3717 −2.47434
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.57245i 0.849082i 0.905409 + 0.424541i \(0.139565\pi\)
−0.905409 + 0.424541i \(0.860435\pi\)
\(30\) 0 0
\(31\) 3.65781 0.656962 0.328481 0.944511i \(-0.393463\pi\)
0.328481 + 0.944511i \(0.393463\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 3.88961i − 0.657465i
\(36\) 0 0
\(37\) − 4.53806i − 0.746053i −0.927821 0.373027i \(-0.878320\pi\)
0.927821 0.373027i \(-0.121680\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.12618 −0.644402 −0.322201 0.946671i \(-0.604423\pi\)
−0.322201 + 0.946671i \(0.604423\pi\)
\(42\) 0 0
\(43\) − 11.4650i − 1.74839i −0.485573 0.874196i \(-0.661389\pi\)
0.485573 0.874196i \(-0.338611\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.26265 0.475907 0.237953 0.971277i \(-0.423523\pi\)
0.237953 + 0.971277i \(0.423523\pi\)
\(48\) 0 0
\(49\) −6.12910 −0.875585
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 0.650132i − 0.0893025i −0.999003 0.0446512i \(-0.985782\pi\)
0.999003 0.0446512i \(-0.0142177\pi\)
\(54\) 0 0
\(55\) 4.16794 0.562005
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.90965i 0.378804i 0.981900 + 0.189402i \(0.0606550\pi\)
−0.981900 + 0.189402i \(0.939345\pi\)
\(60\) 0 0
\(61\) 10.7060i 1.37076i 0.728184 + 0.685382i \(0.240365\pi\)
−0.728184 + 0.685382i \(0.759635\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.2255 −1.51639
\(66\) 0 0
\(67\) 5.42623i 0.662919i 0.943469 + 0.331460i \(0.107541\pi\)
−0.943469 + 0.331460i \(0.892459\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.75129 −0.919909 −0.459955 0.887942i \(-0.652134\pi\)
−0.459955 + 0.887942i \(0.652134\pi\)
\(72\) 0 0
\(73\) 13.0650 1.52915 0.764574 0.644536i \(-0.222949\pi\)
0.764574 + 0.644536i \(0.222949\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.933222i 0.106351i
\(78\) 0 0
\(79\) −4.83666 −0.544166 −0.272083 0.962274i \(-0.587713\pi\)
−0.272083 + 0.962274i \(0.587713\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.659664i 0.0724075i 0.999344 + 0.0362038i \(0.0115265\pi\)
−0.999344 + 0.0362038i \(0.988473\pi\)
\(84\) 0 0
\(85\) − 10.1959i − 1.10590i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.74629 0.291107 0.145553 0.989350i \(-0.453504\pi\)
0.145553 + 0.989350i \(0.453504\pi\)
\(90\) 0 0
\(91\) − 2.73735i − 0.286952i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −11.1819 −1.14724
\(96\) 0 0
\(97\) 1.82905 0.185712 0.0928561 0.995680i \(-0.470400\pi\)
0.0928561 + 0.995680i \(0.470400\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 12.6811i − 1.26182i −0.775857 0.630908i \(-0.782682\pi\)
0.775857 0.630908i \(-0.217318\pi\)
\(102\) 0 0
\(103\) 3.86644 0.380972 0.190486 0.981690i \(-0.438994\pi\)
0.190486 + 0.981690i \(0.438994\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 12.7821i − 1.23570i −0.786298 0.617848i \(-0.788005\pi\)
0.786298 0.617848i \(-0.211995\pi\)
\(108\) 0 0
\(109\) 1.85065i 0.177260i 0.996065 + 0.0886299i \(0.0282489\pi\)
−0.996065 + 0.0886299i \(0.971751\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −16.6815 −1.56926 −0.784632 0.619962i \(-0.787148\pi\)
−0.784632 + 0.619962i \(0.787148\pi\)
\(114\) 0 0
\(115\) − 14.4681i − 1.34916i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.28291 0.209274
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 30.7248i − 2.74811i
\(126\) 0 0
\(127\) 6.51013 0.577680 0.288840 0.957377i \(-0.406730\pi\)
0.288840 + 0.957377i \(0.406730\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 6.91569i − 0.604227i −0.953272 0.302114i \(-0.902308\pi\)
0.953272 0.302114i \(-0.0976922\pi\)
\(132\) 0 0
\(133\) − 2.50368i − 0.217097i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.81952 −0.497195 −0.248598 0.968607i \(-0.579970\pi\)
−0.248598 + 0.968607i \(0.579970\pi\)
\(138\) 0 0
\(139\) − 9.53529i − 0.808772i −0.914588 0.404386i \(-0.867485\pi\)
0.914588 0.404386i \(-0.132515\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.93322 0.245288
\(144\) 0 0
\(145\) −19.0577 −1.58265
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.9221i 1.14055i 0.821455 + 0.570273i \(0.193162\pi\)
−0.821455 + 0.570273i \(0.806838\pi\)
\(150\) 0 0
\(151\) −15.2226 −1.23880 −0.619398 0.785077i \(-0.712623\pi\)
−0.619398 + 0.785077i \(0.712623\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.2455i 1.22455i
\(156\) 0 0
\(157\) − 0.873940i − 0.0697480i −0.999392 0.0348740i \(-0.988897\pi\)
0.999392 0.0348740i \(-0.0111030\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.23948 0.255307
\(162\) 0 0
\(163\) − 7.52686i − 0.589549i −0.955567 0.294775i \(-0.904755\pi\)
0.955567 0.294775i \(-0.0952446\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.142904 0.0110583 0.00552913 0.999985i \(-0.498240\pi\)
0.00552913 + 0.999985i \(0.498240\pi\)
\(168\) 0 0
\(169\) 4.39621 0.338170
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.12910i 0.0858436i 0.999078 + 0.0429218i \(0.0136666\pi\)
−0.999078 + 0.0429218i \(0.986333\pi\)
\(174\) 0 0
\(175\) 11.5456 0.872762
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 15.1620i − 1.13326i −0.823972 0.566631i \(-0.808246\pi\)
0.823972 0.566631i \(-0.191754\pi\)
\(180\) 0 0
\(181\) − 16.9211i − 1.25773i −0.777513 0.628867i \(-0.783519\pi\)
0.777513 0.628867i \(-0.216481\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18.9144 1.39061
\(186\) 0 0
\(187\) 2.44626i 0.178888i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.6720 −1.20635 −0.603174 0.797610i \(-0.706097\pi\)
−0.603174 + 0.797610i \(0.706097\pi\)
\(192\) 0 0
\(193\) 0.180700 0.0130071 0.00650354 0.999979i \(-0.497930\pi\)
0.00650354 + 0.999979i \(0.497930\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.38885i 0.597681i 0.954303 + 0.298840i \(0.0965998\pi\)
−0.954303 + 0.298840i \(0.903400\pi\)
\(198\) 0 0
\(199\) −22.0996 −1.56660 −0.783298 0.621646i \(-0.786464\pi\)
−0.783298 + 0.621646i \(0.786464\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 4.26711i − 0.299492i
\(204\) 0 0
\(205\) − 17.1977i − 1.20114i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.68283 0.185575
\(210\) 0 0
\(211\) 15.0390i 1.03533i 0.855585 + 0.517663i \(0.173198\pi\)
−0.855585 + 0.517663i \(0.826802\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 47.7853 3.25893
\(216\) 0 0
\(217\) −3.41355 −0.231727
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 7.17543i − 0.482672i
\(222\) 0 0
\(223\) 10.2766 0.688172 0.344086 0.938938i \(-0.388189\pi\)
0.344086 + 0.938938i \(0.388189\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.6688i 1.03998i 0.854173 + 0.519989i \(0.174064\pi\)
−0.854173 + 0.519989i \(0.825936\pi\)
\(228\) 0 0
\(229\) 14.0747i 0.930083i 0.885289 + 0.465041i \(0.153961\pi\)
−0.885289 + 0.465041i \(0.846039\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.0993 0.792652 0.396326 0.918110i \(-0.370285\pi\)
0.396326 + 0.918110i \(0.370285\pi\)
\(234\) 0 0
\(235\) 13.5985i 0.887070i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −21.7479 −1.40675 −0.703377 0.710817i \(-0.748325\pi\)
−0.703377 + 0.710817i \(0.748325\pi\)
\(240\) 0 0
\(241\) −6.93967 −0.447024 −0.223512 0.974701i \(-0.571752\pi\)
−0.223512 + 0.974701i \(0.571752\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 25.5457i − 1.63205i
\(246\) 0 0
\(247\) −7.86935 −0.500714
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 17.7279i − 1.11897i −0.828840 0.559486i \(-0.810999\pi\)
0.828840 0.559486i \(-0.189001\pi\)
\(252\) 0 0
\(253\) 3.47129i 0.218238i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.7545 −1.10750 −0.553748 0.832684i \(-0.686803\pi\)
−0.553748 + 0.832684i \(0.686803\pi\)
\(258\) 0 0
\(259\) 4.23502i 0.263152i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −27.6424 −1.70450 −0.852252 0.523132i \(-0.824763\pi\)
−0.852252 + 0.523132i \(0.824763\pi\)
\(264\) 0 0
\(265\) 2.70971 0.166456
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 10.6283i − 0.648020i −0.946054 0.324010i \(-0.894969\pi\)
0.946054 0.324010i \(-0.105031\pi\)
\(270\) 0 0
\(271\) −19.7481 −1.19961 −0.599805 0.800146i \(-0.704755\pi\)
−0.599805 + 0.800146i \(0.704755\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 12.3717i 0.746042i
\(276\) 0 0
\(277\) 12.5353i 0.753172i 0.926382 + 0.376586i \(0.122902\pi\)
−0.926382 + 0.376586i \(0.877098\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.8037 1.42001 0.710006 0.704195i \(-0.248692\pi\)
0.710006 + 0.704195i \(0.248692\pi\)
\(282\) 0 0
\(283\) 27.7294i 1.64834i 0.566340 + 0.824172i \(0.308359\pi\)
−0.566340 + 0.824172i \(0.691641\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.85065 0.227297
\(288\) 0 0
\(289\) −11.0158 −0.647988
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 5.61389i − 0.327967i −0.986463 0.163984i \(-0.947566\pi\)
0.986463 0.163984i \(-0.0524344\pi\)
\(294\) 0 0
\(295\) −12.1272 −0.706075
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 10.1821i − 0.588843i
\(300\) 0 0
\(301\) 10.6994i 0.616701i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −44.6220 −2.55505
\(306\) 0 0
\(307\) 27.8554i 1.58979i 0.606747 + 0.794895i \(0.292474\pi\)
−0.606747 + 0.794895i \(0.707526\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.4075 −1.38402 −0.692012 0.721886i \(-0.743276\pi\)
−0.692012 + 0.721886i \(0.743276\pi\)
\(312\) 0 0
\(313\) 9.13514 0.516349 0.258174 0.966098i \(-0.416879\pi\)
0.258174 + 0.966098i \(0.416879\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.9501i 1.00818i 0.863652 + 0.504088i \(0.168171\pi\)
−0.863652 + 0.504088i \(0.831829\pi\)
\(318\) 0 0
\(319\) 4.57245 0.256008
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 6.56291i − 0.365170i
\(324\) 0 0
\(325\) − 36.2890i − 2.01295i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.04478 −0.167864
\(330\) 0 0
\(331\) 13.1934i 0.725173i 0.931950 + 0.362586i \(0.118106\pi\)
−0.931950 + 0.362586i \(0.881894\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −22.6162 −1.23565
\(336\) 0 0
\(337\) 23.8712 1.30035 0.650173 0.759787i \(-0.274697\pi\)
0.650173 + 0.759787i \(0.274697\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 3.65781i − 0.198082i
\(342\) 0 0
\(343\) 12.2524 0.661566
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 37.2210i 1.99813i 0.0432373 + 0.999065i \(0.486233\pi\)
−0.0432373 + 0.999065i \(0.513767\pi\)
\(348\) 0 0
\(349\) 28.4140i 1.52097i 0.649358 + 0.760483i \(0.275038\pi\)
−0.649358 + 0.760483i \(0.724962\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.72158 0.357754 0.178877 0.983871i \(-0.442754\pi\)
0.178877 + 0.983871i \(0.442754\pi\)
\(354\) 0 0
\(355\) − 32.3069i − 1.71467i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.8260 1.04638 0.523188 0.852217i \(-0.324743\pi\)
0.523188 + 0.852217i \(0.324743\pi\)
\(360\) 0 0
\(361\) 11.8024 0.621179
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 54.4543i 2.85027i
\(366\) 0 0
\(367\) −4.54822 −0.237415 −0.118708 0.992929i \(-0.537875\pi\)
−0.118708 + 0.992929i \(0.537875\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.606718i 0.0314992i
\(372\) 0 0
\(373\) 33.3992i 1.72934i 0.502336 + 0.864672i \(0.332474\pi\)
−0.502336 + 0.864672i \(0.667526\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −13.4120 −0.690753
\(378\) 0 0
\(379\) − 9.24843i − 0.475060i −0.971380 0.237530i \(-0.923662\pi\)
0.971380 0.237530i \(-0.0763378\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 31.6080 1.61509 0.807547 0.589803i \(-0.200795\pi\)
0.807547 + 0.589803i \(0.200795\pi\)
\(384\) 0 0
\(385\) −3.88961 −0.198233
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 4.99543i − 0.253278i −0.991949 0.126639i \(-0.959581\pi\)
0.991949 0.126639i \(-0.0404190\pi\)
\(390\) 0 0
\(391\) 8.49168 0.429443
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 20.1589i − 1.01430i
\(396\) 0 0
\(397\) 17.7950i 0.893107i 0.894757 + 0.446553i \(0.147349\pi\)
−0.894757 + 0.446553i \(0.852651\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.1739 0.607934 0.303967 0.952683i \(-0.401689\pi\)
0.303967 + 0.952683i \(0.401689\pi\)
\(402\) 0 0
\(403\) 10.7292i 0.534458i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.53806 −0.224943
\(408\) 0 0
\(409\) 0.587997 0.0290746 0.0145373 0.999894i \(-0.495372\pi\)
0.0145373 + 0.999894i \(0.495372\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 2.71535i − 0.133614i
\(414\) 0 0
\(415\) −2.74944 −0.134965
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 11.1507i − 0.544748i −0.962191 0.272374i \(-0.912191\pi\)
0.962191 0.272374i \(-0.0878088\pi\)
\(420\) 0 0
\(421\) − 34.8398i − 1.69799i −0.528401 0.848995i \(-0.677208\pi\)
0.528401 0.848995i \(-0.322792\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 30.2645 1.46804
\(426\) 0 0
\(427\) − 9.99108i − 0.483502i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.8647 −1.19769 −0.598846 0.800864i \(-0.704374\pi\)
−0.598846 + 0.800864i \(0.704374\pi\)
\(432\) 0 0
\(433\) −0.547704 −0.0263210 −0.0131605 0.999913i \(-0.504189\pi\)
−0.0131605 + 0.999913i \(0.504189\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 9.31288i − 0.445495i
\(438\) 0 0
\(439\) −27.5308 −1.31397 −0.656987 0.753902i \(-0.728169\pi\)
−0.656987 + 0.753902i \(0.728169\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 8.05454i − 0.382683i −0.981524 0.191341i \(-0.938716\pi\)
0.981524 0.191341i \(-0.0612838\pi\)
\(444\) 0 0
\(445\) 11.4464i 0.542611i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 33.7705 1.59373 0.796865 0.604158i \(-0.206490\pi\)
0.796865 + 0.604158i \(0.206490\pi\)
\(450\) 0 0
\(451\) 4.12618i 0.194294i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11.4091 0.534867
\(456\) 0 0
\(457\) −3.83220 −0.179263 −0.0896313 0.995975i \(-0.528569\pi\)
−0.0896313 + 0.995975i \(0.528569\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.8380i 0.737649i 0.929499 + 0.368825i \(0.120240\pi\)
−0.929499 + 0.368825i \(0.879760\pi\)
\(462\) 0 0
\(463\) −30.4131 −1.41341 −0.706707 0.707506i \(-0.749820\pi\)
−0.706707 + 0.707506i \(0.749820\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.1815i 0.933887i 0.884287 + 0.466943i \(0.154645\pi\)
−0.884287 + 0.466943i \(0.845355\pi\)
\(468\) 0 0
\(469\) − 5.06388i − 0.233828i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.4650 −0.527160
\(474\) 0 0
\(475\) − 33.1912i − 1.52292i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.5604 0.573901 0.286951 0.957945i \(-0.407358\pi\)
0.286951 + 0.957945i \(0.407358\pi\)
\(480\) 0 0
\(481\) 13.3111 0.606936
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.62338i 0.346160i
\(486\) 0 0
\(487\) −14.2519 −0.645814 −0.322907 0.946431i \(-0.604660\pi\)
−0.322907 + 0.946431i \(0.604660\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 20.4046i − 0.920849i −0.887699 0.460424i \(-0.847697\pi\)
0.887699 0.460424i \(-0.152303\pi\)
\(492\) 0 0
\(493\) − 11.1854i − 0.503765i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.23368 0.324475
\(498\) 0 0
\(499\) − 33.3751i − 1.49407i −0.664782 0.747037i \(-0.731476\pi\)
0.664782 0.747037i \(-0.268524\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.8148 0.660561 0.330281 0.943883i \(-0.392857\pi\)
0.330281 + 0.943883i \(0.392857\pi\)
\(504\) 0 0
\(505\) 52.8541 2.35197
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 23.9464i 1.06140i 0.847559 + 0.530702i \(0.178072\pi\)
−0.847559 + 0.530702i \(0.821928\pi\)
\(510\) 0 0
\(511\) −12.1926 −0.539369
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.1151i 0.710116i
\(516\) 0 0
\(517\) − 3.26265i − 0.143491i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.6157 −0.903189 −0.451594 0.892223i \(-0.649145\pi\)
−0.451594 + 0.892223i \(0.649145\pi\)
\(522\) 0 0
\(523\) 22.6014i 0.988292i 0.869379 + 0.494146i \(0.164519\pi\)
−0.869379 + 0.494146i \(0.835481\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.94797 −0.389779
\(528\) 0 0
\(529\) −10.9502 −0.476095
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 12.1030i − 0.524240i
\(534\) 0 0
\(535\) 53.2752 2.30329
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.12910i 0.263999i
\(540\) 0 0
\(541\) 5.25411i 0.225892i 0.993601 + 0.112946i \(0.0360287\pi\)
−0.993601 + 0.112946i \(0.963971\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.71338 −0.330405
\(546\) 0 0
\(547\) − 31.4365i − 1.34413i −0.740493 0.672064i \(-0.765408\pi\)
0.740493 0.672064i \(-0.234592\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12.2671 −0.522596
\(552\) 0 0
\(553\) 4.51368 0.191941
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.8905i 0.588561i 0.955719 + 0.294280i \(0.0950800\pi\)
−0.955719 + 0.294280i \(0.904920\pi\)
\(558\) 0 0
\(559\) 33.6293 1.42237
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 20.5160i 0.864647i 0.901719 + 0.432324i \(0.142306\pi\)
−0.901719 + 0.432324i \(0.857694\pi\)
\(564\) 0 0
\(565\) − 69.5275i − 2.92504i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.9308 0.877463 0.438731 0.898618i \(-0.355428\pi\)
0.438731 + 0.898618i \(0.355428\pi\)
\(570\) 0 0
\(571\) − 6.00582i − 0.251336i −0.992072 0.125668i \(-0.959893\pi\)
0.992072 0.125668i \(-0.0401074\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 42.9457 1.79096
\(576\) 0 0
\(577\) −45.4212 −1.89091 −0.945455 0.325753i \(-0.894382\pi\)
−0.945455 + 0.325753i \(0.894382\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 0.615613i − 0.0255399i
\(582\) 0 0
\(583\) −0.650132 −0.0269257
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 4.95230i − 0.204403i −0.994764 0.102202i \(-0.967411\pi\)
0.994764 0.102202i \(-0.0325887\pi\)
\(588\) 0 0
\(589\) 9.81329i 0.404350i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.6332 0.724110 0.362055 0.932157i \(-0.382075\pi\)
0.362055 + 0.932157i \(0.382075\pi\)
\(594\) 0 0
\(595\) 9.51502i 0.390078i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 45.1533 1.84491 0.922456 0.386101i \(-0.126178\pi\)
0.922456 + 0.386101i \(0.126178\pi\)
\(600\) 0 0
\(601\) −15.6375 −0.637867 −0.318933 0.947777i \(-0.603325\pi\)
−0.318933 + 0.947777i \(0.603325\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 4.16794i − 0.169451i
\(606\) 0 0
\(607\) 41.9318 1.70196 0.850979 0.525200i \(-0.176010\pi\)
0.850979 + 0.525200i \(0.176010\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.57008i 0.387164i
\(612\) 0 0
\(613\) 27.8914i 1.12652i 0.826278 + 0.563262i \(0.190454\pi\)
−0.826278 + 0.563262i \(0.809546\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.7471 0.593697 0.296849 0.954925i \(-0.404064\pi\)
0.296849 + 0.954925i \(0.404064\pi\)
\(618\) 0 0
\(619\) 5.12150i 0.205851i 0.994689 + 0.102925i \(0.0328203\pi\)
−0.994689 + 0.102925i \(0.967180\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.56290 −0.102681
\(624\) 0 0
\(625\) 66.2007 2.64803
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.1013i 0.442638i
\(630\) 0 0
\(631\) 48.5097 1.93114 0.965570 0.260142i \(-0.0837693\pi\)
0.965570 + 0.260142i \(0.0837693\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 27.1338i 1.07677i
\(636\) 0 0
\(637\) − 17.9780i − 0.712314i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.22155 0.285234 0.142617 0.989778i \(-0.454448\pi\)
0.142617 + 0.989778i \(0.454448\pi\)
\(642\) 0 0
\(643\) 11.9607i 0.471684i 0.971791 + 0.235842i \(0.0757847\pi\)
−0.971791 + 0.235842i \(0.924215\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −26.1952 −1.02984 −0.514920 0.857238i \(-0.672178\pi\)
−0.514920 + 0.857238i \(0.672178\pi\)
\(648\) 0 0
\(649\) 2.90965 0.114214
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 34.2180i − 1.33906i −0.742787 0.669528i \(-0.766497\pi\)
0.742787 0.669528i \(-0.233503\pi\)
\(654\) 0 0
\(655\) 28.8242 1.12625
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 2.73052i − 0.106366i −0.998585 0.0531831i \(-0.983063\pi\)
0.998585 0.0531831i \(-0.0169367\pi\)
\(660\) 0 0
\(661\) − 11.2478i − 0.437488i −0.975782 0.218744i \(-0.929804\pi\)
0.975782 0.218744i \(-0.0701959\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10.4352 0.404659
\(666\) 0 0
\(667\) − 15.8723i − 0.614577i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.7060 0.413301
\(672\) 0 0
\(673\) −20.0432 −0.772609 −0.386305 0.922371i \(-0.626249\pi\)
−0.386305 + 0.922371i \(0.626249\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 27.1414i − 1.04313i −0.853212 0.521564i \(-0.825349\pi\)
0.853212 0.521564i \(-0.174651\pi\)
\(678\) 0 0
\(679\) −1.70691 −0.0655053
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 41.8019i 1.59951i 0.600330 + 0.799753i \(0.295036\pi\)
−0.600330 + 0.799753i \(0.704964\pi\)
\(684\) 0 0
\(685\) − 24.2554i − 0.926751i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.90698 0.0726502
\(690\) 0 0
\(691\) 28.7753i 1.09466i 0.836916 + 0.547332i \(0.184356\pi\)
−0.836916 + 0.547332i \(0.815644\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 39.7425 1.50752
\(696\) 0 0
\(697\) 10.0937 0.382327
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.5826i 0.852933i 0.904503 + 0.426467i \(0.140242\pi\)
−0.904503 + 0.426467i \(0.859758\pi\)
\(702\) 0 0
\(703\) 12.1749 0.459184
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 11.8343i 0.445074i
\(708\) 0 0
\(709\) 14.5420i 0.546138i 0.961994 + 0.273069i \(0.0880387\pi\)
−0.961994 + 0.273069i \(0.911961\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.6973 −0.475518
\(714\) 0 0
\(715\) 12.2255i 0.457207i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5.98413 −0.223170 −0.111585 0.993755i \(-0.535593\pi\)
−0.111585 + 0.993755i \(0.535593\pi\)
\(720\) 0 0
\(721\) −3.60825 −0.134378
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 56.5690i − 2.10092i
\(726\) 0 0
\(727\) 13.7234 0.508973 0.254486 0.967076i \(-0.418094\pi\)
0.254486 + 0.967076i \(0.418094\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 28.0463i 1.03733i
\(732\) 0 0
\(733\) 46.4631i 1.71615i 0.513522 + 0.858076i \(0.328340\pi\)
−0.513522 + 0.858076i \(0.671660\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.42623 0.199878
\(738\) 0 0
\(739\) 12.5779i 0.462686i 0.972872 + 0.231343i \(0.0743119\pi\)
−0.972872 + 0.231343i \(0.925688\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.36221 −0.343466 −0.171733 0.985144i \(-0.554937\pi\)
−0.171733 + 0.985144i \(0.554937\pi\)
\(744\) 0 0
\(745\) −58.0266 −2.12593
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11.9286i 0.435861i
\(750\) 0 0
\(751\) −3.96209 −0.144579 −0.0722894 0.997384i \(-0.523031\pi\)
−0.0722894 + 0.997384i \(0.523031\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 63.4468i − 2.30906i
\(756\) 0 0
\(757\) − 3.56879i − 0.129710i −0.997895 0.0648550i \(-0.979342\pi\)
0.997895 0.0648550i \(-0.0206585\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −49.8018 −1.80532 −0.902658 0.430359i \(-0.858387\pi\)
−0.902658 + 0.430359i \(0.858387\pi\)
\(762\) 0 0
\(763\) − 1.72707i − 0.0625240i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.53465 −0.308168
\(768\) 0 0
\(769\) 30.5772 1.10264 0.551321 0.834293i \(-0.314124\pi\)
0.551321 + 0.834293i \(0.314124\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.9315i 0.860756i 0.902649 + 0.430378i \(0.141620\pi\)
−0.902649 + 0.430378i \(0.858380\pi\)
\(774\) 0 0
\(775\) −45.2534 −1.62555
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 11.0699i − 0.396619i
\(780\) 0 0
\(781\) 7.75129i 0.277363i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.64253 0.130007
\(786\) 0 0
\(787\) − 13.4992i − 0.481196i −0.970625 0.240598i \(-0.922656\pi\)
0.970625 0.240598i \(-0.0773436\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.5676 0.553519
\(792\) 0 0
\(793\) −31.4031 −1.11516
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.8879i 0.846154i 0.906094 + 0.423077i \(0.139050\pi\)
−0.906094 + 0.423077i \(0.860950\pi\)
\(798\) 0 0
\(799\) −7.98130 −0.282358
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 13.0650i − 0.461056i
\(804\) 0 0
\(805\) 13.5020i 0.475882i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −20.1858 −0.709694 −0.354847 0.934924i \(-0.615467\pi\)
−0.354847 + 0.934924i \(0.615467\pi\)
\(810\) 0 0
\(811\) 3.78003i 0.132735i 0.997795 + 0.0663675i \(0.0211410\pi\)
−0.997795 + 0.0663675i \(0.978859\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 31.3715 1.09890
\(816\) 0 0
\(817\) 30.7586 1.07611
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 32.5119i 1.13467i 0.823486 + 0.567336i \(0.192026\pi\)
−0.823486 + 0.567336i \(0.807974\pi\)
\(822\) 0 0
\(823\) −20.7651 −0.723826 −0.361913 0.932212i \(-0.617876\pi\)
−0.361913 + 0.932212i \(0.617876\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 11.2140i − 0.389948i −0.980808 0.194974i \(-0.937538\pi\)
0.980808 0.194974i \(-0.0624622\pi\)
\(828\) 0 0
\(829\) − 6.82205i − 0.236940i −0.992958 0.118470i \(-0.962201\pi\)
0.992958 0.118470i \(-0.0377989\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 14.9934 0.519490
\(834\) 0 0
\(835\) 0.595616i 0.0206121i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.3720 −0.668796 −0.334398 0.942432i \(-0.608533\pi\)
−0.334398 + 0.942432i \(0.608533\pi\)
\(840\) 0 0
\(841\) 8.09273 0.279060
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 18.3231i 0.630334i
\(846\) 0 0
\(847\) 0.933222 0.0320659
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15.7529i 0.540003i
\(852\) 0 0
\(853\) − 11.1509i − 0.381800i −0.981609 0.190900i \(-0.938859\pi\)
0.981609 0.190900i \(-0.0611406\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.4078 1.03871 0.519355 0.854558i \(-0.326172\pi\)
0.519355 + 0.854558i \(0.326172\pi\)
\(858\) 0 0
\(859\) 27.7908i 0.948210i 0.880468 + 0.474105i \(0.157228\pi\)
−0.880468 + 0.474105i \(0.842772\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.221827 0.00755109 0.00377554 0.999993i \(-0.498798\pi\)
0.00377554 + 0.999993i \(0.498798\pi\)
\(864\) 0 0
\(865\) −4.70600 −0.160009
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.83666i 0.164072i
\(870\) 0 0
\(871\) −15.9163 −0.539304
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 28.6731i 0.969328i
\(876\) 0 0
\(877\) 15.5470i 0.524985i 0.964934 + 0.262492i \(0.0845444\pi\)
−0.964934 + 0.262492i \(0.915456\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −21.4338 −0.722125 −0.361062 0.932542i \(-0.617586\pi\)
−0.361062 + 0.932542i \(0.617586\pi\)
\(882\) 0 0
\(883\) 14.2700i 0.480224i 0.970745 + 0.240112i \(0.0771842\pi\)
−0.970745 + 0.240112i \(0.922816\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23.6109 0.792775 0.396388 0.918083i \(-0.370264\pi\)
0.396388 + 0.918083i \(0.370264\pi\)
\(888\) 0 0
\(889\) −6.07540 −0.203762
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.75315i 0.292913i
\(894\) 0 0
\(895\) 63.1944 2.11235
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.7251i 0.557815i
\(900\) 0 0
\(901\) 1.59039i 0.0529837i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 70.5260 2.34436
\(906\) 0 0
\(907\) 45.2882i 1.50377i 0.659294 + 0.751885i \(0.270855\pi\)
−0.659294 + 0.751885i \(0.729145\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −22.4539 −0.743931 −0.371966 0.928247i \(-0.621316\pi\)
−0.371966 + 0.928247i \(0.621316\pi\)
\(912\) 0 0
\(913\) 0.659664 0.0218317
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.45388i 0.213126i
\(918\) 0 0
\(919\) −41.5329 −1.37004 −0.685022 0.728522i \(-0.740207\pi\)
−0.685022 + 0.728522i \(0.740207\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 22.7363i − 0.748373i
\(924\) 0 0
\(925\) 56.1436i 1.84599i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 37.2997 1.22376 0.611882 0.790949i \(-0.290413\pi\)
0.611882 + 0.790949i \(0.290413\pi\)
\(930\) 0 0
\(931\) − 16.4433i − 0.538909i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −10.1959 −0.333441
\(936\) 0 0
\(937\) 13.1897 0.430888 0.215444 0.976516i \(-0.430880\pi\)
0.215444 + 0.976516i \(0.430880\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 24.6716i − 0.804270i −0.915580 0.402135i \(-0.868268\pi\)
0.915580 0.402135i \(-0.131732\pi\)
\(942\) 0 0
\(943\) 14.3232 0.466426
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.8667i 1.26300i 0.775376 + 0.631500i \(0.217560\pi\)
−0.775376 + 0.631500i \(0.782440\pi\)
\(948\) 0 0
\(949\) 38.3227i 1.24401i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −52.5807 −1.70326 −0.851628 0.524147i \(-0.824384\pi\)
−0.851628 + 0.524147i \(0.824384\pi\)
\(954\) 0 0
\(955\) − 69.4881i − 2.24858i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.43091 0.175373
\(960\) 0 0
\(961\) −17.6204 −0.568401
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.753147i 0.0242447i
\(966\) 0 0
\(967\) 2.98370 0.0959493 0.0479746 0.998849i \(-0.484723\pi\)
0.0479746 + 0.998849i \(0.484723\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 15.0443i 0.482793i 0.970427 + 0.241397i \(0.0776055\pi\)
−0.970427 + 0.241397i \(0.922395\pi\)
\(972\) 0 0
\(973\) 8.89854i 0.285274i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.4313 0.365720 0.182860 0.983139i \(-0.441464\pi\)
0.182860 + 0.983139i \(0.441464\pi\)
\(978\) 0 0
\(979\) − 2.74629i − 0.0877720i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 58.1032 1.85321 0.926603 0.376042i \(-0.122715\pi\)
0.926603 + 0.376042i \(0.122715\pi\)
\(984\) 0 0
\(985\) −34.9642 −1.11405
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 39.7982i 1.26551i
\(990\) 0 0
\(991\) −30.2307 −0.960311 −0.480156 0.877183i \(-0.659420\pi\)
−0.480156 + 0.877183i \(0.659420\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 92.1096i − 2.92007i
\(996\) 0 0
\(997\) 13.3996i 0.424368i 0.977230 + 0.212184i \(0.0680577\pi\)
−0.977230 + 0.212184i \(0.931942\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.f.g.1585.10 10
3.2 odd 2 352.2.c.a.177.2 10
4.3 odd 2 792.2.f.g.397.3 10
8.3 odd 2 792.2.f.g.397.4 10
8.5 even 2 inner 3168.2.f.g.1585.1 10
12.11 even 2 88.2.c.a.45.8 yes 10
24.5 odd 2 352.2.c.a.177.9 10
24.11 even 2 88.2.c.a.45.7 10
33.32 even 2 3872.2.c.f.1937.2 10
48.5 odd 4 2816.2.a.q.1.1 5
48.11 even 4 2816.2.a.r.1.5 5
48.29 odd 4 2816.2.a.p.1.5 5
48.35 even 4 2816.2.a.o.1.1 5
132.35 odd 10 968.2.o.h.565.5 40
132.47 even 10 968.2.o.g.493.10 40
132.59 even 10 968.2.o.g.269.4 40
132.71 even 10 968.2.o.g.245.2 40
132.83 odd 10 968.2.o.h.245.9 40
132.95 odd 10 968.2.o.h.269.7 40
132.107 odd 10 968.2.o.h.493.1 40
132.119 even 10 968.2.o.g.565.6 40
132.131 odd 2 968.2.c.d.485.3 10
264.35 odd 10 968.2.o.h.565.9 40
264.59 even 10 968.2.o.g.269.10 40
264.83 odd 10 968.2.o.h.245.5 40
264.107 odd 10 968.2.o.h.493.7 40
264.131 odd 2 968.2.c.d.485.4 10
264.179 even 10 968.2.o.g.493.4 40
264.197 even 2 3872.2.c.f.1937.9 10
264.203 even 10 968.2.o.g.245.6 40
264.227 odd 10 968.2.o.h.269.1 40
264.251 even 10 968.2.o.g.565.2 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.c.a.45.7 10 24.11 even 2
88.2.c.a.45.8 yes 10 12.11 even 2
352.2.c.a.177.2 10 3.2 odd 2
352.2.c.a.177.9 10 24.5 odd 2
792.2.f.g.397.3 10 4.3 odd 2
792.2.f.g.397.4 10 8.3 odd 2
968.2.c.d.485.3 10 132.131 odd 2
968.2.c.d.485.4 10 264.131 odd 2
968.2.o.g.245.2 40 132.71 even 10
968.2.o.g.245.6 40 264.203 even 10
968.2.o.g.269.4 40 132.59 even 10
968.2.o.g.269.10 40 264.59 even 10
968.2.o.g.493.4 40 264.179 even 10
968.2.o.g.493.10 40 132.47 even 10
968.2.o.g.565.2 40 264.251 even 10
968.2.o.g.565.6 40 132.119 even 10
968.2.o.h.245.5 40 264.83 odd 10
968.2.o.h.245.9 40 132.83 odd 10
968.2.o.h.269.1 40 264.227 odd 10
968.2.o.h.269.7 40 132.95 odd 10
968.2.o.h.493.1 40 132.107 odd 10
968.2.o.h.493.7 40 264.107 odd 10
968.2.o.h.565.5 40 132.35 odd 10
968.2.o.h.565.9 40 264.35 odd 10
2816.2.a.o.1.1 5 48.35 even 4
2816.2.a.p.1.5 5 48.29 odd 4
2816.2.a.q.1.1 5 48.5 odd 4
2816.2.a.r.1.5 5 48.11 even 4
3168.2.f.g.1585.1 10 8.5 even 2 inner
3168.2.f.g.1585.10 10 1.1 even 1 trivial
3872.2.c.f.1937.2 10 33.32 even 2
3872.2.c.f.1937.9 10 264.197 even 2