Properties

Label 352.2.c.a.177.2
Level $352$
Weight $2$
Character 352.177
Analytic conductor $2.811$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(177,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.578281160704.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 2x^{8} - 2x^{7} - 3x^{6} - 6x^{5} - 6x^{4} - 8x^{3} + 16x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 177.2
Root \(0.437403 - 1.34487i\) of defining polynomial
Character \(\chi\) \(=\) 352.177
Dual form 352.2.c.a.177.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.35300i q^{3} -4.16794i q^{5} -0.933222 q^{7} -2.53661 q^{9} +1.00000i q^{11} +2.93322i q^{13} -9.80716 q^{15} +2.44626 q^{17} +2.68283i q^{19} +2.19587i q^{21} +3.47129 q^{23} -12.3717 q^{25} -1.09035i q^{27} -4.57245i q^{29} +3.65781 q^{31} +2.35300 q^{33} +3.88961i q^{35} -4.53806i q^{37} +6.90187 q^{39} +4.12618 q^{41} -11.4650i q^{43} +10.5724i q^{45} -3.26265 q^{47} -6.12910 q^{49} -5.75606i q^{51} +0.650132i q^{53} +4.16794 q^{55} +6.31271 q^{57} -2.90965i q^{59} +10.7060i q^{61} +2.36722 q^{63} +12.2255 q^{65} +5.42623i q^{67} -8.16794i q^{69} +7.75129 q^{71} +13.0650 q^{73} +29.1106i q^{75} -0.933222i q^{77} -4.83666 q^{79} -10.1754 q^{81} -0.659664i q^{83} -10.1959i q^{85} -10.7590 q^{87} -2.74629 q^{89} -2.73735i q^{91} -8.60683i q^{93} +11.1819 q^{95} +1.82905 q^{97} -2.53661i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{9} - 8 q^{15} - 4 q^{17} + 12 q^{23} - 6 q^{25} + 4 q^{31} - 24 q^{39} + 4 q^{41} + 4 q^{47} - 6 q^{49} + 8 q^{55} + 16 q^{57} + 40 q^{63} + 16 q^{65} + 12 q^{71} - 4 q^{73} - 16 q^{79} - 6 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.35300i − 1.35851i −0.733904 0.679253i \(-0.762304\pi\)
0.733904 0.679253i \(-0.237696\pi\)
\(4\) 0 0
\(5\) − 4.16794i − 1.86396i −0.362511 0.931979i \(-0.618081\pi\)
0.362511 0.931979i \(-0.381919\pi\)
\(6\) 0 0
\(7\) −0.933222 −0.352725 −0.176362 0.984325i \(-0.556433\pi\)
−0.176362 + 0.984325i \(0.556433\pi\)
\(8\) 0 0
\(9\) −2.53661 −0.845538
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 2.93322i 0.813530i 0.913533 + 0.406765i \(0.133343\pi\)
−0.913533 + 0.406765i \(0.866657\pi\)
\(14\) 0 0
\(15\) −9.80716 −2.53220
\(16\) 0 0
\(17\) 2.44626 0.593306 0.296653 0.954985i \(-0.404130\pi\)
0.296653 + 0.954985i \(0.404130\pi\)
\(18\) 0 0
\(19\) 2.68283i 0.615484i 0.951470 + 0.307742i \(0.0995734\pi\)
−0.951470 + 0.307742i \(0.900427\pi\)
\(20\) 0 0
\(21\) 2.19587i 0.479179i
\(22\) 0 0
\(23\) 3.47129 0.723813 0.361907 0.932214i \(-0.382126\pi\)
0.361907 + 0.932214i \(0.382126\pi\)
\(24\) 0 0
\(25\) −12.3717 −2.47434
\(26\) 0 0
\(27\) − 1.09035i − 0.209838i
\(28\) 0 0
\(29\) − 4.57245i − 0.849082i −0.905409 0.424541i \(-0.860435\pi\)
0.905409 0.424541i \(-0.139565\pi\)
\(30\) 0 0
\(31\) 3.65781 0.656962 0.328481 0.944511i \(-0.393463\pi\)
0.328481 + 0.944511i \(0.393463\pi\)
\(32\) 0 0
\(33\) 2.35300 0.409605
\(34\) 0 0
\(35\) 3.88961i 0.657465i
\(36\) 0 0
\(37\) − 4.53806i − 0.746053i −0.927821 0.373027i \(-0.878320\pi\)
0.927821 0.373027i \(-0.121680\pi\)
\(38\) 0 0
\(39\) 6.90187 1.10518
\(40\) 0 0
\(41\) 4.12618 0.644402 0.322201 0.946671i \(-0.395577\pi\)
0.322201 + 0.946671i \(0.395577\pi\)
\(42\) 0 0
\(43\) − 11.4650i − 1.74839i −0.485573 0.874196i \(-0.661389\pi\)
0.485573 0.874196i \(-0.338611\pi\)
\(44\) 0 0
\(45\) 10.5724i 1.57605i
\(46\) 0 0
\(47\) −3.26265 −0.475907 −0.237953 0.971277i \(-0.576477\pi\)
−0.237953 + 0.971277i \(0.576477\pi\)
\(48\) 0 0
\(49\) −6.12910 −0.875585
\(50\) 0 0
\(51\) − 5.75606i − 0.806009i
\(52\) 0 0
\(53\) 0.650132i 0.0893025i 0.999003 + 0.0446512i \(0.0142177\pi\)
−0.999003 + 0.0446512i \(0.985782\pi\)
\(54\) 0 0
\(55\) 4.16794 0.562005
\(56\) 0 0
\(57\) 6.31271 0.836139
\(58\) 0 0
\(59\) − 2.90965i − 0.378804i −0.981900 0.189402i \(-0.939345\pi\)
0.981900 0.189402i \(-0.0606550\pi\)
\(60\) 0 0
\(61\) 10.7060i 1.37076i 0.728184 + 0.685382i \(0.240365\pi\)
−0.728184 + 0.685382i \(0.759635\pi\)
\(62\) 0 0
\(63\) 2.36722 0.298242
\(64\) 0 0
\(65\) 12.2255 1.51639
\(66\) 0 0
\(67\) 5.42623i 0.662919i 0.943469 + 0.331460i \(0.107541\pi\)
−0.943469 + 0.331460i \(0.892459\pi\)
\(68\) 0 0
\(69\) − 8.16794i − 0.983304i
\(70\) 0 0
\(71\) 7.75129 0.919909 0.459955 0.887942i \(-0.347866\pi\)
0.459955 + 0.887942i \(0.347866\pi\)
\(72\) 0 0
\(73\) 13.0650 1.52915 0.764574 0.644536i \(-0.222949\pi\)
0.764574 + 0.644536i \(0.222949\pi\)
\(74\) 0 0
\(75\) 29.1106i 3.36141i
\(76\) 0 0
\(77\) − 0.933222i − 0.106351i
\(78\) 0 0
\(79\) −4.83666 −0.544166 −0.272083 0.962274i \(-0.587713\pi\)
−0.272083 + 0.962274i \(0.587713\pi\)
\(80\) 0 0
\(81\) −10.1754 −1.13060
\(82\) 0 0
\(83\) − 0.659664i − 0.0724075i −0.999344 0.0362038i \(-0.988473\pi\)
0.999344 0.0362038i \(-0.0115265\pi\)
\(84\) 0 0
\(85\) − 10.1959i − 1.10590i
\(86\) 0 0
\(87\) −10.7590 −1.15348
\(88\) 0 0
\(89\) −2.74629 −0.291107 −0.145553 0.989350i \(-0.546496\pi\)
−0.145553 + 0.989350i \(0.546496\pi\)
\(90\) 0 0
\(91\) − 2.73735i − 0.286952i
\(92\) 0 0
\(93\) − 8.60683i − 0.892487i
\(94\) 0 0
\(95\) 11.1819 1.14724
\(96\) 0 0
\(97\) 1.82905 0.185712 0.0928561 0.995680i \(-0.470400\pi\)
0.0928561 + 0.995680i \(0.470400\pi\)
\(98\) 0 0
\(99\) − 2.53661i − 0.254939i
\(100\) 0 0
\(101\) 12.6811i 1.26182i 0.775857 + 0.630908i \(0.217318\pi\)
−0.775857 + 0.630908i \(0.782682\pi\)
\(102\) 0 0
\(103\) 3.86644 0.380972 0.190486 0.981690i \(-0.438994\pi\)
0.190486 + 0.981690i \(0.438994\pi\)
\(104\) 0 0
\(105\) 9.15226 0.893170
\(106\) 0 0
\(107\) 12.7821i 1.23570i 0.786298 + 0.617848i \(0.211995\pi\)
−0.786298 + 0.617848i \(0.788005\pi\)
\(108\) 0 0
\(109\) 1.85065i 0.177260i 0.996065 + 0.0886299i \(0.0282489\pi\)
−0.996065 + 0.0886299i \(0.971751\pi\)
\(110\) 0 0
\(111\) −10.6781 −1.01352
\(112\) 0 0
\(113\) 16.6815 1.56926 0.784632 0.619962i \(-0.212852\pi\)
0.784632 + 0.619962i \(0.212852\pi\)
\(114\) 0 0
\(115\) − 14.4681i − 1.34916i
\(116\) 0 0
\(117\) − 7.44045i − 0.687870i
\(118\) 0 0
\(119\) −2.28291 −0.209274
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) − 9.70891i − 0.875423i
\(124\) 0 0
\(125\) 30.7248i 2.74811i
\(126\) 0 0
\(127\) 6.51013 0.577680 0.288840 0.957377i \(-0.406730\pi\)
0.288840 + 0.957377i \(0.406730\pi\)
\(128\) 0 0
\(129\) −26.9771 −2.37520
\(130\) 0 0
\(131\) 6.91569i 0.604227i 0.953272 + 0.302114i \(0.0976922\pi\)
−0.953272 + 0.302114i \(0.902308\pi\)
\(132\) 0 0
\(133\) − 2.50368i − 0.217097i
\(134\) 0 0
\(135\) −4.54451 −0.391129
\(136\) 0 0
\(137\) 5.81952 0.497195 0.248598 0.968607i \(-0.420030\pi\)
0.248598 + 0.968607i \(0.420030\pi\)
\(138\) 0 0
\(139\) − 9.53529i − 0.808772i −0.914588 0.404386i \(-0.867485\pi\)
0.914588 0.404386i \(-0.132515\pi\)
\(140\) 0 0
\(141\) 7.67702i 0.646522i
\(142\) 0 0
\(143\) −2.93322 −0.245288
\(144\) 0 0
\(145\) −19.0577 −1.58265
\(146\) 0 0
\(147\) 14.4218i 1.18949i
\(148\) 0 0
\(149\) − 13.9221i − 1.14055i −0.821455 0.570273i \(-0.806838\pi\)
0.821455 0.570273i \(-0.193162\pi\)
\(150\) 0 0
\(151\) −15.2226 −1.23880 −0.619398 0.785077i \(-0.712623\pi\)
−0.619398 + 0.785077i \(0.712623\pi\)
\(152\) 0 0
\(153\) −6.20522 −0.501662
\(154\) 0 0
\(155\) − 15.2455i − 1.22455i
\(156\) 0 0
\(157\) − 0.873940i − 0.0697480i −0.999392 0.0348740i \(-0.988897\pi\)
0.999392 0.0348740i \(-0.0111030\pi\)
\(158\) 0 0
\(159\) 1.52976 0.121318
\(160\) 0 0
\(161\) −3.23948 −0.255307
\(162\) 0 0
\(163\) − 7.52686i − 0.589549i −0.955567 0.294775i \(-0.904755\pi\)
0.955567 0.294775i \(-0.0952446\pi\)
\(164\) 0 0
\(165\) − 9.80716i − 0.763487i
\(166\) 0 0
\(167\) −0.142904 −0.0110583 −0.00552913 0.999985i \(-0.501760\pi\)
−0.00552913 + 0.999985i \(0.501760\pi\)
\(168\) 0 0
\(169\) 4.39621 0.338170
\(170\) 0 0
\(171\) − 6.80531i − 0.520415i
\(172\) 0 0
\(173\) − 1.12910i − 0.0858436i −0.999078 0.0429218i \(-0.986333\pi\)
0.999078 0.0429218i \(-0.0136666\pi\)
\(174\) 0 0
\(175\) 11.5456 0.872762
\(176\) 0 0
\(177\) −6.84641 −0.514608
\(178\) 0 0
\(179\) 15.1620i 1.13326i 0.823972 + 0.566631i \(0.191754\pi\)
−0.823972 + 0.566631i \(0.808246\pi\)
\(180\) 0 0
\(181\) − 16.9211i − 1.25773i −0.777513 0.628867i \(-0.783519\pi\)
0.777513 0.628867i \(-0.216481\pi\)
\(182\) 0 0
\(183\) 25.1912 1.86219
\(184\) 0 0
\(185\) −18.9144 −1.39061
\(186\) 0 0
\(187\) 2.44626i 0.178888i
\(188\) 0 0
\(189\) 1.01754i 0.0740151i
\(190\) 0 0
\(191\) 16.6720 1.20635 0.603174 0.797610i \(-0.293903\pi\)
0.603174 + 0.797610i \(0.293903\pi\)
\(192\) 0 0
\(193\) 0.180700 0.0130071 0.00650354 0.999979i \(-0.497930\pi\)
0.00650354 + 0.999979i \(0.497930\pi\)
\(194\) 0 0
\(195\) − 28.7666i − 2.06002i
\(196\) 0 0
\(197\) − 8.38885i − 0.597681i −0.954303 0.298840i \(-0.903400\pi\)
0.954303 0.298840i \(-0.0965998\pi\)
\(198\) 0 0
\(199\) −22.0996 −1.56660 −0.783298 0.621646i \(-0.786464\pi\)
−0.783298 + 0.621646i \(0.786464\pi\)
\(200\) 0 0
\(201\) 12.7679 0.900579
\(202\) 0 0
\(203\) 4.26711i 0.299492i
\(204\) 0 0
\(205\) − 17.1977i − 1.20114i
\(206\) 0 0
\(207\) −8.80531 −0.612011
\(208\) 0 0
\(209\) −2.68283 −0.185575
\(210\) 0 0
\(211\) 15.0390i 1.03533i 0.855585 + 0.517663i \(0.173198\pi\)
−0.855585 + 0.517663i \(0.826802\pi\)
\(212\) 0 0
\(213\) − 18.2388i − 1.24970i
\(214\) 0 0
\(215\) −47.7853 −3.25893
\(216\) 0 0
\(217\) −3.41355 −0.231727
\(218\) 0 0
\(219\) − 30.7421i − 2.07736i
\(220\) 0 0
\(221\) 7.17543i 0.482672i
\(222\) 0 0
\(223\) 10.2766 0.688172 0.344086 0.938938i \(-0.388189\pi\)
0.344086 + 0.938938i \(0.388189\pi\)
\(224\) 0 0
\(225\) 31.3822 2.09215
\(226\) 0 0
\(227\) − 15.6688i − 1.03998i −0.854173 0.519989i \(-0.825936\pi\)
0.854173 0.519989i \(-0.174064\pi\)
\(228\) 0 0
\(229\) 14.0747i 0.930083i 0.885289 + 0.465041i \(0.153961\pi\)
−0.885289 + 0.465041i \(0.846039\pi\)
\(230\) 0 0
\(231\) −2.19587 −0.144478
\(232\) 0 0
\(233\) −12.0993 −0.792652 −0.396326 0.918110i \(-0.629715\pi\)
−0.396326 + 0.918110i \(0.629715\pi\)
\(234\) 0 0
\(235\) 13.5985i 0.887070i
\(236\) 0 0
\(237\) 11.3807i 0.739253i
\(238\) 0 0
\(239\) 21.7479 1.40675 0.703377 0.710817i \(-0.251675\pi\)
0.703377 + 0.710817i \(0.251675\pi\)
\(240\) 0 0
\(241\) −6.93967 −0.447024 −0.223512 0.974701i \(-0.571752\pi\)
−0.223512 + 0.974701i \(0.571752\pi\)
\(242\) 0 0
\(243\) 20.6718i 1.32609i
\(244\) 0 0
\(245\) 25.5457i 1.63205i
\(246\) 0 0
\(247\) −7.86935 −0.500714
\(248\) 0 0
\(249\) −1.55219 −0.0983660
\(250\) 0 0
\(251\) 17.7279i 1.11897i 0.828840 + 0.559486i \(0.189001\pi\)
−0.828840 + 0.559486i \(0.810999\pi\)
\(252\) 0 0
\(253\) 3.47129i 0.218238i
\(254\) 0 0
\(255\) −23.9909 −1.50237
\(256\) 0 0
\(257\) 17.7545 1.10750 0.553748 0.832684i \(-0.313197\pi\)
0.553748 + 0.832684i \(0.313197\pi\)
\(258\) 0 0
\(259\) 4.23502i 0.263152i
\(260\) 0 0
\(261\) 11.5985i 0.717931i
\(262\) 0 0
\(263\) 27.6424 1.70450 0.852252 0.523132i \(-0.175237\pi\)
0.852252 + 0.523132i \(0.175237\pi\)
\(264\) 0 0
\(265\) 2.70971 0.166456
\(266\) 0 0
\(267\) 6.46203i 0.395470i
\(268\) 0 0
\(269\) 10.6283i 0.648020i 0.946054 + 0.324010i \(0.105031\pi\)
−0.946054 + 0.324010i \(0.894969\pi\)
\(270\) 0 0
\(271\) −19.7481 −1.19961 −0.599805 0.800146i \(-0.704755\pi\)
−0.599805 + 0.800146i \(0.704755\pi\)
\(272\) 0 0
\(273\) −6.44098 −0.389826
\(274\) 0 0
\(275\) − 12.3717i − 0.746042i
\(276\) 0 0
\(277\) 12.5353i 0.753172i 0.926382 + 0.376586i \(0.122902\pi\)
−0.926382 + 0.376586i \(0.877098\pi\)
\(278\) 0 0
\(279\) −9.27845 −0.555486
\(280\) 0 0
\(281\) −23.8037 −1.42001 −0.710006 0.704195i \(-0.751308\pi\)
−0.710006 + 0.704195i \(0.751308\pi\)
\(282\) 0 0
\(283\) 27.7294i 1.64834i 0.566340 + 0.824172i \(0.308359\pi\)
−0.566340 + 0.824172i \(0.691641\pi\)
\(284\) 0 0
\(285\) − 26.3110i − 1.55853i
\(286\) 0 0
\(287\) −3.85065 −0.227297
\(288\) 0 0
\(289\) −11.0158 −0.647988
\(290\) 0 0
\(291\) − 4.30376i − 0.252291i
\(292\) 0 0
\(293\) 5.61389i 0.327967i 0.986463 + 0.163984i \(0.0524344\pi\)
−0.986463 + 0.163984i \(0.947566\pi\)
\(294\) 0 0
\(295\) −12.1272 −0.706075
\(296\) 0 0
\(297\) 1.09035 0.0632685
\(298\) 0 0
\(299\) 10.1821i 0.588843i
\(300\) 0 0
\(301\) 10.6994i 0.616701i
\(302\) 0 0
\(303\) 29.8386 1.71419
\(304\) 0 0
\(305\) 44.6220 2.55505
\(306\) 0 0
\(307\) 27.8554i 1.58979i 0.606747 + 0.794895i \(0.292474\pi\)
−0.606747 + 0.794895i \(0.707526\pi\)
\(308\) 0 0
\(309\) − 9.09775i − 0.517553i
\(310\) 0 0
\(311\) 24.4075 1.38402 0.692012 0.721886i \(-0.256724\pi\)
0.692012 + 0.721886i \(0.256724\pi\)
\(312\) 0 0
\(313\) 9.13514 0.516349 0.258174 0.966098i \(-0.416879\pi\)
0.258174 + 0.966098i \(0.416879\pi\)
\(314\) 0 0
\(315\) − 9.86644i − 0.555911i
\(316\) 0 0
\(317\) − 17.9501i − 1.00818i −0.863652 0.504088i \(-0.831829\pi\)
0.863652 0.504088i \(-0.168171\pi\)
\(318\) 0 0
\(319\) 4.57245 0.256008
\(320\) 0 0
\(321\) 30.0764 1.67870
\(322\) 0 0
\(323\) 6.56291i 0.365170i
\(324\) 0 0
\(325\) − 36.2890i − 2.01295i
\(326\) 0 0
\(327\) 4.35457 0.240809
\(328\) 0 0
\(329\) 3.04478 0.167864
\(330\) 0 0
\(331\) 13.1934i 0.725173i 0.931950 + 0.362586i \(0.118106\pi\)
−0.931950 + 0.362586i \(0.881894\pi\)
\(332\) 0 0
\(333\) 11.5113i 0.630816i
\(334\) 0 0
\(335\) 22.6162 1.23565
\(336\) 0 0
\(337\) 23.8712 1.30035 0.650173 0.759787i \(-0.274697\pi\)
0.650173 + 0.759787i \(0.274697\pi\)
\(338\) 0 0
\(339\) − 39.2516i − 2.13185i
\(340\) 0 0
\(341\) 3.65781i 0.198082i
\(342\) 0 0
\(343\) 12.2524 0.661566
\(344\) 0 0
\(345\) −34.0435 −1.83284
\(346\) 0 0
\(347\) − 37.2210i − 1.99813i −0.0432373 0.999065i \(-0.513767\pi\)
0.0432373 0.999065i \(-0.486233\pi\)
\(348\) 0 0
\(349\) 28.4140i 1.52097i 0.649358 + 0.760483i \(0.275038\pi\)
−0.649358 + 0.760483i \(0.724962\pi\)
\(350\) 0 0
\(351\) 3.19824 0.170709
\(352\) 0 0
\(353\) −6.72158 −0.357754 −0.178877 0.983871i \(-0.557246\pi\)
−0.178877 + 0.983871i \(0.557246\pi\)
\(354\) 0 0
\(355\) − 32.3069i − 1.71467i
\(356\) 0 0
\(357\) 5.37168i 0.284300i
\(358\) 0 0
\(359\) −19.8260 −1.04638 −0.523188 0.852217i \(-0.675257\pi\)
−0.523188 + 0.852217i \(0.675257\pi\)
\(360\) 0 0
\(361\) 11.8024 0.621179
\(362\) 0 0
\(363\) 2.35300i 0.123501i
\(364\) 0 0
\(365\) − 54.4543i − 2.85027i
\(366\) 0 0
\(367\) −4.54822 −0.237415 −0.118708 0.992929i \(-0.537875\pi\)
−0.118708 + 0.992929i \(0.537875\pi\)
\(368\) 0 0
\(369\) −10.4665 −0.544866
\(370\) 0 0
\(371\) − 0.606718i − 0.0314992i
\(372\) 0 0
\(373\) 33.3992i 1.72934i 0.502336 + 0.864672i \(0.332474\pi\)
−0.502336 + 0.864672i \(0.667526\pi\)
\(374\) 0 0
\(375\) 72.2956 3.73333
\(376\) 0 0
\(377\) 13.4120 0.690753
\(378\) 0 0
\(379\) − 9.24843i − 0.475060i −0.971380 0.237530i \(-0.923662\pi\)
0.971380 0.237530i \(-0.0763378\pi\)
\(380\) 0 0
\(381\) − 15.3183i − 0.784782i
\(382\) 0 0
\(383\) −31.6080 −1.61509 −0.807547 0.589803i \(-0.799205\pi\)
−0.807547 + 0.589803i \(0.799205\pi\)
\(384\) 0 0
\(385\) −3.88961 −0.198233
\(386\) 0 0
\(387\) 29.0822i 1.47833i
\(388\) 0 0
\(389\) 4.99543i 0.253278i 0.991949 + 0.126639i \(0.0404190\pi\)
−0.991949 + 0.126639i \(0.959581\pi\)
\(390\) 0 0
\(391\) 8.49168 0.429443
\(392\) 0 0
\(393\) 16.2726 0.820846
\(394\) 0 0
\(395\) 20.1589i 1.01430i
\(396\) 0 0
\(397\) 17.7950i 0.893107i 0.894757 + 0.446553i \(0.147349\pi\)
−0.894757 + 0.446553i \(0.852651\pi\)
\(398\) 0 0
\(399\) −5.89116 −0.294927
\(400\) 0 0
\(401\) −12.1739 −0.607934 −0.303967 0.952683i \(-0.598311\pi\)
−0.303967 + 0.952683i \(0.598311\pi\)
\(402\) 0 0
\(403\) 10.7292i 0.534458i
\(404\) 0 0
\(405\) 42.4106i 2.10740i
\(406\) 0 0
\(407\) 4.53806 0.224943
\(408\) 0 0
\(409\) 0.587997 0.0290746 0.0145373 0.999894i \(-0.495372\pi\)
0.0145373 + 0.999894i \(0.495372\pi\)
\(410\) 0 0
\(411\) − 13.6933i − 0.675442i
\(412\) 0 0
\(413\) 2.71535i 0.133614i
\(414\) 0 0
\(415\) −2.74944 −0.134965
\(416\) 0 0
\(417\) −22.4365 −1.09872
\(418\) 0 0
\(419\) 11.1507i 0.544748i 0.962191 + 0.272374i \(0.0878088\pi\)
−0.962191 + 0.272374i \(0.912191\pi\)
\(420\) 0 0
\(421\) − 34.8398i − 1.69799i −0.528401 0.848995i \(-0.677208\pi\)
0.528401 0.848995i \(-0.322792\pi\)
\(422\) 0 0
\(423\) 8.27608 0.402397
\(424\) 0 0
\(425\) −30.2645 −1.46804
\(426\) 0 0
\(427\) − 9.99108i − 0.483502i
\(428\) 0 0
\(429\) 6.90187i 0.333226i
\(430\) 0 0
\(431\) 24.8647 1.19769 0.598846 0.800864i \(-0.295626\pi\)
0.598846 + 0.800864i \(0.295626\pi\)
\(432\) 0 0
\(433\) −0.547704 −0.0263210 −0.0131605 0.999913i \(-0.504189\pi\)
−0.0131605 + 0.999913i \(0.504189\pi\)
\(434\) 0 0
\(435\) 44.8427i 2.15004i
\(436\) 0 0
\(437\) 9.31288i 0.445495i
\(438\) 0 0
\(439\) −27.5308 −1.31397 −0.656987 0.753902i \(-0.728169\pi\)
−0.656987 + 0.753902i \(0.728169\pi\)
\(440\) 0 0
\(441\) 15.5471 0.740340
\(442\) 0 0
\(443\) 8.05454i 0.382683i 0.981524 + 0.191341i \(0.0612838\pi\)
−0.981524 + 0.191341i \(0.938716\pi\)
\(444\) 0 0
\(445\) 11.4464i 0.542611i
\(446\) 0 0
\(447\) −32.7588 −1.54944
\(448\) 0 0
\(449\) −33.7705 −1.59373 −0.796865 0.604158i \(-0.793510\pi\)
−0.796865 + 0.604158i \(0.793510\pi\)
\(450\) 0 0
\(451\) 4.12618i 0.194294i
\(452\) 0 0
\(453\) 35.8187i 1.68291i
\(454\) 0 0
\(455\) −11.4091 −0.534867
\(456\) 0 0
\(457\) −3.83220 −0.179263 −0.0896313 0.995975i \(-0.528569\pi\)
−0.0896313 + 0.995975i \(0.528569\pi\)
\(458\) 0 0
\(459\) − 2.66728i − 0.124498i
\(460\) 0 0
\(461\) − 15.8380i − 0.737649i −0.929499 0.368825i \(-0.879760\pi\)
0.929499 0.368825i \(-0.120240\pi\)
\(462\) 0 0
\(463\) −30.4131 −1.41341 −0.706707 0.707506i \(-0.749820\pi\)
−0.706707 + 0.707506i \(0.749820\pi\)
\(464\) 0 0
\(465\) −35.8727 −1.66356
\(466\) 0 0
\(467\) − 20.1815i − 0.933887i −0.884287 0.466943i \(-0.845355\pi\)
0.884287 0.466943i \(-0.154645\pi\)
\(468\) 0 0
\(469\) − 5.06388i − 0.233828i
\(470\) 0 0
\(471\) −2.05638 −0.0947531
\(472\) 0 0
\(473\) 11.4650 0.527160
\(474\) 0 0
\(475\) − 33.1912i − 1.52292i
\(476\) 0 0
\(477\) − 1.64913i − 0.0755086i
\(478\) 0 0
\(479\) −12.5604 −0.573901 −0.286951 0.957945i \(-0.592642\pi\)
−0.286951 + 0.957945i \(0.592642\pi\)
\(480\) 0 0
\(481\) 13.3111 0.606936
\(482\) 0 0
\(483\) 7.62250i 0.346836i
\(484\) 0 0
\(485\) − 7.62338i − 0.346160i
\(486\) 0 0
\(487\) −14.2519 −0.645814 −0.322907 0.946431i \(-0.604660\pi\)
−0.322907 + 0.946431i \(0.604660\pi\)
\(488\) 0 0
\(489\) −17.7107 −0.800906
\(490\) 0 0
\(491\) 20.4046i 0.920849i 0.887699 + 0.460424i \(0.152303\pi\)
−0.887699 + 0.460424i \(0.847697\pi\)
\(492\) 0 0
\(493\) − 11.1854i − 0.503765i
\(494\) 0 0
\(495\) −10.5724 −0.475196
\(496\) 0 0
\(497\) −7.23368 −0.324475
\(498\) 0 0
\(499\) − 33.3751i − 1.49407i −0.664782 0.747037i \(-0.731476\pi\)
0.664782 0.747037i \(-0.268524\pi\)
\(500\) 0 0
\(501\) 0.336253i 0.0150227i
\(502\) 0 0
\(503\) −14.8148 −0.660561 −0.330281 0.943883i \(-0.607143\pi\)
−0.330281 + 0.943883i \(0.607143\pi\)
\(504\) 0 0
\(505\) 52.8541 2.35197
\(506\) 0 0
\(507\) − 10.3443i − 0.459405i
\(508\) 0 0
\(509\) − 23.9464i − 1.06140i −0.847559 0.530702i \(-0.821928\pi\)
0.847559 0.530702i \(-0.178072\pi\)
\(510\) 0 0
\(511\) −12.1926 −0.539369
\(512\) 0 0
\(513\) 2.92523 0.129152
\(514\) 0 0
\(515\) − 16.1151i − 0.710116i
\(516\) 0 0
\(517\) − 3.26265i − 0.143491i
\(518\) 0 0
\(519\) −2.65676 −0.116619
\(520\) 0 0
\(521\) 20.6157 0.903189 0.451594 0.892223i \(-0.350855\pi\)
0.451594 + 0.892223i \(0.350855\pi\)
\(522\) 0 0
\(523\) 22.6014i 0.988292i 0.869379 + 0.494146i \(0.164519\pi\)
−0.869379 + 0.494146i \(0.835481\pi\)
\(524\) 0 0
\(525\) − 27.1667i − 1.18565i
\(526\) 0 0
\(527\) 8.94797 0.389779
\(528\) 0 0
\(529\) −10.9502 −0.476095
\(530\) 0 0
\(531\) 7.38066i 0.320293i
\(532\) 0 0
\(533\) 12.1030i 0.524240i
\(534\) 0 0
\(535\) 53.2752 2.30329
\(536\) 0 0
\(537\) 35.6762 1.53954
\(538\) 0 0
\(539\) − 6.12910i − 0.263999i
\(540\) 0 0
\(541\) 5.25411i 0.225892i 0.993601 + 0.112946i \(0.0360287\pi\)
−0.993601 + 0.112946i \(0.963971\pi\)
\(542\) 0 0
\(543\) −39.8153 −1.70864
\(544\) 0 0
\(545\) 7.71338 0.330405
\(546\) 0 0
\(547\) − 31.4365i − 1.34413i −0.740493 0.672064i \(-0.765408\pi\)
0.740493 0.672064i \(-0.234592\pi\)
\(548\) 0 0
\(549\) − 27.1570i − 1.15903i
\(550\) 0 0
\(551\) 12.2671 0.522596
\(552\) 0 0
\(553\) 4.51368 0.191941
\(554\) 0 0
\(555\) 44.5055i 1.88915i
\(556\) 0 0
\(557\) − 13.8905i − 0.588561i −0.955719 0.294280i \(-0.904920\pi\)
0.955719 0.294280i \(-0.0950800\pi\)
\(558\) 0 0
\(559\) 33.6293 1.42237
\(560\) 0 0
\(561\) 5.75606 0.243021
\(562\) 0 0
\(563\) − 20.5160i − 0.864647i −0.901719 0.432324i \(-0.857694\pi\)
0.901719 0.432324i \(-0.142306\pi\)
\(564\) 0 0
\(565\) − 69.5275i − 2.92504i
\(566\) 0 0
\(567\) 9.49594 0.398792
\(568\) 0 0
\(569\) −20.9308 −0.877463 −0.438731 0.898618i \(-0.644572\pi\)
−0.438731 + 0.898618i \(0.644572\pi\)
\(570\) 0 0
\(571\) − 6.00582i − 0.251336i −0.992072 0.125668i \(-0.959893\pi\)
0.992072 0.125668i \(-0.0401074\pi\)
\(572\) 0 0
\(573\) − 39.2293i − 1.63883i
\(574\) 0 0
\(575\) −42.9457 −1.79096
\(576\) 0 0
\(577\) −45.4212 −1.89091 −0.945455 0.325753i \(-0.894382\pi\)
−0.945455 + 0.325753i \(0.894382\pi\)
\(578\) 0 0
\(579\) − 0.425187i − 0.0176702i
\(580\) 0 0
\(581\) 0.615613i 0.0255399i
\(582\) 0 0
\(583\) −0.650132 −0.0269257
\(584\) 0 0
\(585\) −31.0113 −1.28216
\(586\) 0 0
\(587\) 4.95230i 0.204403i 0.994764 + 0.102202i \(0.0325887\pi\)
−0.994764 + 0.102202i \(0.967411\pi\)
\(588\) 0 0
\(589\) 9.81329i 0.404350i
\(590\) 0 0
\(591\) −19.7390 −0.811952
\(592\) 0 0
\(593\) −17.6332 −0.724110 −0.362055 0.932157i \(-0.617925\pi\)
−0.362055 + 0.932157i \(0.617925\pi\)
\(594\) 0 0
\(595\) 9.51502i 0.390078i
\(596\) 0 0
\(597\) 52.0003i 2.12823i
\(598\) 0 0
\(599\) −45.1533 −1.84491 −0.922456 0.386101i \(-0.873822\pi\)
−0.922456 + 0.386101i \(0.873822\pi\)
\(600\) 0 0
\(601\) −15.6375 −0.637867 −0.318933 0.947777i \(-0.603325\pi\)
−0.318933 + 0.947777i \(0.603325\pi\)
\(602\) 0 0
\(603\) − 13.7642i − 0.560523i
\(604\) 0 0
\(605\) 4.16794i 0.169451i
\(606\) 0 0
\(607\) 41.9318 1.70196 0.850979 0.525200i \(-0.176010\pi\)
0.850979 + 0.525200i \(0.176010\pi\)
\(608\) 0 0
\(609\) 10.0405 0.406862
\(610\) 0 0
\(611\) − 9.57008i − 0.387164i
\(612\) 0 0
\(613\) 27.8914i 1.12652i 0.826278 + 0.563262i \(0.190454\pi\)
−0.826278 + 0.563262i \(0.809546\pi\)
\(614\) 0 0
\(615\) −40.4662 −1.63175
\(616\) 0 0
\(617\) −14.7471 −0.593697 −0.296849 0.954925i \(-0.595936\pi\)
−0.296849 + 0.954925i \(0.595936\pi\)
\(618\) 0 0
\(619\) 5.12150i 0.205851i 0.994689 + 0.102925i \(0.0328203\pi\)
−0.994689 + 0.102925i \(0.967180\pi\)
\(620\) 0 0
\(621\) − 3.78492i − 0.151883i
\(622\) 0 0
\(623\) 2.56290 0.102681
\(624\) 0 0
\(625\) 66.2007 2.64803
\(626\) 0 0
\(627\) 6.31271i 0.252105i
\(628\) 0 0
\(629\) − 11.1013i − 0.442638i
\(630\) 0 0
\(631\) 48.5097 1.93114 0.965570 0.260142i \(-0.0837693\pi\)
0.965570 + 0.260142i \(0.0837693\pi\)
\(632\) 0 0
\(633\) 35.3867 1.40650
\(634\) 0 0
\(635\) − 27.1338i − 1.07677i
\(636\) 0 0
\(637\) − 17.9780i − 0.712314i
\(638\) 0 0
\(639\) −19.6620 −0.777818
\(640\) 0 0
\(641\) −7.22155 −0.285234 −0.142617 0.989778i \(-0.545552\pi\)
−0.142617 + 0.989778i \(0.545552\pi\)
\(642\) 0 0
\(643\) 11.9607i 0.471684i 0.971791 + 0.235842i \(0.0757847\pi\)
−0.971791 + 0.235842i \(0.924215\pi\)
\(644\) 0 0
\(645\) 112.439i 4.42728i
\(646\) 0 0
\(647\) 26.1952 1.02984 0.514920 0.857238i \(-0.327822\pi\)
0.514920 + 0.857238i \(0.327822\pi\)
\(648\) 0 0
\(649\) 2.90965 0.114214
\(650\) 0 0
\(651\) 8.03209i 0.314802i
\(652\) 0 0
\(653\) 34.2180i 1.33906i 0.742787 + 0.669528i \(0.233503\pi\)
−0.742787 + 0.669528i \(0.766497\pi\)
\(654\) 0 0
\(655\) 28.8242 1.12625
\(656\) 0 0
\(657\) −33.1410 −1.29295
\(658\) 0 0
\(659\) 2.73052i 0.106366i 0.998585 + 0.0531831i \(0.0169367\pi\)
−0.998585 + 0.0531831i \(0.983063\pi\)
\(660\) 0 0
\(661\) − 11.2478i − 0.437488i −0.975782 0.218744i \(-0.929804\pi\)
0.975782 0.218744i \(-0.0701959\pi\)
\(662\) 0 0
\(663\) 16.8838 0.655713
\(664\) 0 0
\(665\) −10.4352 −0.404659
\(666\) 0 0
\(667\) − 15.8723i − 0.614577i
\(668\) 0 0
\(669\) − 24.1808i − 0.934885i
\(670\) 0 0
\(671\) −10.7060 −0.413301
\(672\) 0 0
\(673\) −20.0432 −0.772609 −0.386305 0.922371i \(-0.626249\pi\)
−0.386305 + 0.922371i \(0.626249\pi\)
\(674\) 0 0
\(675\) 13.4895i 0.519211i
\(676\) 0 0
\(677\) 27.1414i 1.04313i 0.853212 + 0.521564i \(0.174651\pi\)
−0.853212 + 0.521564i \(0.825349\pi\)
\(678\) 0 0
\(679\) −1.70691 −0.0655053
\(680\) 0 0
\(681\) −36.8688 −1.41282
\(682\) 0 0
\(683\) − 41.8019i − 1.59951i −0.600330 0.799753i \(-0.704964\pi\)
0.600330 0.799753i \(-0.295036\pi\)
\(684\) 0 0
\(685\) − 24.2554i − 0.926751i
\(686\) 0 0
\(687\) 33.1178 1.26352
\(688\) 0 0
\(689\) −1.90698 −0.0726502
\(690\) 0 0
\(691\) 28.7753i 1.09466i 0.836916 + 0.547332i \(0.184356\pi\)
−0.836916 + 0.547332i \(0.815644\pi\)
\(692\) 0 0
\(693\) 2.36722i 0.0899234i
\(694\) 0 0
\(695\) −39.7425 −1.50752
\(696\) 0 0
\(697\) 10.0937 0.382327
\(698\) 0 0
\(699\) 28.4697i 1.07682i
\(700\) 0 0
\(701\) − 22.5826i − 0.852933i −0.904503 0.426467i \(-0.859758\pi\)
0.904503 0.426467i \(-0.140242\pi\)
\(702\) 0 0
\(703\) 12.1749 0.459184
\(704\) 0 0
\(705\) 31.9973 1.20509
\(706\) 0 0
\(707\) − 11.8343i − 0.445074i
\(708\) 0 0
\(709\) 14.5420i 0.546138i 0.961994 + 0.273069i \(0.0880387\pi\)
−0.961994 + 0.273069i \(0.911961\pi\)
\(710\) 0 0
\(711\) 12.2687 0.460113
\(712\) 0 0
\(713\) 12.6973 0.475518
\(714\) 0 0
\(715\) 12.2255i 0.457207i
\(716\) 0 0
\(717\) − 51.1728i − 1.91108i
\(718\) 0 0
\(719\) 5.98413 0.223170 0.111585 0.993755i \(-0.464407\pi\)
0.111585 + 0.993755i \(0.464407\pi\)
\(720\) 0 0
\(721\) −3.60825 −0.134378
\(722\) 0 0
\(723\) 16.3291i 0.607284i
\(724\) 0 0
\(725\) 56.5690i 2.10092i
\(726\) 0 0
\(727\) 13.7234 0.508973 0.254486 0.967076i \(-0.418094\pi\)
0.254486 + 0.967076i \(0.418094\pi\)
\(728\) 0 0
\(729\) 18.1144 0.670902
\(730\) 0 0
\(731\) − 28.0463i − 1.03733i
\(732\) 0 0
\(733\) 46.4631i 1.71615i 0.513522 + 0.858076i \(0.328340\pi\)
−0.513522 + 0.858076i \(0.671660\pi\)
\(734\) 0 0
\(735\) 60.1090 2.21716
\(736\) 0 0
\(737\) −5.42623 −0.199878
\(738\) 0 0
\(739\) 12.5779i 0.462686i 0.972872 + 0.231343i \(0.0743119\pi\)
−0.972872 + 0.231343i \(0.925688\pi\)
\(740\) 0 0
\(741\) 18.5166i 0.680223i
\(742\) 0 0
\(743\) 9.36221 0.343466 0.171733 0.985144i \(-0.445063\pi\)
0.171733 + 0.985144i \(0.445063\pi\)
\(744\) 0 0
\(745\) −58.0266 −2.12593
\(746\) 0 0
\(747\) 1.67331i 0.0612233i
\(748\) 0 0
\(749\) − 11.9286i − 0.435861i
\(750\) 0 0
\(751\) −3.96209 −0.144579 −0.0722894 0.997384i \(-0.523031\pi\)
−0.0722894 + 0.997384i \(0.523031\pi\)
\(752\) 0 0
\(753\) 41.7137 1.52013
\(754\) 0 0
\(755\) 63.4468i 2.30906i
\(756\) 0 0
\(757\) − 3.56879i − 0.129710i −0.997895 0.0648550i \(-0.979342\pi\)
0.997895 0.0648550i \(-0.0206585\pi\)
\(758\) 0 0
\(759\) 8.16794 0.296477
\(760\) 0 0
\(761\) 49.8018 1.80532 0.902658 0.430359i \(-0.141613\pi\)
0.902658 + 0.430359i \(0.141613\pi\)
\(762\) 0 0
\(763\) − 1.72707i − 0.0625240i
\(764\) 0 0
\(765\) 25.8630i 0.935078i
\(766\) 0 0
\(767\) 8.53465 0.308168
\(768\) 0 0
\(769\) 30.5772 1.10264 0.551321 0.834293i \(-0.314124\pi\)
0.551321 + 0.834293i \(0.314124\pi\)
\(770\) 0 0
\(771\) − 41.7764i − 1.50454i
\(772\) 0 0
\(773\) − 23.9315i − 0.860756i −0.902649 0.430378i \(-0.858380\pi\)
0.902649 0.430378i \(-0.141620\pi\)
\(774\) 0 0
\(775\) −45.2534 −1.62555
\(776\) 0 0
\(777\) 9.96501 0.357493
\(778\) 0 0
\(779\) 11.0699i 0.396619i
\(780\) 0 0
\(781\) 7.75129i 0.277363i
\(782\) 0 0
\(783\) −4.98557 −0.178170
\(784\) 0 0
\(785\) −3.64253 −0.130007
\(786\) 0 0
\(787\) − 13.4992i − 0.481196i −0.970625 0.240598i \(-0.922656\pi\)
0.970625 0.240598i \(-0.0773436\pi\)
\(788\) 0 0
\(789\) − 65.0426i − 2.31558i
\(790\) 0 0
\(791\) −15.5676 −0.553519
\(792\) 0 0
\(793\) −31.4031 −1.11516
\(794\) 0 0
\(795\) − 6.37595i − 0.226132i
\(796\) 0 0
\(797\) − 23.8879i − 0.846154i −0.906094 0.423077i \(-0.860950\pi\)
0.906094 0.423077i \(-0.139050\pi\)
\(798\) 0 0
\(799\) −7.98130 −0.282358
\(800\) 0 0
\(801\) 6.96629 0.246142
\(802\) 0 0
\(803\) 13.0650i 0.461056i
\(804\) 0 0
\(805\) 13.5020i 0.475882i
\(806\) 0 0
\(807\) 25.0084 0.880339
\(808\) 0 0
\(809\) 20.1858 0.709694 0.354847 0.934924i \(-0.384533\pi\)
0.354847 + 0.934924i \(0.384533\pi\)
\(810\) 0 0
\(811\) 3.78003i 0.132735i 0.997795 + 0.0663675i \(0.0211410\pi\)
−0.997795 + 0.0663675i \(0.978859\pi\)
\(812\) 0 0
\(813\) 46.4672i 1.62968i
\(814\) 0 0
\(815\) −31.3715 −1.09890
\(816\) 0 0
\(817\) 30.7586 1.07611
\(818\) 0 0
\(819\) 6.94360i 0.242629i
\(820\) 0 0
\(821\) − 32.5119i − 1.13467i −0.823486 0.567336i \(-0.807974\pi\)
0.823486 0.567336i \(-0.192026\pi\)
\(822\) 0 0
\(823\) −20.7651 −0.723826 −0.361913 0.932212i \(-0.617876\pi\)
−0.361913 + 0.932212i \(0.617876\pi\)
\(824\) 0 0
\(825\) −29.1106 −1.01350
\(826\) 0 0
\(827\) 11.2140i 0.389948i 0.980808 + 0.194974i \(0.0624622\pi\)
−0.980808 + 0.194974i \(0.937538\pi\)
\(828\) 0 0
\(829\) − 6.82205i − 0.236940i −0.992958 0.118470i \(-0.962201\pi\)
0.992958 0.118470i \(-0.0377989\pi\)
\(830\) 0 0
\(831\) 29.4955 1.02319
\(832\) 0 0
\(833\) −14.9934 −0.519490
\(834\) 0 0
\(835\) 0.595616i 0.0206121i
\(836\) 0 0
\(837\) − 3.98829i − 0.137856i
\(838\) 0 0
\(839\) 19.3720 0.668796 0.334398 0.942432i \(-0.391467\pi\)
0.334398 + 0.942432i \(0.391467\pi\)
\(840\) 0 0
\(841\) 8.09273 0.279060
\(842\) 0 0
\(843\) 56.0102i 1.92910i
\(844\) 0 0
\(845\) − 18.3231i − 0.630334i
\(846\) 0 0
\(847\) 0.933222 0.0320659
\(848\) 0 0
\(849\) 65.2474 2.23928
\(850\) 0 0
\(851\) − 15.7529i − 0.540003i
\(852\) 0 0
\(853\) − 11.1509i − 0.381800i −0.981609 0.190900i \(-0.938859\pi\)
0.981609 0.190900i \(-0.0611406\pi\)
\(854\) 0 0
\(855\) −28.3641 −0.970032
\(856\) 0 0
\(857\) −30.4078 −1.03871 −0.519355 0.854558i \(-0.673828\pi\)
−0.519355 + 0.854558i \(0.673828\pi\)
\(858\) 0 0
\(859\) 27.7908i 0.948210i 0.880468 + 0.474105i \(0.157228\pi\)
−0.880468 + 0.474105i \(0.842772\pi\)
\(860\) 0 0
\(861\) 9.06058i 0.308784i
\(862\) 0 0
\(863\) −0.221827 −0.00755109 −0.00377554 0.999993i \(-0.501202\pi\)
−0.00377554 + 0.999993i \(0.501202\pi\)
\(864\) 0 0
\(865\) −4.70600 −0.160009
\(866\) 0 0
\(867\) 25.9202i 0.880295i
\(868\) 0 0
\(869\) − 4.83666i − 0.164072i
\(870\) 0 0
\(871\) −15.9163 −0.539304
\(872\) 0 0
\(873\) −4.63960 −0.157027
\(874\) 0 0
\(875\) − 28.6731i − 0.969328i
\(876\) 0 0
\(877\) 15.5470i 0.524985i 0.964934 + 0.262492i \(0.0845444\pi\)
−0.964934 + 0.262492i \(0.915456\pi\)
\(878\) 0 0
\(879\) 13.2095 0.445545
\(880\) 0 0
\(881\) 21.4338 0.722125 0.361062 0.932542i \(-0.382414\pi\)
0.361062 + 0.932542i \(0.382414\pi\)
\(882\) 0 0
\(883\) 14.2700i 0.480224i 0.970745 + 0.240112i \(0.0771842\pi\)
−0.970745 + 0.240112i \(0.922816\pi\)
\(884\) 0 0
\(885\) 28.5354i 0.959207i
\(886\) 0 0
\(887\) −23.6109 −0.792775 −0.396388 0.918083i \(-0.629736\pi\)
−0.396388 + 0.918083i \(0.629736\pi\)
\(888\) 0 0
\(889\) −6.07540 −0.203762
\(890\) 0 0
\(891\) − 10.1754i − 0.340890i
\(892\) 0 0
\(893\) − 8.75315i − 0.292913i
\(894\) 0 0
\(895\) 63.1944 2.11235
\(896\) 0 0
\(897\) 23.9584 0.799947
\(898\) 0 0
\(899\) − 16.7251i − 0.557815i
\(900\) 0 0
\(901\) 1.59039i 0.0529837i
\(902\) 0 0
\(903\) 25.1756 0.837792
\(904\) 0 0
\(905\) −70.5260 −2.34436
\(906\) 0 0
\(907\) 45.2882i 1.50377i 0.659294 + 0.751885i \(0.270855\pi\)
−0.659294 + 0.751885i \(0.729145\pi\)
\(908\) 0 0
\(909\) − 32.1670i − 1.06691i
\(910\) 0 0
\(911\) 22.4539 0.743931 0.371966 0.928247i \(-0.378684\pi\)
0.371966 + 0.928247i \(0.378684\pi\)
\(912\) 0 0
\(913\) 0.659664 0.0218317
\(914\) 0 0
\(915\) − 104.995i − 3.47104i
\(916\) 0 0
\(917\) − 6.45388i − 0.213126i
\(918\) 0 0
\(919\) −41.5329 −1.37004 −0.685022 0.728522i \(-0.740207\pi\)
−0.685022 + 0.728522i \(0.740207\pi\)
\(920\) 0 0
\(921\) 65.5437 2.15974
\(922\) 0 0
\(923\) 22.7363i 0.748373i
\(924\) 0 0
\(925\) 56.1436i 1.84599i
\(926\) 0 0
\(927\) −9.80767 −0.322126
\(928\) 0 0
\(929\) −37.2997 −1.22376 −0.611882 0.790949i \(-0.709587\pi\)
−0.611882 + 0.790949i \(0.709587\pi\)
\(930\) 0 0
\(931\) − 16.4433i − 0.538909i
\(932\) 0 0
\(933\) − 57.4310i − 1.88021i
\(934\) 0 0
\(935\) 10.1959 0.333441
\(936\) 0 0
\(937\) 13.1897 0.430888 0.215444 0.976516i \(-0.430880\pi\)
0.215444 + 0.976516i \(0.430880\pi\)
\(938\) 0 0
\(939\) − 21.4950i − 0.701463i
\(940\) 0 0
\(941\) 24.6716i 0.804270i 0.915580 + 0.402135i \(0.131732\pi\)
−0.915580 + 0.402135i \(0.868268\pi\)
\(942\) 0 0
\(943\) 14.3232 0.466426
\(944\) 0 0
\(945\) 4.24104 0.137961
\(946\) 0 0
\(947\) − 38.8667i − 1.26300i −0.775376 0.631500i \(-0.782440\pi\)
0.775376 0.631500i \(-0.217560\pi\)
\(948\) 0 0
\(949\) 38.3227i 1.24401i
\(950\) 0 0
\(951\) −42.2365 −1.36961
\(952\) 0 0
\(953\) 52.5807 1.70326 0.851628 0.524147i \(-0.175616\pi\)
0.851628 + 0.524147i \(0.175616\pi\)
\(954\) 0 0
\(955\) − 69.4881i − 2.24858i
\(956\) 0 0
\(957\) − 10.7590i − 0.347788i
\(958\) 0 0
\(959\) −5.43091 −0.175373
\(960\) 0 0
\(961\) −17.6204 −0.568401
\(962\) 0 0
\(963\) − 32.4233i − 1.04483i
\(964\) 0 0
\(965\) − 0.753147i − 0.0242447i
\(966\) 0 0
\(967\) 2.98370 0.0959493 0.0479746 0.998849i \(-0.484723\pi\)
0.0479746 + 0.998849i \(0.484723\pi\)
\(968\) 0 0
\(969\) 15.4425 0.496086
\(970\) 0 0
\(971\) − 15.0443i − 0.482793i −0.970427 0.241397i \(-0.922395\pi\)
0.970427 0.241397i \(-0.0776055\pi\)
\(972\) 0 0
\(973\) 8.89854i 0.285274i
\(974\) 0 0
\(975\) −85.3880 −2.73460
\(976\) 0 0
\(977\) −11.4313 −0.365720 −0.182860 0.983139i \(-0.558536\pi\)
−0.182860 + 0.983139i \(0.558536\pi\)
\(978\) 0 0
\(979\) − 2.74629i − 0.0877720i
\(980\) 0 0
\(981\) − 4.69438i − 0.149880i
\(982\) 0 0
\(983\) −58.1032 −1.85321 −0.926603 0.376042i \(-0.877285\pi\)
−0.926603 + 0.376042i \(0.877285\pi\)
\(984\) 0 0
\(985\) −34.9642 −1.11405
\(986\) 0 0
\(987\) − 7.16437i − 0.228044i
\(988\) 0 0
\(989\) − 39.7982i − 1.26551i
\(990\) 0 0
\(991\) −30.2307 −0.960311 −0.480156 0.877183i \(-0.659420\pi\)
−0.480156 + 0.877183i \(0.659420\pi\)
\(992\) 0 0
\(993\) 31.0440 0.985152
\(994\) 0 0
\(995\) 92.1096i 2.92007i
\(996\) 0 0
\(997\) 13.3996i 0.424368i 0.977230 + 0.212184i \(0.0680577\pi\)
−0.977230 + 0.212184i \(0.931942\pi\)
\(998\) 0 0
\(999\) −4.94808 −0.156550
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.c.a.177.2 10
3.2 odd 2 3168.2.f.g.1585.10 10
4.3 odd 2 88.2.c.a.45.8 yes 10
8.3 odd 2 88.2.c.a.45.7 10
8.5 even 2 inner 352.2.c.a.177.9 10
11.10 odd 2 3872.2.c.f.1937.2 10
12.11 even 2 792.2.f.g.397.3 10
16.3 odd 4 2816.2.a.o.1.1 5
16.5 even 4 2816.2.a.q.1.1 5
16.11 odd 4 2816.2.a.r.1.5 5
16.13 even 4 2816.2.a.p.1.5 5
24.5 odd 2 3168.2.f.g.1585.1 10
24.11 even 2 792.2.f.g.397.4 10
44.3 odd 10 968.2.o.g.493.10 40
44.7 even 10 968.2.o.h.269.7 40
44.15 odd 10 968.2.o.g.269.4 40
44.19 even 10 968.2.o.h.493.1 40
44.27 odd 10 968.2.o.g.245.2 40
44.31 odd 10 968.2.o.g.565.6 40
44.35 even 10 968.2.o.h.565.5 40
44.39 even 10 968.2.o.h.245.9 40
44.43 even 2 968.2.c.d.485.3 10
88.3 odd 10 968.2.o.g.493.4 40
88.19 even 10 968.2.o.h.493.7 40
88.21 odd 2 3872.2.c.f.1937.9 10
88.27 odd 10 968.2.o.g.245.6 40
88.35 even 10 968.2.o.h.565.9 40
88.43 even 2 968.2.c.d.485.4 10
88.51 even 10 968.2.o.h.269.1 40
88.59 odd 10 968.2.o.g.269.10 40
88.75 odd 10 968.2.o.g.565.2 40
88.83 even 10 968.2.o.h.245.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.c.a.45.7 10 8.3 odd 2
88.2.c.a.45.8 yes 10 4.3 odd 2
352.2.c.a.177.2 10 1.1 even 1 trivial
352.2.c.a.177.9 10 8.5 even 2 inner
792.2.f.g.397.3 10 12.11 even 2
792.2.f.g.397.4 10 24.11 even 2
968.2.c.d.485.3 10 44.43 even 2
968.2.c.d.485.4 10 88.43 even 2
968.2.o.g.245.2 40 44.27 odd 10
968.2.o.g.245.6 40 88.27 odd 10
968.2.o.g.269.4 40 44.15 odd 10
968.2.o.g.269.10 40 88.59 odd 10
968.2.o.g.493.4 40 88.3 odd 10
968.2.o.g.493.10 40 44.3 odd 10
968.2.o.g.565.2 40 88.75 odd 10
968.2.o.g.565.6 40 44.31 odd 10
968.2.o.h.245.5 40 88.83 even 10
968.2.o.h.245.9 40 44.39 even 10
968.2.o.h.269.1 40 88.51 even 10
968.2.o.h.269.7 40 44.7 even 10
968.2.o.h.493.1 40 44.19 even 10
968.2.o.h.493.7 40 88.19 even 10
968.2.o.h.565.5 40 44.35 even 10
968.2.o.h.565.9 40 88.35 even 10
2816.2.a.o.1.1 5 16.3 odd 4
2816.2.a.p.1.5 5 16.13 even 4
2816.2.a.q.1.1 5 16.5 even 4
2816.2.a.r.1.5 5 16.11 odd 4
3168.2.f.g.1585.1 10 24.5 odd 2
3168.2.f.g.1585.10 10 3.2 odd 2
3872.2.c.f.1937.2 10 11.10 odd 2
3872.2.c.f.1937.9 10 88.21 odd 2