Properties

Label 352.2.c.a.177.2
Level 352352
Weight 22
Character 352.177
Analytic conductor 2.8112.811
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(177,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 352=2511 352 = 2^{5} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 352.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.810734151152.81073415115
Analytic rank: 00
Dimension: 1010
Coefficient field: 10.0.578281160704.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10+2x82x73x66x56x48x3+16x2+32 x^{10} + 2x^{8} - 2x^{7} - 3x^{6} - 6x^{5} - 6x^{4} - 8x^{3} + 16x^{2} + 32 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 26 2^{6}
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 177.2
Root 0.4374031.34487i0.437403 - 1.34487i of defining polynomial
Character χ\chi == 352.177
Dual form 352.2.c.a.177.9

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.35300iq34.16794iq50.933222q72.53661q9+1.00000iq11+2.93322iq139.80716q15+2.44626q17+2.68283iq19+2.19587iq21+3.47129q2312.3717q251.09035iq274.57245iq29+3.65781q31+2.35300q33+3.88961iq354.53806iq37+6.90187q39+4.12618q4111.4650iq43+10.5724iq453.26265q476.12910q495.75606iq51+0.650132iq53+4.16794q55+6.31271q572.90965iq59+10.7060iq61+2.36722q63+12.2255q65+5.42623iq678.16794iq69+7.75129q71+13.0650q73+29.1106iq750.933222iq774.83666q7910.1754q810.659664iq8310.1959iq8510.7590q872.74629q892.73735iq918.60683iq93+11.1819q95+1.82905q972.53661iq99+O(q100)q-2.35300i q^{3} -4.16794i q^{5} -0.933222 q^{7} -2.53661 q^{9} +1.00000i q^{11} +2.93322i q^{13} -9.80716 q^{15} +2.44626 q^{17} +2.68283i q^{19} +2.19587i q^{21} +3.47129 q^{23} -12.3717 q^{25} -1.09035i q^{27} -4.57245i q^{29} +3.65781 q^{31} +2.35300 q^{33} +3.88961i q^{35} -4.53806i q^{37} +6.90187 q^{39} +4.12618 q^{41} -11.4650i q^{43} +10.5724i q^{45} -3.26265 q^{47} -6.12910 q^{49} -5.75606i q^{51} +0.650132i q^{53} +4.16794 q^{55} +6.31271 q^{57} -2.90965i q^{59} +10.7060i q^{61} +2.36722 q^{63} +12.2255 q^{65} +5.42623i q^{67} -8.16794i q^{69} +7.75129 q^{71} +13.0650 q^{73} +29.1106i q^{75} -0.933222i q^{77} -4.83666 q^{79} -10.1754 q^{81} -0.659664i q^{83} -10.1959i q^{85} -10.7590 q^{87} -2.74629 q^{89} -2.73735i q^{91} -8.60683i q^{93} +11.1819 q^{95} +1.82905 q^{97} -2.53661i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q10q98q154q17+12q236q25+4q3124q39+4q41+4q476q49+8q55+16q57+40q63+16q65+12q714q7316q796q81+20q97+O(q100) 10 q - 10 q^{9} - 8 q^{15} - 4 q^{17} + 12 q^{23} - 6 q^{25} + 4 q^{31} - 24 q^{39} + 4 q^{41} + 4 q^{47} - 6 q^{49} + 8 q^{55} + 16 q^{57} + 40 q^{63} + 16 q^{65} + 12 q^{71} - 4 q^{73} - 16 q^{79} - 6 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/352Z)×\left(\mathbb{Z}/352\mathbb{Z}\right)^\times.

nn 133133 287287 321321
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 2.35300i − 1.35851i −0.733904 0.679253i 0.762304π-0.762304\pi
0.733904 0.679253i 0.237696π-0.237696\pi
44 0 0
55 − 4.16794i − 1.86396i −0.362511 0.931979i 0.618081π-0.618081\pi
0.362511 0.931979i 0.381919π-0.381919\pi
66 0 0
77 −0.933222 −0.352725 −0.176362 0.984325i 0.556433π-0.556433\pi
−0.176362 + 0.984325i 0.556433π0.556433\pi
88 0 0
99 −2.53661 −0.845538
1010 0 0
1111 1.00000i 0.301511i
1212 0 0
1313 2.93322i 0.813530i 0.913533 + 0.406765i 0.133343π0.133343\pi
−0.913533 + 0.406765i 0.866657π0.866657\pi
1414 0 0
1515 −9.80716 −2.53220
1616 0 0
1717 2.44626 0.593306 0.296653 0.954985i 0.404130π-0.404130\pi
0.296653 + 0.954985i 0.404130π0.404130\pi
1818 0 0
1919 2.68283i 0.615484i 0.951470 + 0.307742i 0.0995734π0.0995734\pi
−0.951470 + 0.307742i 0.900427π0.900427\pi
2020 0 0
2121 2.19587i 0.479179i
2222 0 0
2323 3.47129 0.723813 0.361907 0.932214i 0.382126π-0.382126\pi
0.361907 + 0.932214i 0.382126π0.382126\pi
2424 0 0
2525 −12.3717 −2.47434
2626 0 0
2727 − 1.09035i − 0.209838i
2828 0 0
2929 − 4.57245i − 0.849082i −0.905409 0.424541i 0.860435π-0.860435\pi
0.905409 0.424541i 0.139565π-0.139565\pi
3030 0 0
3131 3.65781 0.656962 0.328481 0.944511i 0.393463π-0.393463\pi
0.328481 + 0.944511i 0.393463π0.393463\pi
3232 0 0
3333 2.35300 0.409605
3434 0 0
3535 3.88961i 0.657465i
3636 0 0
3737 − 4.53806i − 0.746053i −0.927821 0.373027i 0.878320π-0.878320\pi
0.927821 0.373027i 0.121680π-0.121680\pi
3838 0 0
3939 6.90187 1.10518
4040 0 0
4141 4.12618 0.644402 0.322201 0.946671i 0.395577π-0.395577\pi
0.322201 + 0.946671i 0.395577π0.395577\pi
4242 0 0
4343 − 11.4650i − 1.74839i −0.485573 0.874196i 0.661389π-0.661389\pi
0.485573 0.874196i 0.338611π-0.338611\pi
4444 0 0
4545 10.5724i 1.57605i
4646 0 0
4747 −3.26265 −0.475907 −0.237953 0.971277i 0.576477π-0.576477\pi
−0.237953 + 0.971277i 0.576477π0.576477\pi
4848 0 0
4949 −6.12910 −0.875585
5050 0 0
5151 − 5.75606i − 0.806009i
5252 0 0
5353 0.650132i 0.0893025i 0.999003 + 0.0446512i 0.0142177π0.0142177\pi
−0.999003 + 0.0446512i 0.985782π0.985782\pi
5454 0 0
5555 4.16794 0.562005
5656 0 0
5757 6.31271 0.836139
5858 0 0
5959 − 2.90965i − 0.378804i −0.981900 0.189402i 0.939345π-0.939345\pi
0.981900 0.189402i 0.0606550π-0.0606550\pi
6060 0 0
6161 10.7060i 1.37076i 0.728184 + 0.685382i 0.240365π0.240365\pi
−0.728184 + 0.685382i 0.759635π0.759635\pi
6262 0 0
6363 2.36722 0.298242
6464 0 0
6565 12.2255 1.51639
6666 0 0
6767 5.42623i 0.662919i 0.943469 + 0.331460i 0.107541π0.107541\pi
−0.943469 + 0.331460i 0.892459π0.892459\pi
6868 0 0
6969 − 8.16794i − 0.983304i
7070 0 0
7171 7.75129 0.919909 0.459955 0.887942i 0.347866π-0.347866\pi
0.459955 + 0.887942i 0.347866π0.347866\pi
7272 0 0
7373 13.0650 1.52915 0.764574 0.644536i 0.222949π-0.222949\pi
0.764574 + 0.644536i 0.222949π0.222949\pi
7474 0 0
7575 29.1106i 3.36141i
7676 0 0
7777 − 0.933222i − 0.106351i
7878 0 0
7979 −4.83666 −0.544166 −0.272083 0.962274i 0.587713π-0.587713\pi
−0.272083 + 0.962274i 0.587713π0.587713\pi
8080 0 0
8181 −10.1754 −1.13060
8282 0 0
8383 − 0.659664i − 0.0724075i −0.999344 0.0362038i 0.988473π-0.988473\pi
0.999344 0.0362038i 0.0115265π-0.0115265\pi
8484 0 0
8585 − 10.1959i − 1.10590i
8686 0 0
8787 −10.7590 −1.15348
8888 0 0
8989 −2.74629 −0.291107 −0.145553 0.989350i 0.546496π-0.546496\pi
−0.145553 + 0.989350i 0.546496π0.546496\pi
9090 0 0
9191 − 2.73735i − 0.286952i
9292 0 0
9393 − 8.60683i − 0.892487i
9494 0 0
9595 11.1819 1.14724
9696 0 0
9797 1.82905 0.185712 0.0928561 0.995680i 0.470400π-0.470400\pi
0.0928561 + 0.995680i 0.470400π0.470400\pi
9898 0 0
9999 − 2.53661i − 0.254939i
100100 0 0
101101 12.6811i 1.26182i 0.775857 + 0.630908i 0.217318π0.217318\pi
−0.775857 + 0.630908i 0.782682π0.782682\pi
102102 0 0
103103 3.86644 0.380972 0.190486 0.981690i 0.438994π-0.438994\pi
0.190486 + 0.981690i 0.438994π0.438994\pi
104104 0 0
105105 9.15226 0.893170
106106 0 0
107107 12.7821i 1.23570i 0.786298 + 0.617848i 0.211995π0.211995\pi
−0.786298 + 0.617848i 0.788005π0.788005\pi
108108 0 0
109109 1.85065i 0.177260i 0.996065 + 0.0886299i 0.0282489π0.0282489\pi
−0.996065 + 0.0886299i 0.971751π0.971751\pi
110110 0 0
111111 −10.6781 −1.01352
112112 0 0
113113 16.6815 1.56926 0.784632 0.619962i 0.212852π-0.212852\pi
0.784632 + 0.619962i 0.212852π0.212852\pi
114114 0 0
115115 − 14.4681i − 1.34916i
116116 0 0
117117 − 7.44045i − 0.687870i
118118 0 0
119119 −2.28291 −0.209274
120120 0 0
121121 −1.00000 −0.0909091
122122 0 0
123123 − 9.70891i − 0.875423i
124124 0 0
125125 30.7248i 2.74811i
126126 0 0
127127 6.51013 0.577680 0.288840 0.957377i 0.406730π-0.406730\pi
0.288840 + 0.957377i 0.406730π0.406730\pi
128128 0 0
129129 −26.9771 −2.37520
130130 0 0
131131 6.91569i 0.604227i 0.953272 + 0.302114i 0.0976922π0.0976922\pi
−0.953272 + 0.302114i 0.902308π0.902308\pi
132132 0 0
133133 − 2.50368i − 0.217097i
134134 0 0
135135 −4.54451 −0.391129
136136 0 0
137137 5.81952 0.497195 0.248598 0.968607i 0.420030π-0.420030\pi
0.248598 + 0.968607i 0.420030π0.420030\pi
138138 0 0
139139 − 9.53529i − 0.808772i −0.914588 0.404386i 0.867485π-0.867485\pi
0.914588 0.404386i 0.132515π-0.132515\pi
140140 0 0
141141 7.67702i 0.646522i
142142 0 0
143143 −2.93322 −0.245288
144144 0 0
145145 −19.0577 −1.58265
146146 0 0
147147 14.4218i 1.18949i
148148 0 0
149149 − 13.9221i − 1.14055i −0.821455 0.570273i 0.806838π-0.806838\pi
0.821455 0.570273i 0.193162π-0.193162\pi
150150 0 0
151151 −15.2226 −1.23880 −0.619398 0.785077i 0.712623π-0.712623\pi
−0.619398 + 0.785077i 0.712623π0.712623\pi
152152 0 0
153153 −6.20522 −0.501662
154154 0 0
155155 − 15.2455i − 1.22455i
156156 0 0
157157 − 0.873940i − 0.0697480i −0.999392 0.0348740i 0.988897π-0.988897\pi
0.999392 0.0348740i 0.0111030π-0.0111030\pi
158158 0 0
159159 1.52976 0.121318
160160 0 0
161161 −3.23948 −0.255307
162162 0 0
163163 − 7.52686i − 0.589549i −0.955567 0.294775i 0.904755π-0.904755\pi
0.955567 0.294775i 0.0952446π-0.0952446\pi
164164 0 0
165165 − 9.80716i − 0.763487i
166166 0 0
167167 −0.142904 −0.0110583 −0.00552913 0.999985i 0.501760π-0.501760\pi
−0.00552913 + 0.999985i 0.501760π0.501760\pi
168168 0 0
169169 4.39621 0.338170
170170 0 0
171171 − 6.80531i − 0.520415i
172172 0 0
173173 − 1.12910i − 0.0858436i −0.999078 0.0429218i 0.986333π-0.986333\pi
0.999078 0.0429218i 0.0136666π-0.0136666\pi
174174 0 0
175175 11.5456 0.872762
176176 0 0
177177 −6.84641 −0.514608
178178 0 0
179179 15.1620i 1.13326i 0.823972 + 0.566631i 0.191754π0.191754\pi
−0.823972 + 0.566631i 0.808246π0.808246\pi
180180 0 0
181181 − 16.9211i − 1.25773i −0.777513 0.628867i 0.783519π-0.783519\pi
0.777513 0.628867i 0.216481π-0.216481\pi
182182 0 0
183183 25.1912 1.86219
184184 0 0
185185 −18.9144 −1.39061
186186 0 0
187187 2.44626i 0.178888i
188188 0 0
189189 1.01754i 0.0740151i
190190 0 0
191191 16.6720 1.20635 0.603174 0.797610i 0.293903π-0.293903\pi
0.603174 + 0.797610i 0.293903π0.293903\pi
192192 0 0
193193 0.180700 0.0130071 0.00650354 0.999979i 0.497930π-0.497930\pi
0.00650354 + 0.999979i 0.497930π0.497930\pi
194194 0 0
195195 − 28.7666i − 2.06002i
196196 0 0
197197 − 8.38885i − 0.597681i −0.954303 0.298840i 0.903400π-0.903400\pi
0.954303 0.298840i 0.0965998π-0.0965998\pi
198198 0 0
199199 −22.0996 −1.56660 −0.783298 0.621646i 0.786464π-0.786464\pi
−0.783298 + 0.621646i 0.786464π0.786464\pi
200200 0 0
201201 12.7679 0.900579
202202 0 0
203203 4.26711i 0.299492i
204204 0 0
205205 − 17.1977i − 1.20114i
206206 0 0
207207 −8.80531 −0.612011
208208 0 0
209209 −2.68283 −0.185575
210210 0 0
211211 15.0390i 1.03533i 0.855585 + 0.517663i 0.173198π0.173198\pi
−0.855585 + 0.517663i 0.826802π0.826802\pi
212212 0 0
213213 − 18.2388i − 1.24970i
214214 0 0
215215 −47.7853 −3.25893
216216 0 0
217217 −3.41355 −0.231727
218218 0 0
219219 − 30.7421i − 2.07736i
220220 0 0
221221 7.17543i 0.482672i
222222 0 0
223223 10.2766 0.688172 0.344086 0.938938i 0.388189π-0.388189\pi
0.344086 + 0.938938i 0.388189π0.388189\pi
224224 0 0
225225 31.3822 2.09215
226226 0 0
227227 − 15.6688i − 1.03998i −0.854173 0.519989i 0.825936π-0.825936\pi
0.854173 0.519989i 0.174064π-0.174064\pi
228228 0 0
229229 14.0747i 0.930083i 0.885289 + 0.465041i 0.153961π0.153961\pi
−0.885289 + 0.465041i 0.846039π0.846039\pi
230230 0 0
231231 −2.19587 −0.144478
232232 0 0
233233 −12.0993 −0.792652 −0.396326 0.918110i 0.629715π-0.629715\pi
−0.396326 + 0.918110i 0.629715π0.629715\pi
234234 0 0
235235 13.5985i 0.887070i
236236 0 0
237237 11.3807i 0.739253i
238238 0 0
239239 21.7479 1.40675 0.703377 0.710817i 0.251675π-0.251675\pi
0.703377 + 0.710817i 0.251675π0.251675\pi
240240 0 0
241241 −6.93967 −0.447024 −0.223512 0.974701i 0.571752π-0.571752\pi
−0.223512 + 0.974701i 0.571752π0.571752\pi
242242 0 0
243243 20.6718i 1.32609i
244244 0 0
245245 25.5457i 1.63205i
246246 0 0
247247 −7.86935 −0.500714
248248 0 0
249249 −1.55219 −0.0983660
250250 0 0
251251 17.7279i 1.11897i 0.828840 + 0.559486i 0.189001π0.189001\pi
−0.828840 + 0.559486i 0.810999π0.810999\pi
252252 0 0
253253 3.47129i 0.218238i
254254 0 0
255255 −23.9909 −1.50237
256256 0 0
257257 17.7545 1.10750 0.553748 0.832684i 0.313197π-0.313197\pi
0.553748 + 0.832684i 0.313197π0.313197\pi
258258 0 0
259259 4.23502i 0.263152i
260260 0 0
261261 11.5985i 0.717931i
262262 0 0
263263 27.6424 1.70450 0.852252 0.523132i 0.175237π-0.175237\pi
0.852252 + 0.523132i 0.175237π0.175237\pi
264264 0 0
265265 2.70971 0.166456
266266 0 0
267267 6.46203i 0.395470i
268268 0 0
269269 10.6283i 0.648020i 0.946054 + 0.324010i 0.105031π0.105031\pi
−0.946054 + 0.324010i 0.894969π0.894969\pi
270270 0 0
271271 −19.7481 −1.19961 −0.599805 0.800146i 0.704755π-0.704755\pi
−0.599805 + 0.800146i 0.704755π0.704755\pi
272272 0 0
273273 −6.44098 −0.389826
274274 0 0
275275 − 12.3717i − 0.746042i
276276 0 0
277277 12.5353i 0.753172i 0.926382 + 0.376586i 0.122902π0.122902\pi
−0.926382 + 0.376586i 0.877098π0.877098\pi
278278 0 0
279279 −9.27845 −0.555486
280280 0 0
281281 −23.8037 −1.42001 −0.710006 0.704195i 0.751308π-0.751308\pi
−0.710006 + 0.704195i 0.751308π0.751308\pi
282282 0 0
283283 27.7294i 1.64834i 0.566340 + 0.824172i 0.308359π0.308359\pi
−0.566340 + 0.824172i 0.691641π0.691641\pi
284284 0 0
285285 − 26.3110i − 1.55853i
286286 0 0
287287 −3.85065 −0.227297
288288 0 0
289289 −11.0158 −0.647988
290290 0 0
291291 − 4.30376i − 0.252291i
292292 0 0
293293 5.61389i 0.327967i 0.986463 + 0.163984i 0.0524344π0.0524344\pi
−0.986463 + 0.163984i 0.947566π0.947566\pi
294294 0 0
295295 −12.1272 −0.706075
296296 0 0
297297 1.09035 0.0632685
298298 0 0
299299 10.1821i 0.588843i
300300 0 0
301301 10.6994i 0.616701i
302302 0 0
303303 29.8386 1.71419
304304 0 0
305305 44.6220 2.55505
306306 0 0
307307 27.8554i 1.58979i 0.606747 + 0.794895i 0.292474π0.292474\pi
−0.606747 + 0.794895i 0.707526π0.707526\pi
308308 0 0
309309 − 9.09775i − 0.517553i
310310 0 0
311311 24.4075 1.38402 0.692012 0.721886i 0.256724π-0.256724\pi
0.692012 + 0.721886i 0.256724π0.256724\pi
312312 0 0
313313 9.13514 0.516349 0.258174 0.966098i 0.416879π-0.416879\pi
0.258174 + 0.966098i 0.416879π0.416879\pi
314314 0 0
315315 − 9.86644i − 0.555911i
316316 0 0
317317 − 17.9501i − 1.00818i −0.863652 0.504088i 0.831829π-0.831829\pi
0.863652 0.504088i 0.168171π-0.168171\pi
318318 0 0
319319 4.57245 0.256008
320320 0 0
321321 30.0764 1.67870
322322 0 0
323323 6.56291i 0.365170i
324324 0 0
325325 − 36.2890i − 2.01295i
326326 0 0
327327 4.35457 0.240809
328328 0 0
329329 3.04478 0.167864
330330 0 0
331331 13.1934i 0.725173i 0.931950 + 0.362586i 0.118106π0.118106\pi
−0.931950 + 0.362586i 0.881894π0.881894\pi
332332 0 0
333333 11.5113i 0.630816i
334334 0 0
335335 22.6162 1.23565
336336 0 0
337337 23.8712 1.30035 0.650173 0.759787i 0.274697π-0.274697\pi
0.650173 + 0.759787i 0.274697π0.274697\pi
338338 0 0
339339 − 39.2516i − 2.13185i
340340 0 0
341341 3.65781i 0.198082i
342342 0 0
343343 12.2524 0.661566
344344 0 0
345345 −34.0435 −1.83284
346346 0 0
347347 − 37.2210i − 1.99813i −0.0432373 0.999065i 0.513767π-0.513767\pi
0.0432373 0.999065i 0.486233π-0.486233\pi
348348 0 0
349349 28.4140i 1.52097i 0.649358 + 0.760483i 0.275038π0.275038\pi
−0.649358 + 0.760483i 0.724962π0.724962\pi
350350 0 0
351351 3.19824 0.170709
352352 0 0
353353 −6.72158 −0.357754 −0.178877 0.983871i 0.557246π-0.557246\pi
−0.178877 + 0.983871i 0.557246π0.557246\pi
354354 0 0
355355 − 32.3069i − 1.71467i
356356 0 0
357357 5.37168i 0.284300i
358358 0 0
359359 −19.8260 −1.04638 −0.523188 0.852217i 0.675257π-0.675257\pi
−0.523188 + 0.852217i 0.675257π0.675257\pi
360360 0 0
361361 11.8024 0.621179
362362 0 0
363363 2.35300i 0.123501i
364364 0 0
365365 − 54.4543i − 2.85027i
366366 0 0
367367 −4.54822 −0.237415 −0.118708 0.992929i 0.537875π-0.537875\pi
−0.118708 + 0.992929i 0.537875π0.537875\pi
368368 0 0
369369 −10.4665 −0.544866
370370 0 0
371371 − 0.606718i − 0.0314992i
372372 0 0
373373 33.3992i 1.72934i 0.502336 + 0.864672i 0.332474π0.332474\pi
−0.502336 + 0.864672i 0.667526π0.667526\pi
374374 0 0
375375 72.2956 3.73333
376376 0 0
377377 13.4120 0.690753
378378 0 0
379379 − 9.24843i − 0.475060i −0.971380 0.237530i 0.923662π-0.923662\pi
0.971380 0.237530i 0.0763378π-0.0763378\pi
380380 0 0
381381 − 15.3183i − 0.784782i
382382 0 0
383383 −31.6080 −1.61509 −0.807547 0.589803i 0.799205π-0.799205\pi
−0.807547 + 0.589803i 0.799205π0.799205\pi
384384 0 0
385385 −3.88961 −0.198233
386386 0 0
387387 29.0822i 1.47833i
388388 0 0
389389 4.99543i 0.253278i 0.991949 + 0.126639i 0.0404190π0.0404190\pi
−0.991949 + 0.126639i 0.959581π0.959581\pi
390390 0 0
391391 8.49168 0.429443
392392 0 0
393393 16.2726 0.820846
394394 0 0
395395 20.1589i 1.01430i
396396 0 0
397397 17.7950i 0.893107i 0.894757 + 0.446553i 0.147349π0.147349\pi
−0.894757 + 0.446553i 0.852651π0.852651\pi
398398 0 0
399399 −5.89116 −0.294927
400400 0 0
401401 −12.1739 −0.607934 −0.303967 0.952683i 0.598311π-0.598311\pi
−0.303967 + 0.952683i 0.598311π0.598311\pi
402402 0 0
403403 10.7292i 0.534458i
404404 0 0
405405 42.4106i 2.10740i
406406 0 0
407407 4.53806 0.224943
408408 0 0
409409 0.587997 0.0290746 0.0145373 0.999894i 0.495372π-0.495372\pi
0.0145373 + 0.999894i 0.495372π0.495372\pi
410410 0 0
411411 − 13.6933i − 0.675442i
412412 0 0
413413 2.71535i 0.133614i
414414 0 0
415415 −2.74944 −0.134965
416416 0 0
417417 −22.4365 −1.09872
418418 0 0
419419 11.1507i 0.544748i 0.962191 + 0.272374i 0.0878088π0.0878088\pi
−0.962191 + 0.272374i 0.912191π0.912191\pi
420420 0 0
421421 − 34.8398i − 1.69799i −0.528401 0.848995i 0.677208π-0.677208\pi
0.528401 0.848995i 0.322792π-0.322792\pi
422422 0 0
423423 8.27608 0.402397
424424 0 0
425425 −30.2645 −1.46804
426426 0 0
427427 − 9.99108i − 0.483502i
428428 0 0
429429 6.90187i 0.333226i
430430 0 0
431431 24.8647 1.19769 0.598846 0.800864i 0.295626π-0.295626\pi
0.598846 + 0.800864i 0.295626π0.295626\pi
432432 0 0
433433 −0.547704 −0.0263210 −0.0131605 0.999913i 0.504189π-0.504189\pi
−0.0131605 + 0.999913i 0.504189π0.504189\pi
434434 0 0
435435 44.8427i 2.15004i
436436 0 0
437437 9.31288i 0.445495i
438438 0 0
439439 −27.5308 −1.31397 −0.656987 0.753902i 0.728169π-0.728169\pi
−0.656987 + 0.753902i 0.728169π0.728169\pi
440440 0 0
441441 15.5471 0.740340
442442 0 0
443443 8.05454i 0.382683i 0.981524 + 0.191341i 0.0612838π0.0612838\pi
−0.981524 + 0.191341i 0.938716π0.938716\pi
444444 0 0
445445 11.4464i 0.542611i
446446 0 0
447447 −32.7588 −1.54944
448448 0 0
449449 −33.7705 −1.59373 −0.796865 0.604158i 0.793510π-0.793510\pi
−0.796865 + 0.604158i 0.793510π0.793510\pi
450450 0 0
451451 4.12618i 0.194294i
452452 0 0
453453 35.8187i 1.68291i
454454 0 0
455455 −11.4091 −0.534867
456456 0 0
457457 −3.83220 −0.179263 −0.0896313 0.995975i 0.528569π-0.528569\pi
−0.0896313 + 0.995975i 0.528569π0.528569\pi
458458 0 0
459459 − 2.66728i − 0.124498i
460460 0 0
461461 − 15.8380i − 0.737649i −0.929499 0.368825i 0.879760π-0.879760\pi
0.929499 0.368825i 0.120240π-0.120240\pi
462462 0 0
463463 −30.4131 −1.41341 −0.706707 0.707506i 0.749820π-0.749820\pi
−0.706707 + 0.707506i 0.749820π0.749820\pi
464464 0 0
465465 −35.8727 −1.66356
466466 0 0
467467 − 20.1815i − 0.933887i −0.884287 0.466943i 0.845355π-0.845355\pi
0.884287 0.466943i 0.154645π-0.154645\pi
468468 0 0
469469 − 5.06388i − 0.233828i
470470 0 0
471471 −2.05638 −0.0947531
472472 0 0
473473 11.4650 0.527160
474474 0 0
475475 − 33.1912i − 1.52292i
476476 0 0
477477 − 1.64913i − 0.0755086i
478478 0 0
479479 −12.5604 −0.573901 −0.286951 0.957945i 0.592642π-0.592642\pi
−0.286951 + 0.957945i 0.592642π0.592642\pi
480480 0 0
481481 13.3111 0.606936
482482 0 0
483483 7.62250i 0.346836i
484484 0 0
485485 − 7.62338i − 0.346160i
486486 0 0
487487 −14.2519 −0.645814 −0.322907 0.946431i 0.604660π-0.604660\pi
−0.322907 + 0.946431i 0.604660π0.604660\pi
488488 0 0
489489 −17.7107 −0.800906
490490 0 0
491491 20.4046i 0.920849i 0.887699 + 0.460424i 0.152303π0.152303\pi
−0.887699 + 0.460424i 0.847697π0.847697\pi
492492 0 0
493493 − 11.1854i − 0.503765i
494494 0 0
495495 −10.5724 −0.475196
496496 0 0
497497 −7.23368 −0.324475
498498 0 0
499499 − 33.3751i − 1.49407i −0.664782 0.747037i 0.731476π-0.731476\pi
0.664782 0.747037i 0.268524π-0.268524\pi
500500 0 0
501501 0.336253i 0.0150227i
502502 0 0
503503 −14.8148 −0.660561 −0.330281 0.943883i 0.607143π-0.607143\pi
−0.330281 + 0.943883i 0.607143π0.607143\pi
504504 0 0
505505 52.8541 2.35197
506506 0 0
507507 − 10.3443i − 0.459405i
508508 0 0
509509 − 23.9464i − 1.06140i −0.847559 0.530702i 0.821928π-0.821928\pi
0.847559 0.530702i 0.178072π-0.178072\pi
510510 0 0
511511 −12.1926 −0.539369
512512 0 0
513513 2.92523 0.129152
514514 0 0
515515 − 16.1151i − 0.710116i
516516 0 0
517517 − 3.26265i − 0.143491i
518518 0 0
519519 −2.65676 −0.116619
520520 0 0
521521 20.6157 0.903189 0.451594 0.892223i 0.350855π-0.350855\pi
0.451594 + 0.892223i 0.350855π0.350855\pi
522522 0 0
523523 22.6014i 0.988292i 0.869379 + 0.494146i 0.164519π0.164519\pi
−0.869379 + 0.494146i 0.835481π0.835481\pi
524524 0 0
525525 − 27.1667i − 1.18565i
526526 0 0
527527 8.94797 0.389779
528528 0 0
529529 −10.9502 −0.476095
530530 0 0
531531 7.38066i 0.320293i
532532 0 0
533533 12.1030i 0.524240i
534534 0 0
535535 53.2752 2.30329
536536 0 0
537537 35.6762 1.53954
538538 0 0
539539 − 6.12910i − 0.263999i
540540 0 0
541541 5.25411i 0.225892i 0.993601 + 0.112946i 0.0360287π0.0360287\pi
−0.993601 + 0.112946i 0.963971π0.963971\pi
542542 0 0
543543 −39.8153 −1.70864
544544 0 0
545545 7.71338 0.330405
546546 0 0
547547 − 31.4365i − 1.34413i −0.740493 0.672064i 0.765408π-0.765408\pi
0.740493 0.672064i 0.234592π-0.234592\pi
548548 0 0
549549 − 27.1570i − 1.15903i
550550 0 0
551551 12.2671 0.522596
552552 0 0
553553 4.51368 0.191941
554554 0 0
555555 44.5055i 1.88915i
556556 0 0
557557 − 13.8905i − 0.588561i −0.955719 0.294280i 0.904920π-0.904920\pi
0.955719 0.294280i 0.0950800π-0.0950800\pi
558558 0 0
559559 33.6293 1.42237
560560 0 0
561561 5.75606 0.243021
562562 0 0
563563 − 20.5160i − 0.864647i −0.901719 0.432324i 0.857694π-0.857694\pi
0.901719 0.432324i 0.142306π-0.142306\pi
564564 0 0
565565 − 69.5275i − 2.92504i
566566 0 0
567567 9.49594 0.398792
568568 0 0
569569 −20.9308 −0.877463 −0.438731 0.898618i 0.644572π-0.644572\pi
−0.438731 + 0.898618i 0.644572π0.644572\pi
570570 0 0
571571 − 6.00582i − 0.251336i −0.992072 0.125668i 0.959893π-0.959893\pi
0.992072 0.125668i 0.0401074π-0.0401074\pi
572572 0 0
573573 − 39.2293i − 1.63883i
574574 0 0
575575 −42.9457 −1.79096
576576 0 0
577577 −45.4212 −1.89091 −0.945455 0.325753i 0.894382π-0.894382\pi
−0.945455 + 0.325753i 0.894382π0.894382\pi
578578 0 0
579579 − 0.425187i − 0.0176702i
580580 0 0
581581 0.615613i 0.0255399i
582582 0 0
583583 −0.650132 −0.0269257
584584 0 0
585585 −31.0113 −1.28216
586586 0 0
587587 4.95230i 0.204403i 0.994764 + 0.102202i 0.0325887π0.0325887\pi
−0.994764 + 0.102202i 0.967411π0.967411\pi
588588 0 0
589589 9.81329i 0.404350i
590590 0 0
591591 −19.7390 −0.811952
592592 0 0
593593 −17.6332 −0.724110 −0.362055 0.932157i 0.617925π-0.617925\pi
−0.362055 + 0.932157i 0.617925π0.617925\pi
594594 0 0
595595 9.51502i 0.390078i
596596 0 0
597597 52.0003i 2.12823i
598598 0 0
599599 −45.1533 −1.84491 −0.922456 0.386101i 0.873822π-0.873822\pi
−0.922456 + 0.386101i 0.873822π0.873822\pi
600600 0 0
601601 −15.6375 −0.637867 −0.318933 0.947777i 0.603325π-0.603325\pi
−0.318933 + 0.947777i 0.603325π0.603325\pi
602602 0 0
603603 − 13.7642i − 0.560523i
604604 0 0
605605 4.16794i 0.169451i
606606 0 0
607607 41.9318 1.70196 0.850979 0.525200i 0.176010π-0.176010\pi
0.850979 + 0.525200i 0.176010π0.176010\pi
608608 0 0
609609 10.0405 0.406862
610610 0 0
611611 − 9.57008i − 0.387164i
612612 0 0
613613 27.8914i 1.12652i 0.826278 + 0.563262i 0.190454π0.190454\pi
−0.826278 + 0.563262i 0.809546π0.809546\pi
614614 0 0
615615 −40.4662 −1.63175
616616 0 0
617617 −14.7471 −0.593697 −0.296849 0.954925i 0.595936π-0.595936\pi
−0.296849 + 0.954925i 0.595936π0.595936\pi
618618 0 0
619619 5.12150i 0.205851i 0.994689 + 0.102925i 0.0328203π0.0328203\pi
−0.994689 + 0.102925i 0.967180π0.967180\pi
620620 0 0
621621 − 3.78492i − 0.151883i
622622 0 0
623623 2.56290 0.102681
624624 0 0
625625 66.2007 2.64803
626626 0 0
627627 6.31271i 0.252105i
628628 0 0
629629 − 11.1013i − 0.442638i
630630 0 0
631631 48.5097 1.93114 0.965570 0.260142i 0.0837693π-0.0837693\pi
0.965570 + 0.260142i 0.0837693π0.0837693\pi
632632 0 0
633633 35.3867 1.40650
634634 0 0
635635 − 27.1338i − 1.07677i
636636 0 0
637637 − 17.9780i − 0.712314i
638638 0 0
639639 −19.6620 −0.777818
640640 0 0
641641 −7.22155 −0.285234 −0.142617 0.989778i 0.545552π-0.545552\pi
−0.142617 + 0.989778i 0.545552π0.545552\pi
642642 0 0
643643 11.9607i 0.471684i 0.971791 + 0.235842i 0.0757847π0.0757847\pi
−0.971791 + 0.235842i 0.924215π0.924215\pi
644644 0 0
645645 112.439i 4.42728i
646646 0 0
647647 26.1952 1.02984 0.514920 0.857238i 0.327822π-0.327822\pi
0.514920 + 0.857238i 0.327822π0.327822\pi
648648 0 0
649649 2.90965 0.114214
650650 0 0
651651 8.03209i 0.314802i
652652 0 0
653653 34.2180i 1.33906i 0.742787 + 0.669528i 0.233503π0.233503\pi
−0.742787 + 0.669528i 0.766497π0.766497\pi
654654 0 0
655655 28.8242 1.12625
656656 0 0
657657 −33.1410 −1.29295
658658 0 0
659659 2.73052i 0.106366i 0.998585 + 0.0531831i 0.0169367π0.0169367\pi
−0.998585 + 0.0531831i 0.983063π0.983063\pi
660660 0 0
661661 − 11.2478i − 0.437488i −0.975782 0.218744i 0.929804π-0.929804\pi
0.975782 0.218744i 0.0701959π-0.0701959\pi
662662 0 0
663663 16.8838 0.655713
664664 0 0
665665 −10.4352 −0.404659
666666 0 0
667667 − 15.8723i − 0.614577i
668668 0 0
669669 − 24.1808i − 0.934885i
670670 0 0
671671 −10.7060 −0.413301
672672 0 0
673673 −20.0432 −0.772609 −0.386305 0.922371i 0.626249π-0.626249\pi
−0.386305 + 0.922371i 0.626249π0.626249\pi
674674 0 0
675675 13.4895i 0.519211i
676676 0 0
677677 27.1414i 1.04313i 0.853212 + 0.521564i 0.174651π0.174651\pi
−0.853212 + 0.521564i 0.825349π0.825349\pi
678678 0 0
679679 −1.70691 −0.0655053
680680 0 0
681681 −36.8688 −1.41282
682682 0 0
683683 − 41.8019i − 1.59951i −0.600330 0.799753i 0.704964π-0.704964\pi
0.600330 0.799753i 0.295036π-0.295036\pi
684684 0 0
685685 − 24.2554i − 0.926751i
686686 0 0
687687 33.1178 1.26352
688688 0 0
689689 −1.90698 −0.0726502
690690 0 0
691691 28.7753i 1.09466i 0.836916 + 0.547332i 0.184356π0.184356\pi
−0.836916 + 0.547332i 0.815644π0.815644\pi
692692 0 0
693693 2.36722i 0.0899234i
694694 0 0
695695 −39.7425 −1.50752
696696 0 0
697697 10.0937 0.382327
698698 0 0
699699 28.4697i 1.07682i
700700 0 0
701701 − 22.5826i − 0.852933i −0.904503 0.426467i 0.859758π-0.859758\pi
0.904503 0.426467i 0.140242π-0.140242\pi
702702 0 0
703703 12.1749 0.459184
704704 0 0
705705 31.9973 1.20509
706706 0 0
707707 − 11.8343i − 0.445074i
708708 0 0
709709 14.5420i 0.546138i 0.961994 + 0.273069i 0.0880387π0.0880387\pi
−0.961994 + 0.273069i 0.911961π0.911961\pi
710710 0 0
711711 12.2687 0.460113
712712 0 0
713713 12.6973 0.475518
714714 0 0
715715 12.2255i 0.457207i
716716 0 0
717717 − 51.1728i − 1.91108i
718718 0 0
719719 5.98413 0.223170 0.111585 0.993755i 0.464407π-0.464407\pi
0.111585 + 0.993755i 0.464407π0.464407\pi
720720 0 0
721721 −3.60825 −0.134378
722722 0 0
723723 16.3291i 0.607284i
724724 0 0
725725 56.5690i 2.10092i
726726 0 0
727727 13.7234 0.508973 0.254486 0.967076i 0.418094π-0.418094\pi
0.254486 + 0.967076i 0.418094π0.418094\pi
728728 0 0
729729 18.1144 0.670902
730730 0 0
731731 − 28.0463i − 1.03733i
732732 0 0
733733 46.4631i 1.71615i 0.513522 + 0.858076i 0.328340π0.328340\pi
−0.513522 + 0.858076i 0.671660π0.671660\pi
734734 0 0
735735 60.1090 2.21716
736736 0 0
737737 −5.42623 −0.199878
738738 0 0
739739 12.5779i 0.462686i 0.972872 + 0.231343i 0.0743119π0.0743119\pi
−0.972872 + 0.231343i 0.925688π0.925688\pi
740740 0 0
741741 18.5166i 0.680223i
742742 0 0
743743 9.36221 0.343466 0.171733 0.985144i 0.445063π-0.445063\pi
0.171733 + 0.985144i 0.445063π0.445063\pi
744744 0 0
745745 −58.0266 −2.12593
746746 0 0
747747 1.67331i 0.0612233i
748748 0 0
749749 − 11.9286i − 0.435861i
750750 0 0
751751 −3.96209 −0.144579 −0.0722894 0.997384i 0.523031π-0.523031\pi
−0.0722894 + 0.997384i 0.523031π0.523031\pi
752752 0 0
753753 41.7137 1.52013
754754 0 0
755755 63.4468i 2.30906i
756756 0 0
757757 − 3.56879i − 0.129710i −0.997895 0.0648550i 0.979342π-0.979342\pi
0.997895 0.0648550i 0.0206585π-0.0206585\pi
758758 0 0
759759 8.16794 0.296477
760760 0 0
761761 49.8018 1.80532 0.902658 0.430359i 0.141613π-0.141613\pi
0.902658 + 0.430359i 0.141613π0.141613\pi
762762 0 0
763763 − 1.72707i − 0.0625240i
764764 0 0
765765 25.8630i 0.935078i
766766 0 0
767767 8.53465 0.308168
768768 0 0
769769 30.5772 1.10264 0.551321 0.834293i 0.314124π-0.314124\pi
0.551321 + 0.834293i 0.314124π0.314124\pi
770770 0 0
771771 − 41.7764i − 1.50454i
772772 0 0
773773 − 23.9315i − 0.860756i −0.902649 0.430378i 0.858380π-0.858380\pi
0.902649 0.430378i 0.141620π-0.141620\pi
774774 0 0
775775 −45.2534 −1.62555
776776 0 0
777777 9.96501 0.357493
778778 0 0
779779 11.0699i 0.396619i
780780 0 0
781781 7.75129i 0.277363i
782782 0 0
783783 −4.98557 −0.178170
784784 0 0
785785 −3.64253 −0.130007
786786 0 0
787787 − 13.4992i − 0.481196i −0.970625 0.240598i 0.922656π-0.922656\pi
0.970625 0.240598i 0.0773436π-0.0773436\pi
788788 0 0
789789 − 65.0426i − 2.31558i
790790 0 0
791791 −15.5676 −0.553519
792792 0 0
793793 −31.4031 −1.11516
794794 0 0
795795 − 6.37595i − 0.226132i
796796 0 0
797797 − 23.8879i − 0.846154i −0.906094 0.423077i 0.860950π-0.860950\pi
0.906094 0.423077i 0.139050π-0.139050\pi
798798 0 0
799799 −7.98130 −0.282358
800800 0 0
801801 6.96629 0.246142
802802 0 0
803803 13.0650i 0.461056i
804804 0 0
805805 13.5020i 0.475882i
806806 0 0
807807 25.0084 0.880339
808808 0 0
809809 20.1858 0.709694 0.354847 0.934924i 0.384533π-0.384533\pi
0.354847 + 0.934924i 0.384533π0.384533\pi
810810 0 0
811811 3.78003i 0.132735i 0.997795 + 0.0663675i 0.0211410π0.0211410\pi
−0.997795 + 0.0663675i 0.978859π0.978859\pi
812812 0 0
813813 46.4672i 1.62968i
814814 0 0
815815 −31.3715 −1.09890
816816 0 0
817817 30.7586 1.07611
818818 0 0
819819 6.94360i 0.242629i
820820 0 0
821821 − 32.5119i − 1.13467i −0.823486 0.567336i 0.807974π-0.807974\pi
0.823486 0.567336i 0.192026π-0.192026\pi
822822 0 0
823823 −20.7651 −0.723826 −0.361913 0.932212i 0.617876π-0.617876\pi
−0.361913 + 0.932212i 0.617876π0.617876\pi
824824 0 0
825825 −29.1106 −1.01350
826826 0 0
827827 11.2140i 0.389948i 0.980808 + 0.194974i 0.0624622π0.0624622\pi
−0.980808 + 0.194974i 0.937538π0.937538\pi
828828 0 0
829829 − 6.82205i − 0.236940i −0.992958 0.118470i 0.962201π-0.962201\pi
0.992958 0.118470i 0.0377989π-0.0377989\pi
830830 0 0
831831 29.4955 1.02319
832832 0 0
833833 −14.9934 −0.519490
834834 0 0
835835 0.595616i 0.0206121i
836836 0 0
837837 − 3.98829i − 0.137856i
838838 0 0
839839 19.3720 0.668796 0.334398 0.942432i 0.391467π-0.391467\pi
0.334398 + 0.942432i 0.391467π0.391467\pi
840840 0 0
841841 8.09273 0.279060
842842 0 0
843843 56.0102i 1.92910i
844844 0 0
845845 − 18.3231i − 0.630334i
846846 0 0
847847 0.933222 0.0320659
848848 0 0
849849 65.2474 2.23928
850850 0 0
851851 − 15.7529i − 0.540003i
852852 0 0
853853 − 11.1509i − 0.381800i −0.981609 0.190900i 0.938859π-0.938859\pi
0.981609 0.190900i 0.0611406π-0.0611406\pi
854854 0 0
855855 −28.3641 −0.970032
856856 0 0
857857 −30.4078 −1.03871 −0.519355 0.854558i 0.673828π-0.673828\pi
−0.519355 + 0.854558i 0.673828π0.673828\pi
858858 0 0
859859 27.7908i 0.948210i 0.880468 + 0.474105i 0.157228π0.157228\pi
−0.880468 + 0.474105i 0.842772π0.842772\pi
860860 0 0
861861 9.06058i 0.308784i
862862 0 0
863863 −0.221827 −0.00755109 −0.00377554 0.999993i 0.501202π-0.501202\pi
−0.00377554 + 0.999993i 0.501202π0.501202\pi
864864 0 0
865865 −4.70600 −0.160009
866866 0 0
867867 25.9202i 0.880295i
868868 0 0
869869 − 4.83666i − 0.164072i
870870 0 0
871871 −15.9163 −0.539304
872872 0 0
873873 −4.63960 −0.157027
874874 0 0
875875 − 28.6731i − 0.969328i
876876 0 0
877877 15.5470i 0.524985i 0.964934 + 0.262492i 0.0845444π0.0845444\pi
−0.964934 + 0.262492i 0.915456π0.915456\pi
878878 0 0
879879 13.2095 0.445545
880880 0 0
881881 21.4338 0.722125 0.361062 0.932542i 0.382414π-0.382414\pi
0.361062 + 0.932542i 0.382414π0.382414\pi
882882 0 0
883883 14.2700i 0.480224i 0.970745 + 0.240112i 0.0771842π0.0771842\pi
−0.970745 + 0.240112i 0.922816π0.922816\pi
884884 0 0
885885 28.5354i 0.959207i
886886 0 0
887887 −23.6109 −0.792775 −0.396388 0.918083i 0.629736π-0.629736\pi
−0.396388 + 0.918083i 0.629736π0.629736\pi
888888 0 0
889889 −6.07540 −0.203762
890890 0 0
891891 − 10.1754i − 0.340890i
892892 0 0
893893 − 8.75315i − 0.292913i
894894 0 0
895895 63.1944 2.11235
896896 0 0
897897 23.9584 0.799947
898898 0 0
899899 − 16.7251i − 0.557815i
900900 0 0
901901 1.59039i 0.0529837i
902902 0 0
903903 25.1756 0.837792
904904 0 0
905905 −70.5260 −2.34436
906906 0 0
907907 45.2882i 1.50377i 0.659294 + 0.751885i 0.270855π0.270855\pi
−0.659294 + 0.751885i 0.729145π0.729145\pi
908908 0 0
909909 − 32.1670i − 1.06691i
910910 0 0
911911 22.4539 0.743931 0.371966 0.928247i 0.378684π-0.378684\pi
0.371966 + 0.928247i 0.378684π0.378684\pi
912912 0 0
913913 0.659664 0.0218317
914914 0 0
915915 − 104.995i − 3.47104i
916916 0 0
917917 − 6.45388i − 0.213126i
918918 0 0
919919 −41.5329 −1.37004 −0.685022 0.728522i 0.740207π-0.740207\pi
−0.685022 + 0.728522i 0.740207π0.740207\pi
920920 0 0
921921 65.5437 2.15974
922922 0 0
923923 22.7363i 0.748373i
924924 0 0
925925 56.1436i 1.84599i
926926 0 0
927927 −9.80767 −0.322126
928928 0 0
929929 −37.2997 −1.22376 −0.611882 0.790949i 0.709587π-0.709587\pi
−0.611882 + 0.790949i 0.709587π0.709587\pi
930930 0 0
931931 − 16.4433i − 0.538909i
932932 0 0
933933 − 57.4310i − 1.88021i
934934 0 0
935935 10.1959 0.333441
936936 0 0
937937 13.1897 0.430888 0.215444 0.976516i 0.430880π-0.430880\pi
0.215444 + 0.976516i 0.430880π0.430880\pi
938938 0 0
939939 − 21.4950i − 0.701463i
940940 0 0
941941 24.6716i 0.804270i 0.915580 + 0.402135i 0.131732π0.131732\pi
−0.915580 + 0.402135i 0.868268π0.868268\pi
942942 0 0
943943 14.3232 0.466426
944944 0 0
945945 4.24104 0.137961
946946 0 0
947947 − 38.8667i − 1.26300i −0.775376 0.631500i 0.782440π-0.782440\pi
0.775376 0.631500i 0.217560π-0.217560\pi
948948 0 0
949949 38.3227i 1.24401i
950950 0 0
951951 −42.2365 −1.36961
952952 0 0
953953 52.5807 1.70326 0.851628 0.524147i 0.175616π-0.175616\pi
0.851628 + 0.524147i 0.175616π0.175616\pi
954954 0 0
955955 − 69.4881i − 2.24858i
956956 0 0
957957 − 10.7590i − 0.347788i
958958 0 0
959959 −5.43091 −0.175373
960960 0 0
961961 −17.6204 −0.568401
962962 0 0
963963 − 32.4233i − 1.04483i
964964 0 0
965965 − 0.753147i − 0.0242447i
966966 0 0
967967 2.98370 0.0959493 0.0479746 0.998849i 0.484723π-0.484723\pi
0.0479746 + 0.998849i 0.484723π0.484723\pi
968968 0 0
969969 15.4425 0.496086
970970 0 0
971971 − 15.0443i − 0.482793i −0.970427 0.241397i 0.922395π-0.922395\pi
0.970427 0.241397i 0.0776055π-0.0776055\pi
972972 0 0
973973 8.89854i 0.285274i
974974 0 0
975975 −85.3880 −2.73460
976976 0 0
977977 −11.4313 −0.365720 −0.182860 0.983139i 0.558536π-0.558536\pi
−0.182860 + 0.983139i 0.558536π0.558536\pi
978978 0 0
979979 − 2.74629i − 0.0877720i
980980 0 0
981981 − 4.69438i − 0.149880i
982982 0 0
983983 −58.1032 −1.85321 −0.926603 0.376042i 0.877285π-0.877285\pi
−0.926603 + 0.376042i 0.877285π0.877285\pi
984984 0 0
985985 −34.9642 −1.11405
986986 0 0
987987 − 7.16437i − 0.228044i
988988 0 0
989989 − 39.7982i − 1.26551i
990990 0 0
991991 −30.2307 −0.960311 −0.480156 0.877183i 0.659420π-0.659420\pi
−0.480156 + 0.877183i 0.659420π0.659420\pi
992992 0 0
993993 31.0440 0.985152
994994 0 0
995995 92.1096i 2.92007i
996996 0 0
997997 13.3996i 0.424368i 0.977230 + 0.212184i 0.0680577π0.0680577\pi
−0.977230 + 0.212184i 0.931942π0.931942\pi
998998 0 0
999999 −4.94808 −0.156550
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.c.a.177.2 10
3.2 odd 2 3168.2.f.g.1585.10 10
4.3 odd 2 88.2.c.a.45.8 yes 10
8.3 odd 2 88.2.c.a.45.7 10
8.5 even 2 inner 352.2.c.a.177.9 10
11.10 odd 2 3872.2.c.f.1937.2 10
12.11 even 2 792.2.f.g.397.3 10
16.3 odd 4 2816.2.a.o.1.1 5
16.5 even 4 2816.2.a.q.1.1 5
16.11 odd 4 2816.2.a.r.1.5 5
16.13 even 4 2816.2.a.p.1.5 5
24.5 odd 2 3168.2.f.g.1585.1 10
24.11 even 2 792.2.f.g.397.4 10
44.3 odd 10 968.2.o.g.493.10 40
44.7 even 10 968.2.o.h.269.7 40
44.15 odd 10 968.2.o.g.269.4 40
44.19 even 10 968.2.o.h.493.1 40
44.27 odd 10 968.2.o.g.245.2 40
44.31 odd 10 968.2.o.g.565.6 40
44.35 even 10 968.2.o.h.565.5 40
44.39 even 10 968.2.o.h.245.9 40
44.43 even 2 968.2.c.d.485.3 10
88.3 odd 10 968.2.o.g.493.4 40
88.19 even 10 968.2.o.h.493.7 40
88.21 odd 2 3872.2.c.f.1937.9 10
88.27 odd 10 968.2.o.g.245.6 40
88.35 even 10 968.2.o.h.565.9 40
88.43 even 2 968.2.c.d.485.4 10
88.51 even 10 968.2.o.h.269.1 40
88.59 odd 10 968.2.o.g.269.10 40
88.75 odd 10 968.2.o.g.565.2 40
88.83 even 10 968.2.o.h.245.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.c.a.45.7 10 8.3 odd 2
88.2.c.a.45.8 yes 10 4.3 odd 2
352.2.c.a.177.2 10 1.1 even 1 trivial
352.2.c.a.177.9 10 8.5 even 2 inner
792.2.f.g.397.3 10 12.11 even 2
792.2.f.g.397.4 10 24.11 even 2
968.2.c.d.485.3 10 44.43 even 2
968.2.c.d.485.4 10 88.43 even 2
968.2.o.g.245.2 40 44.27 odd 10
968.2.o.g.245.6 40 88.27 odd 10
968.2.o.g.269.4 40 44.15 odd 10
968.2.o.g.269.10 40 88.59 odd 10
968.2.o.g.493.4 40 88.3 odd 10
968.2.o.g.493.10 40 44.3 odd 10
968.2.o.g.565.2 40 88.75 odd 10
968.2.o.g.565.6 40 44.31 odd 10
968.2.o.h.245.5 40 88.83 even 10
968.2.o.h.245.9 40 44.39 even 10
968.2.o.h.269.1 40 88.51 even 10
968.2.o.h.269.7 40 44.7 even 10
968.2.o.h.493.1 40 44.19 even 10
968.2.o.h.493.7 40 88.19 even 10
968.2.o.h.565.5 40 44.35 even 10
968.2.o.h.565.9 40 88.35 even 10
2816.2.a.o.1.1 5 16.3 odd 4
2816.2.a.p.1.5 5 16.13 even 4
2816.2.a.q.1.1 5 16.5 even 4
2816.2.a.r.1.5 5 16.11 odd 4
3168.2.f.g.1585.1 10 24.5 odd 2
3168.2.f.g.1585.10 10 3.2 odd 2
3872.2.c.f.1937.2 10 11.10 odd 2
3872.2.c.f.1937.9 10 88.21 odd 2