Properties

Label 3168.2.h.g.2287.6
Level $3168$
Weight $2$
Character 3168.2287
Analytic conductor $25.297$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3168,2,Mod(2287,3168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3168.2287");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.10070523904.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2287.6
Root \(-0.804019 + 1.16342i\) of defining polynomial
Character \(\chi\) \(=\) 3168.2287
Dual form 3168.2.h.g.2287.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575i q^{5} -2.27411 q^{7} +(-0.414214 + 3.29066i) q^{11} +5.49019 q^{13} -1.36303i q^{17} +3.29066i q^{19} -1.09591i q^{23} -2.00000 q^{25} +4.54822 q^{29} +6.38741i q^{31} -6.01673i q^{35} +10.1291i q^{37} -5.21828i q^{41} -9.30739i q^{43} -1.82843 q^{49} +7.48331i q^{53} +(-8.70626 - 1.09591i) q^{55} -5.24264 q^{59} +4.54822 q^{61} +14.5257i q^{65} -8.07107 q^{67} +1.09591i q^{71} +7.94435i q^{73} +(0.941967 - 7.48331i) q^{77} +6.43215 q^{79} -6.58132i q^{83} +3.60625 q^{85} -0.656854 q^{89} -12.4853 q^{91} -8.70626 q^{95} -9.48528 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{11} - 16 q^{25} + 8 q^{49} - 8 q^{59} - 8 q^{67} + 40 q^{89} - 32 q^{91} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.64575i 1.18322i 0.806226 + 0.591608i \(0.201507\pi\)
−0.806226 + 0.591608i \(0.798493\pi\)
\(6\) 0 0
\(7\) −2.27411 −0.859533 −0.429766 0.902940i \(-0.641404\pi\)
−0.429766 + 0.902940i \(0.641404\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.414214 + 3.29066i −0.124890 + 0.992171i
\(12\) 0 0
\(13\) 5.49019 1.52270 0.761352 0.648339i \(-0.224536\pi\)
0.761352 + 0.648339i \(0.224536\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.36303i 0.330585i −0.986245 0.165292i \(-0.947143\pi\)
0.986245 0.165292i \(-0.0528567\pi\)
\(18\) 0 0
\(19\) 3.29066i 0.754929i 0.926024 + 0.377464i \(0.123204\pi\)
−0.926024 + 0.377464i \(0.876796\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.09591i 0.228512i −0.993451 0.114256i \(-0.963552\pi\)
0.993451 0.114256i \(-0.0364484\pi\)
\(24\) 0 0
\(25\) −2.00000 −0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.54822 0.844583 0.422291 0.906460i \(-0.361226\pi\)
0.422291 + 0.906460i \(0.361226\pi\)
\(30\) 0 0
\(31\) 6.38741i 1.14721i 0.819131 + 0.573606i \(0.194456\pi\)
−0.819131 + 0.573606i \(0.805544\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.01673i 1.01701i
\(36\) 0 0
\(37\) 10.1291i 1.66521i 0.553869 + 0.832604i \(0.313151\pi\)
−0.553869 + 0.832604i \(0.686849\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.21828i 0.814958i −0.913214 0.407479i \(-0.866408\pi\)
0.913214 0.407479i \(-0.133592\pi\)
\(42\) 0 0
\(43\) 9.30739i 1.41936i −0.704523 0.709681i \(-0.748839\pi\)
0.704523 0.709681i \(-0.251161\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −1.82843 −0.261204
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.48331i 1.02791i 0.857816 + 0.513956i \(0.171821\pi\)
−0.857816 + 0.513956i \(0.828179\pi\)
\(54\) 0 0
\(55\) −8.70626 1.09591i −1.17395 0.147772i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.24264 −0.682534 −0.341267 0.939966i \(-0.610856\pi\)
−0.341267 + 0.939966i \(0.610856\pi\)
\(60\) 0 0
\(61\) 4.54822 0.582340 0.291170 0.956671i \(-0.405956\pi\)
0.291170 + 0.956671i \(0.405956\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14.5257i 1.80169i
\(66\) 0 0
\(67\) −8.07107 −0.986038 −0.493019 0.870019i \(-0.664107\pi\)
−0.493019 + 0.870019i \(0.664107\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.09591i 0.130060i 0.997883 + 0.0650301i \(0.0207143\pi\)
−0.997883 + 0.0650301i \(0.979286\pi\)
\(72\) 0 0
\(73\) 7.94435i 0.929816i 0.885359 + 0.464908i \(0.153913\pi\)
−0.885359 + 0.464908i \(0.846087\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.941967 7.48331i 0.107347 0.852803i
\(78\) 0 0
\(79\) 6.43215 0.723674 0.361837 0.932241i \(-0.382150\pi\)
0.361837 + 0.932241i \(0.382150\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.58132i 0.722393i −0.932490 0.361197i \(-0.882368\pi\)
0.932490 0.361197i \(-0.117632\pi\)
\(84\) 0 0
\(85\) 3.60625 0.391153
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.656854 −0.0696264 −0.0348132 0.999394i \(-0.511084\pi\)
−0.0348132 + 0.999394i \(0.511084\pi\)
\(90\) 0 0
\(91\) −12.4853 −1.30881
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.70626 −0.893244
\(96\) 0 0
\(97\) −9.48528 −0.963084 −0.481542 0.876423i \(-0.659923\pi\)
−0.481542 + 0.876423i \(0.659923\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.37412 −0.733752 −0.366876 0.930270i \(-0.619573\pi\)
−0.366876 + 0.930270i \(0.619573\pi\)
\(102\) 0 0
\(103\) 3.09969i 0.305422i 0.988271 + 0.152711i \(0.0488003\pi\)
−0.988271 + 0.152711i \(0.951200\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.01673i 0.581659i 0.956775 + 0.290830i \(0.0939312\pi\)
−0.956775 + 0.290830i \(0.906069\pi\)
\(108\) 0 0
\(109\) −10.9804 −1.05173 −0.525864 0.850568i \(-0.676258\pi\)
−0.525864 + 0.850568i \(0.676258\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.8284 −1.11272 −0.556362 0.830940i \(-0.687803\pi\)
−0.556362 + 0.830940i \(0.687803\pi\)
\(114\) 0 0
\(115\) 2.89949 0.270379
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.09969i 0.284148i
\(120\) 0 0
\(121\) −10.6569 2.72607i −0.968805 0.247825i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.93725i 0.709930i
\(126\) 0 0
\(127\) −13.2545 −1.17614 −0.588072 0.808808i \(-0.700113\pi\)
−0.588072 + 0.808808i \(0.700113\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.87197i 0.862518i 0.902228 + 0.431259i \(0.141931\pi\)
−0.902228 + 0.431259i \(0.858069\pi\)
\(132\) 0 0
\(133\) 7.48331i 0.648886i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.65685 −0.226990 −0.113495 0.993539i \(-0.536205\pi\)
−0.113495 + 0.993539i \(0.536205\pi\)
\(138\) 0 0
\(139\) 8.74280i 0.741554i 0.928722 + 0.370777i \(0.120909\pi\)
−0.928722 + 0.370777i \(0.879091\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.27411 + 18.0663i −0.190171 + 1.51078i
\(144\) 0 0
\(145\) 12.0335i 0.999324i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.15447 0.668040 0.334020 0.942566i \(-0.391595\pi\)
0.334020 + 0.942566i \(0.391595\pi\)
\(150\) 0 0
\(151\) 9.09644 0.740258 0.370129 0.928980i \(-0.379314\pi\)
0.370129 + 0.928980i \(0.379314\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.8995 −1.35740
\(156\) 0 0
\(157\) 15.4206i 1.23070i −0.788256 0.615348i \(-0.789016\pi\)
0.788256 0.615348i \(-0.210984\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.49221i 0.196414i
\(162\) 0 0
\(163\) 7.17157 0.561721 0.280860 0.959749i \(-0.409380\pi\)
0.280860 + 0.959749i \(0.409380\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.5902 −0.819494 −0.409747 0.912199i \(-0.634383\pi\)
−0.409747 + 0.912199i \(0.634383\pi\)
\(168\) 0 0
\(169\) 17.1421 1.31863
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 21.9607 1.66964 0.834822 0.550520i \(-0.185570\pi\)
0.834822 + 0.550520i \(0.185570\pi\)
\(174\) 0 0
\(175\) 4.54822 0.343813
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.7279 −1.17556 −0.587780 0.809021i \(-0.699998\pi\)
−0.587780 + 0.809021i \(0.699998\pi\)
\(180\) 0 0
\(181\) 2.64575i 0.196657i 0.995154 + 0.0983286i \(0.0313496\pi\)
−0.995154 + 0.0983286i \(0.968650\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −26.7990 −1.97030
\(186\) 0 0
\(187\) 4.48528 + 0.564588i 0.327996 + 0.0412867i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.48710i 0.686462i 0.939251 + 0.343231i \(0.111521\pi\)
−0.939251 + 0.343231i \(0.888479\pi\)
\(192\) 0 0
\(193\) 18.6148i 1.33992i −0.742397 0.669960i \(-0.766311\pi\)
0.742397 0.669960i \(-0.233689\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −20.0768 −1.43041 −0.715207 0.698913i \(-0.753667\pi\)
−0.715207 + 0.698913i \(0.753667\pi\)
\(198\) 0 0
\(199\) 21.1660i 1.50042i −0.661200 0.750209i \(-0.729953\pi\)
0.661200 0.750209i \(-0.270047\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −10.3431 −0.725947
\(204\) 0 0
\(205\) 13.8063 0.964272
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.8284 1.36303i −0.749018 0.0942831i
\(210\) 0 0
\(211\) 13.1626i 0.906153i 0.891472 + 0.453076i \(0.149674\pi\)
−0.891472 + 0.453076i \(0.850326\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 24.6250 1.67941
\(216\) 0 0
\(217\) 14.5257i 0.986066i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.48331i 0.503382i
\(222\) 0 0
\(223\) 11.6789i 0.782078i 0.920374 + 0.391039i \(0.127884\pi\)
−0.920374 + 0.391039i \(0.872116\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.564588i 0.0374730i 0.999824 + 0.0187365i \(0.00596436\pi\)
−0.999824 + 0.0187365i \(0.994036\pi\)
\(228\) 0 0
\(229\) 4.83756i 0.319675i 0.987143 + 0.159838i \(0.0510971\pi\)
−0.987143 + 0.159838i \(0.948903\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 25.1961i 1.65065i −0.564658 0.825325i \(-0.690992\pi\)
0.564658 0.825325i \(-0.309008\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 21.9607 1.42052 0.710261 0.703938i \(-0.248577\pi\)
0.710261 + 0.703938i \(0.248577\pi\)
\(240\) 0 0
\(241\) 6.58132i 0.423940i 0.977276 + 0.211970i \(0.0679879\pi\)
−0.977276 + 0.211970i \(0.932012\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.83756i 0.309061i
\(246\) 0 0
\(247\) 18.0663i 1.14953i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.5858 0.983766 0.491883 0.870661i \(-0.336309\pi\)
0.491883 + 0.870661i \(0.336309\pi\)
\(252\) 0 0
\(253\) 3.60625 + 0.453939i 0.226723 + 0.0285389i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.4853 0.654054 0.327027 0.945015i \(-0.393953\pi\)
0.327027 + 0.945015i \(0.393953\pi\)
\(258\) 0 0
\(259\) 23.0346i 1.43130i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.390175 −0.0240592 −0.0120296 0.999928i \(-0.503829\pi\)
−0.0120296 + 0.999928i \(0.503829\pi\)
\(264\) 0 0
\(265\) −19.7990 −1.21624
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 28.6493i 1.74678i 0.487021 + 0.873390i \(0.338083\pi\)
−0.487021 + 0.873390i \(0.661917\pi\)
\(270\) 0 0
\(271\) 4.15804 0.252583 0.126292 0.991993i \(-0.459693\pi\)
0.126292 + 0.991993i \(0.459693\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.828427 6.58132i 0.0499560 0.396868i
\(276\) 0 0
\(277\) −15.5286 −0.933023 −0.466511 0.884515i \(-0.654489\pi\)
−0.466511 + 0.884515i \(0.654489\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.30739i 0.555232i 0.960692 + 0.277616i \(0.0895443\pi\)
−0.960692 + 0.277616i \(0.910456\pi\)
\(282\) 0 0
\(283\) 15.8887i 0.944485i −0.881469 0.472243i \(-0.843445\pi\)
0.881469 0.472243i \(-0.156555\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.8669i 0.700483i
\(288\) 0 0
\(289\) 15.1421 0.890714
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.60625 −0.210679 −0.105340 0.994436i \(-0.533593\pi\)
−0.105340 + 0.994436i \(0.533593\pi\)
\(294\) 0 0
\(295\) 13.8707i 0.807585i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.01673i 0.347956i
\(300\) 0 0
\(301\) 21.1660i 1.21999i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.0335i 0.689034i
\(306\) 0 0
\(307\) 13.7272i 0.783454i 0.920082 + 0.391727i \(0.128122\pi\)
−0.920082 + 0.391727i \(0.871878\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 14.9666i 0.848680i 0.905503 + 0.424340i \(0.139494\pi\)
−0.905503 + 0.424340i \(0.860506\pi\)
\(312\) 0 0
\(313\) 2.17157 0.122745 0.0613723 0.998115i \(-0.480452\pi\)
0.0613723 + 0.998115i \(0.480452\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.453939i 0.0254958i −0.999919 0.0127479i \(-0.995942\pi\)
0.999919 0.0127479i \(-0.00405789\pi\)
\(318\) 0 0
\(319\) −1.88393 + 14.9666i −0.105480 + 0.837970i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.48528 0.249568
\(324\) 0 0
\(325\) −10.9804 −0.609081
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.92893 0.215954 0.107977 0.994153i \(-0.465563\pi\)
0.107977 + 0.994153i \(0.465563\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 21.3540i 1.16670i
\(336\) 0 0
\(337\) 18.3809i 1.00127i 0.865658 + 0.500636i \(0.166900\pi\)
−0.865658 + 0.500636i \(0.833100\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −21.0188 2.64575i −1.13823 0.143275i
\(342\) 0 0
\(343\) 20.0768 1.08405
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.5980i 0.676298i 0.941093 + 0.338149i \(0.109801\pi\)
−0.941093 + 0.338149i \(0.890199\pi\)
\(348\) 0 0
\(349\) −3.60625 −0.193038 −0.0965191 0.995331i \(-0.530771\pi\)
−0.0965191 + 0.995331i \(0.530771\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.82843 0.203767 0.101883 0.994796i \(-0.467513\pi\)
0.101883 + 0.994796i \(0.467513\pi\)
\(354\) 0 0
\(355\) −2.89949 −0.153889
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.27411 −0.120023 −0.0600114 0.998198i \(-0.519114\pi\)
−0.0600114 + 0.998198i \(0.519114\pi\)
\(360\) 0 0
\(361\) 8.17157 0.430083
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −21.0188 −1.10017
\(366\) 0 0
\(367\) 14.7786i 0.771437i −0.922617 0.385718i \(-0.873954\pi\)
0.922617 0.385718i \(-0.126046\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 17.0179i 0.883524i
\(372\) 0 0
\(373\) −31.9991 −1.65685 −0.828426 0.560098i \(-0.810764\pi\)
−0.828426 + 0.560098i \(0.810764\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.9706 1.28605
\(378\) 0 0
\(379\) 1.92893 0.0990826 0.0495413 0.998772i \(-0.484224\pi\)
0.0495413 + 0.998772i \(0.484224\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 29.7452i 1.51991i −0.649976 0.759955i \(-0.725221\pi\)
0.649976 0.759955i \(-0.274779\pi\)
\(384\) 0 0
\(385\) 19.7990 + 2.49221i 1.00905 + 0.127015i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.2875i 1.38353i 0.722122 + 0.691766i \(0.243167\pi\)
−0.722122 + 0.691766i \(0.756833\pi\)
\(390\) 0 0
\(391\) −1.49376 −0.0755426
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 17.0179i 0.856262i
\(396\) 0 0
\(397\) 22.4499i 1.12673i 0.826208 + 0.563365i \(0.190494\pi\)
−0.826208 + 0.563365i \(0.809506\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.828427 −0.0413697 −0.0206848 0.999786i \(-0.506585\pi\)
−0.0206848 + 0.999786i \(0.506585\pi\)
\(402\) 0 0
\(403\) 35.0681i 1.74686i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −33.3313 4.19560i −1.65217 0.207968i
\(408\) 0 0
\(409\) 15.8887i 0.785646i −0.919614 0.392823i \(-0.871499\pi\)
0.919614 0.392823i \(-0.128501\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.9223 0.586660
\(414\) 0 0
\(415\) 17.4125 0.854747
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.1421 −0.593182 −0.296591 0.955005i \(-0.595850\pi\)
−0.296591 + 0.955005i \(0.595850\pi\)
\(420\) 0 0
\(421\) 7.48331i 0.364714i −0.983232 0.182357i \(-0.941627\pi\)
0.983232 0.182357i \(-0.0583727\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.72607i 0.132234i
\(426\) 0 0
\(427\) −10.3431 −0.500540
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.2349 1.16735 0.583676 0.811987i \(-0.301614\pi\)
0.583676 + 0.811987i \(0.301614\pi\)
\(432\) 0 0
\(433\) −28.6569 −1.37716 −0.688580 0.725160i \(-0.741766\pi\)
−0.688580 + 0.725160i \(0.741766\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.60625 0.172510
\(438\) 0 0
\(439\) 14.7482 0.703895 0.351948 0.936020i \(-0.385520\pi\)
0.351948 + 0.936020i \(0.385520\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 23.5858 1.12059 0.560297 0.828292i \(-0.310687\pi\)
0.560297 + 0.828292i \(0.310687\pi\)
\(444\) 0 0
\(445\) 1.73787i 0.0823831i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.9706 0.848083 0.424042 0.905643i \(-0.360611\pi\)
0.424042 + 0.905643i \(0.360611\pi\)
\(450\) 0 0
\(451\) 17.1716 + 2.16148i 0.808578 + 0.101780i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 33.0329i 1.54861i
\(456\) 0 0
\(457\) 32.9066i 1.53930i −0.638463 0.769652i \(-0.720430\pi\)
0.638463 0.769652i \(-0.279570\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.5286 0.723239 0.361619 0.932326i \(-0.382224\pi\)
0.361619 + 0.932326i \(0.382224\pi\)
\(462\) 0 0
\(463\) 14.7786i 0.686820i 0.939186 + 0.343410i \(0.111582\pi\)
−0.939186 + 0.343410i \(0.888418\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.9289 1.01475 0.507375 0.861725i \(-0.330616\pi\)
0.507375 + 0.861725i \(0.330616\pi\)
\(468\) 0 0
\(469\) 18.3545 0.847532
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 30.6274 + 3.85525i 1.40825 + 0.177264i
\(474\) 0 0
\(475\) 6.58132i 0.301971i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −32.5509 −1.48729 −0.743645 0.668575i \(-0.766905\pi\)
−0.743645 + 0.668575i \(0.766905\pi\)
\(480\) 0 0
\(481\) 55.6105i 2.53562i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 25.0957i 1.13954i
\(486\) 0 0
\(487\) 10.7710i 0.488082i 0.969765 + 0.244041i \(0.0784732\pi\)
−0.969765 + 0.244041i \(0.921527\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 37.2295i 1.68015i 0.542474 + 0.840073i \(0.317488\pi\)
−0.542474 + 0.840073i \(0.682512\pi\)
\(492\) 0 0
\(493\) 6.19938i 0.279206i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.49221i 0.111791i
\(498\) 0 0
\(499\) −1.51472 −0.0678081 −0.0339041 0.999425i \(-0.510794\pi\)
−0.0339041 + 0.999425i \(0.510794\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.5286 0.692386 0.346193 0.938163i \(-0.387474\pi\)
0.346193 + 0.938163i \(0.387474\pi\)
\(504\) 0 0
\(505\) 19.5101i 0.868187i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.22119i 0.408722i −0.978896 0.204361i \(-0.934488\pi\)
0.978896 0.204361i \(-0.0655116\pi\)
\(510\) 0 0
\(511\) 18.0663i 0.799207i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.20101 −0.361380
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −42.1127 −1.84499 −0.922495 0.386008i \(-0.873854\pi\)
−0.922495 + 0.386008i \(0.873854\pi\)
\(522\) 0 0
\(523\) 31.2128i 1.36484i −0.730960 0.682421i \(-0.760927\pi\)
0.730960 0.682421i \(-0.239073\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.70626 0.379251
\(528\) 0 0
\(529\) 21.7990 0.947782
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.6493i 1.24094i
\(534\) 0 0
\(535\) −15.9188 −0.688228
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.757359 6.01673i 0.0326218 0.259159i
\(540\) 0 0
\(541\) −7.37412 −0.317038 −0.158519 0.987356i \(-0.550672\pi\)
−0.158519 + 0.987356i \(0.550672\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 29.0513i 1.24442i
\(546\) 0 0
\(547\) 33.3743i 1.42698i 0.700664 + 0.713491i \(0.252887\pi\)
−0.700664 + 0.713491i \(0.747113\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14.9666i 0.637600i
\(552\) 0 0
\(553\) −14.6274 −0.622021
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.82590 0.119737 0.0598686 0.998206i \(-0.480932\pi\)
0.0598686 + 0.998206i \(0.480932\pi\)
\(558\) 0 0
\(559\) 51.0993i 2.16127i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 35.6326i 1.50174i −0.660452 0.750868i \(-0.729635\pi\)
0.660452 0.750868i \(-0.270365\pi\)
\(564\) 0 0
\(565\) 31.2951i 1.31659i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.4700i 0.941992i −0.882135 0.470996i \(-0.843895\pi\)
0.882135 0.470996i \(-0.156105\pi\)
\(570\) 0 0
\(571\) 5.45214i 0.228165i −0.993471 0.114082i \(-0.963607\pi\)
0.993471 0.114082i \(-0.0363928\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.19181i 0.0914049i
\(576\) 0 0
\(577\) 13.6274 0.567317 0.283658 0.958925i \(-0.408452\pi\)
0.283658 + 0.958925i \(0.408452\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 14.9666i 0.620920i
\(582\) 0 0
\(583\) −24.6250 3.09969i −1.01986 0.128376i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26.2843 1.08487 0.542434 0.840098i \(-0.317503\pi\)
0.542434 + 0.840098i \(0.317503\pi\)
\(588\) 0 0
\(589\) −21.0188 −0.866064
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.8887i 0.652471i 0.945289 + 0.326235i \(0.105780\pi\)
−0.945289 + 0.326235i \(0.894220\pi\)
\(594\) 0 0
\(595\) −8.20101 −0.336209
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 38.1249i 1.55515i −0.628793 0.777573i \(-0.716451\pi\)
0.628793 0.777573i \(-0.283549\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.21250 28.1954i 0.293230 1.14631i
\(606\) 0 0
\(607\) 7.21250 0.292746 0.146373 0.989229i \(-0.453240\pi\)
0.146373 + 0.989229i \(0.453240\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 45.8054 1.85006 0.925032 0.379890i \(-0.124038\pi\)
0.925032 + 0.379890i \(0.124038\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.1127 1.17203 0.586017 0.810299i \(-0.300695\pi\)
0.586017 + 0.810299i \(0.300695\pi\)
\(618\) 0 0
\(619\) 33.5269 1.34756 0.673780 0.738932i \(-0.264669\pi\)
0.673780 + 0.738932i \(0.264669\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.49376 0.0598462
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.8063 0.550492
\(630\) 0 0
\(631\) 4.19560i 0.167024i 0.996507 + 0.0835120i \(0.0266137\pi\)
−0.996507 + 0.0835120i \(0.973386\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 35.0681i 1.39163i
\(636\) 0 0
\(637\) −10.0384 −0.397736
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.1716 0.480748 0.240374 0.970680i \(-0.422730\pi\)
0.240374 + 0.970680i \(0.422730\pi\)
\(642\) 0 0
\(643\) −37.3848 −1.47431 −0.737156 0.675723i \(-0.763832\pi\)
−0.737156 + 0.675723i \(0.763832\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.8374i 1.13371i −0.823816 0.566857i \(-0.808159\pi\)
0.823816 0.566857i \(-0.191841\pi\)
\(648\) 0 0
\(649\) 2.17157 17.2517i 0.0852417 0.677190i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21.6199i 0.846054i −0.906117 0.423027i \(-0.860968\pi\)
0.906117 0.423027i \(-0.139032\pi\)
\(654\) 0 0
\(655\) −26.1188 −1.02055
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.72607i 0.106193i −0.998589 0.0530963i \(-0.983091\pi\)
0.998589 0.0530963i \(-0.0169090\pi\)
\(660\) 0 0
\(661\) 17.6124i 0.685042i −0.939510 0.342521i \(-0.888719\pi\)
0.939510 0.342521i \(-0.111281\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 19.7990 0.767772
\(666\) 0 0
\(667\) 4.98442i 0.192998i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.88393 + 14.9666i −0.0727285 + 0.577780i
\(672\) 0 0
\(673\) 36.7618i 1.41706i 0.705679 + 0.708532i \(0.250642\pi\)
−0.705679 + 0.708532i \(0.749358\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.0188 0.807817 0.403909 0.914799i \(-0.367651\pi\)
0.403909 + 0.914799i \(0.367651\pi\)
\(678\) 0 0
\(679\) 21.5706 0.827802
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 48.4264 1.85298 0.926492 0.376313i \(-0.122808\pi\)
0.926492 + 0.376313i \(0.122808\pi\)
\(684\) 0 0
\(685\) 7.02938i 0.268579i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 41.0848i 1.56521i
\(690\) 0 0
\(691\) 17.2426 0.655941 0.327970 0.944688i \(-0.393635\pi\)
0.327970 + 0.944688i \(0.393635\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −23.1313 −0.877419
\(696\) 0 0
\(697\) −7.11270 −0.269413
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −50.1920 −1.89573 −0.947863 0.318677i \(-0.896761\pi\)
−0.947863 + 0.318677i \(0.896761\pi\)
\(702\) 0 0
\(703\) −33.3313 −1.25711
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.7696 0.630684
\(708\) 0 0
\(709\) 1.36182i 0.0511441i −0.999673 0.0255721i \(-0.991859\pi\)
0.999673 0.0255721i \(-0.00814073\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.00000 0.262152
\(714\) 0 0
\(715\) −47.7990 6.01673i −1.78758 0.225013i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 42.5200i 1.58573i −0.609397 0.792865i \(-0.708588\pi\)
0.609397 0.792865i \(-0.291412\pi\)
\(720\) 0 0
\(721\) 7.04903i 0.262520i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.09644 −0.337833
\(726\) 0 0
\(727\) 13.8707i 0.514437i 0.966353 + 0.257218i \(0.0828060\pi\)
−0.966353 + 0.257218i \(0.917194\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.6863 −0.469219
\(732\) 0 0
\(733\) 44.7018 1.65110 0.825550 0.564329i \(-0.190865\pi\)
0.825550 + 0.564329i \(0.190865\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.34315 26.5591i 0.123146 0.978318i
\(738\) 0 0
\(739\) 42.6817i 1.57007i −0.619451 0.785035i \(-0.712645\pi\)
0.619451 0.785035i \(-0.287355\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.31609 0.305088 0.152544 0.988297i \(-0.451253\pi\)
0.152544 + 0.988297i \(0.451253\pi\)
\(744\) 0 0
\(745\) 21.5747i 0.790436i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13.6827i 0.499955i
\(750\) 0 0
\(751\) 29.7452i 1.08542i 0.839921 + 0.542709i \(0.182602\pi\)
−0.839921 + 0.542709i \(0.817398\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 24.0669i 0.875885i
\(756\) 0 0
\(757\) 13.6827i 0.497306i 0.968593 + 0.248653i \(0.0799879\pi\)
−0.968593 + 0.248653i \(0.920012\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.2517i 0.625375i 0.949856 + 0.312687i \(0.101229\pi\)
−0.949856 + 0.312687i \(0.898771\pi\)
\(762\) 0 0
\(763\) 24.9706 0.903995
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −28.7831 −1.03930
\(768\) 0 0
\(769\) 23.8331i 0.859442i 0.902962 + 0.429721i \(0.141388\pi\)
−0.902962 + 0.429721i \(0.858612\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 51.0993i 1.83791i −0.394359 0.918956i \(-0.629033\pi\)
0.394359 0.918956i \(-0.370967\pi\)
\(774\) 0 0
\(775\) 12.7748i 0.458885i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 17.1716 0.615235
\(780\) 0 0
\(781\) −3.60625 0.453939i −0.129042 0.0162432i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 40.7990 1.45618
\(786\) 0 0
\(787\) 8.17821i 0.291522i −0.989320 0.145761i \(-0.953437\pi\)
0.989320 0.145761i \(-0.0465630\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 26.8991 0.956423
\(792\) 0 0
\(793\) 24.9706 0.886731
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.1366i 0.500745i −0.968150 0.250373i \(-0.919447\pi\)
0.968150 0.250373i \(-0.0805531\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −26.1421 3.29066i −0.922536 0.116125i
\(804\) 0 0
\(805\) −6.59377 −0.232400
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7.94435i 0.279308i −0.990200 0.139654i \(-0.955401\pi\)
0.990200 0.139654i \(-0.0445991\pi\)
\(810\) 0 0
\(811\) 47.6661i 1.67378i 0.547369 + 0.836892i \(0.315630\pi\)
−0.547369 + 0.836892i \(0.684370\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18.9742i 0.664637i
\(816\) 0 0
\(817\) 30.6274 1.07152
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 23.8447 0.832185 0.416092 0.909322i \(-0.363399\pi\)
0.416092 + 0.909322i \(0.363399\pi\)
\(822\) 0 0
\(823\) 43.4279i 1.51380i 0.653529 + 0.756901i \(0.273288\pi\)
−0.653529 + 0.756901i \(0.726712\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.03231i 0.0358968i 0.999839 + 0.0179484i \(0.00571347\pi\)
−0.999839 + 0.0179484i \(0.994287\pi\)
\(828\) 0 0
\(829\) 26.9115i 0.934673i −0.884079 0.467337i \(-0.845214\pi\)
0.884079 0.467337i \(-0.154786\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.49221i 0.0863500i
\(834\) 0 0
\(835\) 28.0190i 0.969638i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 27.9295i 0.964233i 0.876107 + 0.482116i \(0.160132\pi\)
−0.876107 + 0.482116i \(0.839868\pi\)
\(840\) 0 0
\(841\) −8.31371 −0.286680
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 45.3538i 1.56022i
\(846\) 0 0
\(847\) 24.2349 + 6.19938i 0.832719 + 0.213013i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.1005 0.380520
\(852\) 0 0
\(853\) 14.4250 0.493903 0.246951 0.969028i \(-0.420571\pi\)
0.246951 + 0.969028i \(0.420571\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.45214i 0.186242i 0.995655 + 0.0931208i \(0.0296843\pi\)
−0.995655 + 0.0931208i \(0.970316\pi\)
\(858\) 0 0
\(859\) 40.7574 1.39062 0.695312 0.718708i \(-0.255266\pi\)
0.695312 + 0.718708i \(0.255266\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14.9666i 0.509470i 0.967011 + 0.254735i \(0.0819882\pi\)
−0.967011 + 0.254735i \(0.918012\pi\)
\(864\) 0 0
\(865\) 58.1027i 1.97555i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.66428 + 21.1660i −0.0903797 + 0.718008i
\(870\) 0 0
\(871\) −44.3117 −1.50144
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 18.0502i 0.610208i
\(876\) 0 0
\(877\) 24.7866 0.836985 0.418493 0.908220i \(-0.362559\pi\)
0.418493 + 0.908220i \(0.362559\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23.4853 −0.791239 −0.395620 0.918414i \(-0.629470\pi\)
−0.395620 + 0.918414i \(0.629470\pi\)
\(882\) 0 0
\(883\) 15.6569 0.526895 0.263448 0.964674i \(-0.415140\pi\)
0.263448 + 0.964674i \(0.415140\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32.1608 1.07985 0.539926 0.841712i \(-0.318452\pi\)
0.539926 + 0.841712i \(0.318452\pi\)
\(888\) 0 0
\(889\) 30.1421 1.01093
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 41.6122i 1.39094i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 29.0513i 0.968916i
\(900\) 0 0
\(901\) 10.2000 0.339812
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.00000 −0.232688
\(906\) 0 0
\(907\) 50.4853 1.67634 0.838168 0.545412i \(-0.183627\pi\)
0.838168 + 0.545412i \(0.183627\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 44.8999i 1.48760i −0.668402 0.743800i \(-0.733022\pi\)
0.668402 0.743800i \(-0.266978\pi\)
\(912\) 0 0
\(913\) 21.6569 + 2.72607i 0.716737 + 0.0902197i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 22.4499i 0.741362i
\(918\) 0 0
\(919\) −29.1732 −0.962337 −0.481168 0.876628i \(-0.659787\pi\)
−0.481168 + 0.876628i \(0.659787\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.01673i 0.198043i
\(924\) 0 0
\(925\) 20.2581i 0.666083i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −17.5147 −0.574639 −0.287320 0.957835i \(-0.592764\pi\)
−0.287320 + 0.957835i \(0.592764\pi\)
\(930\) 0 0
\(931\) 6.01673i 0.197190i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.49376 + 11.8669i −0.0488511 + 0.388090i
\(936\) 0 0
\(937\) 40.8509i 1.33454i −0.744815 0.667271i \(-0.767462\pi\)
0.744815 0.667271i \(-0.232538\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −28.3929 −0.925582 −0.462791 0.886467i \(-0.653152\pi\)
−0.462791 + 0.886467i \(0.653152\pi\)
\(942\) 0 0
\(943\) −5.71874 −0.186228
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.5858 0.701444 0.350722 0.936480i \(-0.385936\pi\)
0.350722 + 0.936480i \(0.385936\pi\)
\(948\) 0 0
\(949\) 43.6160i 1.41583i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.34746i 0.205614i −0.994701 0.102807i \(-0.967218\pi\)
0.994701 0.102807i \(-0.0327824\pi\)
\(954\) 0 0
\(955\) −25.1005 −0.812233
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.04198 0.195106
\(960\) 0 0
\(961\) −9.79899 −0.316096
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 49.2501 1.58542
\(966\) 0 0
\(967\) 15.5286 0.499366 0.249683 0.968328i \(-0.419674\pi\)
0.249683 + 0.968328i \(0.419674\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −54.8406 −1.75992 −0.879960 0.475048i \(-0.842431\pi\)
−0.879960 + 0.475048i \(0.842431\pi\)
\(972\) 0 0
\(973\) 19.8821i 0.637390i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.372583 0.0119200 0.00595999 0.999982i \(-0.498103\pi\)
0.00595999 + 0.999982i \(0.498103\pi\)
\(978\) 0 0
\(979\) 0.272078 2.16148i 0.00869565 0.0690813i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 40.3282i 1.28627i 0.765752 + 0.643135i \(0.222367\pi\)
−0.765752 + 0.643135i \(0.777633\pi\)
\(984\) 0 0
\(985\) 53.1182i 1.69249i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.2000 −0.324342
\(990\) 0 0
\(991\) 29.9333i 0.950861i 0.879753 + 0.475431i \(0.157708\pi\)
−0.879753 + 0.475431i \(0.842292\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 56.0000 1.77532
\(996\) 0 0
\(997\) 6.59377 0.208827 0.104413 0.994534i \(-0.466704\pi\)
0.104413 + 0.994534i \(0.466704\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.h.g.2287.6 8
3.2 odd 2 352.2.g.b.175.5 8
4.3 odd 2 792.2.h.g.307.4 8
8.3 odd 2 inner 3168.2.h.g.2287.3 8
8.5 even 2 792.2.h.g.307.6 8
11.10 odd 2 inner 3168.2.h.g.2287.7 8
12.11 even 2 88.2.g.b.43.5 yes 8
24.5 odd 2 88.2.g.b.43.3 8
24.11 even 2 352.2.g.b.175.8 8
33.32 even 2 352.2.g.b.175.6 8
44.43 even 2 792.2.h.g.307.5 8
48.5 odd 4 2816.2.e.o.2815.4 16
48.11 even 4 2816.2.e.o.2815.15 16
48.29 odd 4 2816.2.e.o.2815.14 16
48.35 even 4 2816.2.e.o.2815.1 16
88.21 odd 2 792.2.h.g.307.3 8
88.43 even 2 inner 3168.2.h.g.2287.2 8
132.35 odd 10 968.2.k.g.403.7 32
132.47 even 10 968.2.k.g.475.3 32
132.59 even 10 968.2.k.g.699.8 32
132.71 even 10 968.2.k.g.723.5 32
132.83 odd 10 968.2.k.g.723.4 32
132.95 odd 10 968.2.k.g.699.1 32
132.107 odd 10 968.2.k.g.475.6 32
132.119 even 10 968.2.k.g.403.2 32
132.131 odd 2 88.2.g.b.43.4 yes 8
264.5 odd 10 968.2.k.g.723.7 32
264.29 even 10 968.2.k.g.699.3 32
264.53 odd 10 968.2.k.g.403.4 32
264.101 even 10 968.2.k.g.403.5 32
264.125 odd 10 968.2.k.g.699.6 32
264.131 odd 2 352.2.g.b.175.7 8
264.149 even 10 968.2.k.g.723.2 32
264.173 even 10 968.2.k.g.475.8 32
264.197 even 2 88.2.g.b.43.6 yes 8
264.245 odd 10 968.2.k.g.475.1 32
528.131 odd 4 2816.2.e.o.2815.2 16
528.197 even 4 2816.2.e.o.2815.3 16
528.395 odd 4 2816.2.e.o.2815.16 16
528.461 even 4 2816.2.e.o.2815.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.g.b.43.3 8 24.5 odd 2
88.2.g.b.43.4 yes 8 132.131 odd 2
88.2.g.b.43.5 yes 8 12.11 even 2
88.2.g.b.43.6 yes 8 264.197 even 2
352.2.g.b.175.5 8 3.2 odd 2
352.2.g.b.175.6 8 33.32 even 2
352.2.g.b.175.7 8 264.131 odd 2
352.2.g.b.175.8 8 24.11 even 2
792.2.h.g.307.3 8 88.21 odd 2
792.2.h.g.307.4 8 4.3 odd 2
792.2.h.g.307.5 8 44.43 even 2
792.2.h.g.307.6 8 8.5 even 2
968.2.k.g.403.2 32 132.119 even 10
968.2.k.g.403.4 32 264.53 odd 10
968.2.k.g.403.5 32 264.101 even 10
968.2.k.g.403.7 32 132.35 odd 10
968.2.k.g.475.1 32 264.245 odd 10
968.2.k.g.475.3 32 132.47 even 10
968.2.k.g.475.6 32 132.107 odd 10
968.2.k.g.475.8 32 264.173 even 10
968.2.k.g.699.1 32 132.95 odd 10
968.2.k.g.699.3 32 264.29 even 10
968.2.k.g.699.6 32 264.125 odd 10
968.2.k.g.699.8 32 132.59 even 10
968.2.k.g.723.2 32 264.149 even 10
968.2.k.g.723.4 32 132.83 odd 10
968.2.k.g.723.5 32 132.71 even 10
968.2.k.g.723.7 32 264.5 odd 10
2816.2.e.o.2815.1 16 48.35 even 4
2816.2.e.o.2815.2 16 528.131 odd 4
2816.2.e.o.2815.3 16 528.197 even 4
2816.2.e.o.2815.4 16 48.5 odd 4
2816.2.e.o.2815.13 16 528.461 even 4
2816.2.e.o.2815.14 16 48.29 odd 4
2816.2.e.o.2815.15 16 48.11 even 4
2816.2.e.o.2815.16 16 528.395 odd 4
3168.2.h.g.2287.2 8 88.43 even 2 inner
3168.2.h.g.2287.3 8 8.3 odd 2 inner
3168.2.h.g.2287.6 8 1.1 even 1 trivial
3168.2.h.g.2287.7 8 11.10 odd 2 inner