Properties

Label 2816.2.e.o.2815.13
Level 28162816
Weight 22
Character 2816.2815
Analytic conductor 22.48622.486
Analytic rank 00
Dimension 1616
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2816,2,Mod(2815,2816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2816.2815");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2816=2811 2816 = 2^{8} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2816.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.485873209222.4858732092
Analytic rank: 00
Dimension: 1616
Coefficient field: 16.0.1622647227216566419456.8
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x164x14+8x1244x10+161x888x6+32x432x2+16 x^{16} - 4x^{14} + 8x^{12} - 44x^{10} + 161x^{8} - 88x^{6} + 32x^{4} - 32x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 226 2^{26}
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 2815.13
Root 1.002371.55225i-1.00237 - 1.55225i of defining polynomial
Character χ\chi == 2816.2815
Dual form 2816.2.e.o.2815.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.41421iq32.64575q52.27411q72.82843q9+(3.290660.414214i)q115.49019iq136.38741iq151.36303iq17+3.29066q195.49019iq211.09591iq23+2.00000q25+0.414214iq27+4.54822iq29+6.38741iq31+(1.00000+7.94435i)q33+6.01673q35+10.1291q37+13.2545q39+5.21828iq41+9.30739q43+7.48331q451.82843q49+3.29066q517.48331q53+(8.70626+1.09591i)q55+7.94435iq575.24264iq594.54822iq61+6.43215q63+14.5257iq658.07107iq67+2.64575q69+1.09591iq71+7.94435iq73+4.82843iq75+(7.48331+0.941967i)q776.43215q799.48528q81+6.58132q83+3.60625iq8510.9804q870.656854q89+12.4853iq9115.4206q938.70626q959.48528q97+(9.30739+1.17157i)q99+O(q100)q+2.41421i q^{3} -2.64575 q^{5} -2.27411 q^{7} -2.82843 q^{9} +(3.29066 - 0.414214i) q^{11} -5.49019i q^{13} -6.38741i q^{15} -1.36303i q^{17} +3.29066 q^{19} -5.49019i q^{21} -1.09591i q^{23} +2.00000 q^{25} +0.414214i q^{27} +4.54822i q^{29} +6.38741i q^{31} +(1.00000 + 7.94435i) q^{33} +6.01673 q^{35} +10.1291 q^{37} +13.2545 q^{39} +5.21828i q^{41} +9.30739 q^{43} +7.48331 q^{45} -1.82843 q^{49} +3.29066 q^{51} -7.48331 q^{53} +(-8.70626 + 1.09591i) q^{55} +7.94435i q^{57} -5.24264i q^{59} -4.54822i q^{61} +6.43215 q^{63} +14.5257i q^{65} -8.07107i q^{67} +2.64575 q^{69} +1.09591i q^{71} +7.94435i q^{73} +4.82843i q^{75} +(-7.48331 + 0.941967i) q^{77} -6.43215 q^{79} -9.48528 q^{81} +6.58132 q^{83} +3.60625i q^{85} -10.9804 q^{87} -0.656854 q^{89} +12.4853i q^{91} -15.4206 q^{93} -8.70626 q^{95} -9.48528 q^{97} +(-9.30739 + 1.17157i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+32q25+16q33+16q4916q81+80q8916q97+O(q100) 16 q + 32 q^{25} + 16 q^{33} + 16 q^{49} - 16 q^{81} + 80 q^{89} - 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2816Z)×\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times.

nn 10251025 15411541 20472047
χ(n)\chi(n) 1-1 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.41421i 1.39385i 0.717146 + 0.696923i 0.245448π0.245448\pi
−0.717146 + 0.696923i 0.754552π0.754552\pi
44 0 0
55 −2.64575 −1.18322 −0.591608 0.806226i 0.701507π-0.701507\pi
−0.591608 + 0.806226i 0.701507π0.701507\pi
66 0 0
77 −2.27411 −0.859533 −0.429766 0.902940i 0.641404π-0.641404\pi
−0.429766 + 0.902940i 0.641404π0.641404\pi
88 0 0
99 −2.82843 −0.942809
1010 0 0
1111 3.29066 0.414214i 0.992171 0.124890i
1212 0 0
1313 5.49019i 1.52270i −0.648339 0.761352i 0.724536π-0.724536\pi
0.648339 0.761352i 0.275464π-0.275464\pi
1414 0 0
1515 6.38741i 1.64922i
1616 0 0
1717 1.36303i 0.330585i −0.986245 0.165292i 0.947143π-0.947143\pi
0.986245 0.165292i 0.0528567π-0.0528567\pi
1818 0 0
1919 3.29066 0.754929 0.377464 0.926024i 0.376796π-0.376796\pi
0.377464 + 0.926024i 0.376796π0.376796\pi
2020 0 0
2121 5.49019i 1.19806i
2222 0 0
2323 1.09591i 0.228512i −0.993451 0.114256i 0.963552π-0.963552\pi
0.993451 0.114256i 0.0364484π-0.0364484\pi
2424 0 0
2525 2.00000 0.400000
2626 0 0
2727 0.414214i 0.0797154i
2828 0 0
2929 4.54822i 0.844583i 0.906460 + 0.422291i 0.138774π0.138774\pi
−0.906460 + 0.422291i 0.861226π0.861226\pi
3030 0 0
3131 6.38741i 1.14721i 0.819131 + 0.573606i 0.194456π0.194456\pi
−0.819131 + 0.573606i 0.805544π0.805544\pi
3232 0 0
3333 1.00000 + 7.94435i 0.174078 + 1.38293i
3434 0 0
3535 6.01673 1.01701
3636 0 0
3737 10.1291 1.66521 0.832604 0.553869i 0.186849π-0.186849\pi
0.832604 + 0.553869i 0.186849π0.186849\pi
3838 0 0
3939 13.2545 2.12242
4040 0 0
4141 5.21828i 0.814958i 0.913214 + 0.407479i 0.133592π0.133592\pi
−0.913214 + 0.407479i 0.866408π0.866408\pi
4242 0 0
4343 9.30739 1.41936 0.709681 0.704523i 0.248839π-0.248839\pi
0.709681 + 0.704523i 0.248839π0.248839\pi
4444 0 0
4545 7.48331 1.11555
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −1.82843 −0.261204
5050 0 0
5151 3.29066 0.460784
5252 0 0
5353 −7.48331 −1.02791 −0.513956 0.857816i 0.671821π-0.671821\pi
−0.513956 + 0.857816i 0.671821π0.671821\pi
5454 0 0
5555 −8.70626 + 1.09591i −1.17395 + 0.147772i
5656 0 0
5757 7.94435i 1.05225i
5858 0 0
5959 5.24264i 0.682534i −0.939966 0.341267i 0.889144π-0.889144\pi
0.939966 0.341267i 0.110856π-0.110856\pi
6060 0 0
6161 4.54822i 0.582340i −0.956671 0.291170i 0.905956π-0.905956\pi
0.956671 0.291170i 0.0940445π-0.0940445\pi
6262 0 0
6363 6.43215 0.810375
6464 0 0
6565 14.5257i 1.80169i
6666 0 0
6767 8.07107i 0.986038i −0.870019 0.493019i 0.835893π-0.835893\pi
0.870019 0.493019i 0.164107π-0.164107\pi
6868 0 0
6969 2.64575 0.318511
7070 0 0
7171 1.09591i 0.130060i 0.997883 + 0.0650301i 0.0207143π0.0207143\pi
−0.997883 + 0.0650301i 0.979286π0.979286\pi
7272 0 0
7373 7.94435i 0.929816i 0.885359 + 0.464908i 0.153913π0.153913\pi
−0.885359 + 0.464908i 0.846087π0.846087\pi
7474 0 0
7575 4.82843i 0.557539i
7676 0 0
7777 −7.48331 + 0.941967i −0.852803 + 0.107347i
7878 0 0
7979 −6.43215 −0.723674 −0.361837 0.932241i 0.617850π-0.617850\pi
−0.361837 + 0.932241i 0.617850π0.617850\pi
8080 0 0
8181 −9.48528 −1.05392
8282 0 0
8383 6.58132 0.722393 0.361197 0.932490i 0.382368π-0.382368\pi
0.361197 + 0.932490i 0.382368π0.382368\pi
8484 0 0
8585 3.60625i 0.391153i
8686 0 0
8787 −10.9804 −1.17722
8888 0 0
8989 −0.656854 −0.0696264 −0.0348132 0.999394i 0.511084π-0.511084\pi
−0.0348132 + 0.999394i 0.511084π0.511084\pi
9090 0 0
9191 12.4853i 1.30881i
9292 0 0
9393 −15.4206 −1.59904
9494 0 0
9595 −8.70626 −0.893244
9696 0 0
9797 −9.48528 −0.963084 −0.481542 0.876423i 0.659923π-0.659923\pi
−0.481542 + 0.876423i 0.659923π0.659923\pi
9898 0 0
9999 −9.30739 + 1.17157i −0.935427 + 0.117748i
100100 0 0
101101 7.37412i 0.733752i 0.930270 + 0.366876i 0.119573π0.119573\pi
−0.930270 + 0.366876i 0.880427π0.880427\pi
102102 0 0
103103 3.09969i 0.305422i −0.988271 0.152711i 0.951200π-0.951200\pi
0.988271 0.152711i 0.0488003π-0.0488003\pi
104104 0 0
105105 14.5257i 1.41756i
106106 0 0
107107 6.01673 0.581659 0.290830 0.956775i 0.406069π-0.406069\pi
0.290830 + 0.956775i 0.406069π0.406069\pi
108108 0 0
109109 10.9804i 1.05173i 0.850568 + 0.525864i 0.176258π0.176258\pi
−0.850568 + 0.525864i 0.823742π0.823742\pi
110110 0 0
111111 24.4537i 2.32105i
112112 0 0
113113 11.8284 1.11272 0.556362 0.830940i 0.312197π-0.312197\pi
0.556362 + 0.830940i 0.312197π0.312197\pi
114114 0 0
115115 2.89949i 0.270379i
116116 0 0
117117 15.5286i 1.43562i
118118 0 0
119119 3.09969i 0.284148i
120120 0 0
121121 10.6569 2.72607i 0.968805 0.247825i
122122 0 0
123123 −12.5980 −1.13593
124124 0 0
125125 7.93725 0.709930
126126 0 0
127127 13.2545 1.17614 0.588072 0.808808i 0.299887π-0.299887\pi
0.588072 + 0.808808i 0.299887π0.299887\pi
128128 0 0
129129 22.4700i 1.97837i
130130 0 0
131131 −9.87197 −0.862518 −0.431259 0.902228i 0.641931π-0.641931\pi
−0.431259 + 0.902228i 0.641931π0.641931\pi
132132 0 0
133133 −7.48331 −0.648886
134134 0 0
135135 1.09591i 0.0943206i
136136 0 0
137137 −2.65685 −0.226990 −0.113495 0.993539i 0.536205π-0.536205\pi
−0.113495 + 0.993539i 0.536205π0.536205\pi
138138 0 0
139139 −8.74280 −0.741554 −0.370777 0.928722i 0.620909π-0.620909\pi
−0.370777 + 0.928722i 0.620909π0.620909\pi
140140 0 0
141141 0 0
142142 0 0
143143 −2.27411 18.0663i −0.190171 1.51078i
144144 0 0
145145 12.0335i 0.999324i
146146 0 0
147147 4.41421i 0.364078i
148148 0 0
149149 8.15447i 0.668040i −0.942566 0.334020i 0.891595π-0.891595\pi
0.942566 0.334020i 0.108405π-0.108405\pi
150150 0 0
151151 9.09644 0.740258 0.370129 0.928980i 0.379314π-0.379314\pi
0.370129 + 0.928980i 0.379314π0.379314\pi
152152 0 0
153153 3.85525i 0.311678i
154154 0 0
155155 16.8995i 1.35740i
156156 0 0
157157 15.4206 1.23070 0.615348 0.788256i 0.289016π-0.289016\pi
0.615348 + 0.788256i 0.289016π0.289016\pi
158158 0 0
159159 18.0663i 1.43275i
160160 0 0
161161 2.49221i 0.196414i
162162 0 0
163163 7.17157i 0.561721i 0.959749 + 0.280860i 0.0906198π0.0906198\pi
−0.959749 + 0.280860i 0.909380π0.909380\pi
164164 0 0
165165 −2.64575 21.0188i −0.205971 1.63631i
166166 0 0
167167 10.5902 0.819494 0.409747 0.912199i 0.365617π-0.365617\pi
0.409747 + 0.912199i 0.365617π0.365617\pi
168168 0 0
169169 −17.1421 −1.31863
170170 0 0
171171 −9.30739 −0.711754
172172 0 0
173173 21.9607i 1.66964i 0.550520 + 0.834822i 0.314430π0.314430\pi
−0.550520 + 0.834822i 0.685570π0.685570\pi
174174 0 0
175175 −4.54822 −0.343813
176176 0 0
177177 12.6569 0.951347
178178 0 0
179179 15.7279i 1.17556i 0.809021 + 0.587780i 0.199998π0.199998\pi
−0.809021 + 0.587780i 0.800002π0.800002\pi
180180 0 0
181181 2.64575 0.196657 0.0983286 0.995154i 0.468650π-0.468650\pi
0.0983286 + 0.995154i 0.468650π0.468650\pi
182182 0 0
183183 10.9804 0.811692
184184 0 0
185185 −26.7990 −1.97030
186186 0 0
187187 −0.564588 4.48528i −0.0412867 0.327996i
188188 0 0
189189 0.941967i 0.0685180i
190190 0 0
191191 9.48710i 0.686462i −0.939251 0.343231i 0.888479π-0.888479\pi
0.939251 0.343231i 0.111521π-0.111521\pi
192192 0 0
193193 18.6148i 1.33992i 0.742397 + 0.669960i 0.233689π0.233689\pi
−0.742397 + 0.669960i 0.766311π0.766311\pi
194194 0 0
195195 −35.0681 −2.51128
196196 0 0
197197 20.0768i 1.43041i 0.698913 + 0.715207i 0.253667π0.253667\pi
−0.698913 + 0.715207i 0.746333π0.746333\pi
198198 0 0
199199 21.1660i 1.50042i 0.661200 + 0.750209i 0.270047π0.270047\pi
−0.661200 + 0.750209i 0.729953π0.729953\pi
200200 0 0
201201 19.4853 1.37439
202202 0 0
203203 10.3431i 0.725947i
204204 0 0
205205 13.8063i 0.964272i
206206 0 0
207207 3.09969i 0.215443i
208208 0 0
209209 10.8284 1.36303i 0.749018 0.0942831i
210210 0 0
211211 13.1626 0.906153 0.453076 0.891472i 0.350326π-0.350326\pi
0.453076 + 0.891472i 0.350326π0.350326\pi
212212 0 0
213213 −2.64575 −0.181284
214214 0 0
215215 −24.6250 −1.67941
216216 0 0
217217 14.5257i 0.986066i
218218 0 0
219219 −19.1794 −1.29602
220220 0 0
221221 −7.48331 −0.503382
222222 0 0
223223 11.6789i 0.782078i 0.920374 + 0.391039i 0.127884π0.127884\pi
−0.920374 + 0.391039i 0.872116π0.872116\pi
224224 0 0
225225 −5.65685 −0.377124
226226 0 0
227227 −0.564588 −0.0374730 −0.0187365 0.999824i 0.505964π-0.505964\pi
−0.0187365 + 0.999824i 0.505964π0.505964\pi
228228 0 0
229229 4.83756 0.319675 0.159838 0.987143i 0.448903π-0.448903\pi
0.159838 + 0.987143i 0.448903π0.448903\pi
230230 0 0
231231 −2.27411 18.0663i −0.149625 1.18868i
232232 0 0
233233 25.1961i 1.65065i 0.564658 + 0.825325i 0.309008π0.309008\pi
−0.564658 + 0.825325i 0.690992π0.690992\pi
234234 0 0
235235 0 0
236236 0 0
237237 15.5286i 1.00869i
238238 0 0
239239 21.9607 1.42052 0.710261 0.703938i 0.248577π-0.248577\pi
0.710261 + 0.703938i 0.248577π0.248577\pi
240240 0 0
241241 6.58132i 0.423940i −0.977276 0.211970i 0.932012π-0.932012\pi
0.977276 0.211970i 0.0679879π-0.0679879\pi
242242 0 0
243243 21.6569i 1.38929i
244244 0 0
245245 4.83756 0.309061
246246 0 0
247247 18.0663i 1.14953i
248248 0 0
249249 15.8887i 1.00691i
250250 0 0
251251 15.5858i 0.983766i 0.870661 + 0.491883i 0.163691π0.163691\pi
−0.870661 + 0.491883i 0.836309π0.836309\pi
252252 0 0
253253 −0.453939 3.60625i −0.0285389 0.226723i
254254 0 0
255255 −8.70626 −0.545207
256256 0 0
257257 −10.4853 −0.654054 −0.327027 0.945015i 0.606047π-0.606047\pi
−0.327027 + 0.945015i 0.606047π0.606047\pi
258258 0 0
259259 −23.0346 −1.43130
260260 0 0
261261 12.8643i 0.796280i
262262 0 0
263263 0.390175 0.0240592 0.0120296 0.999928i 0.496171π-0.496171\pi
0.0120296 + 0.999928i 0.496171π0.496171\pi
264264 0 0
265265 19.7990 1.21624
266266 0 0
267267 1.58579i 0.0970486i
268268 0 0
269269 28.6493 1.74678 0.873390 0.487021i 0.161917π-0.161917\pi
0.873390 + 0.487021i 0.161917π0.161917\pi
270270 0 0
271271 −4.15804 −0.252583 −0.126292 0.991993i 0.540307π-0.540307\pi
−0.126292 + 0.991993i 0.540307π0.540307\pi
272272 0 0
273273 −30.1421 −1.82429
274274 0 0
275275 6.58132 0.828427i 0.396868 0.0499560i
276276 0 0
277277 15.5286i 0.933023i −0.884515 0.466511i 0.845511π-0.845511\pi
0.884515 0.466511i 0.154489π-0.154489\pi
278278 0 0
279279 18.0663i 1.08160i
280280 0 0
281281 9.30739i 0.555232i −0.960692 0.277616i 0.910456π-0.910456\pi
0.960692 0.277616i 0.0895443π-0.0895443\pi
282282 0 0
283283 15.8887 0.944485 0.472243 0.881469i 0.343445π-0.343445\pi
0.472243 + 0.881469i 0.343445π0.343445\pi
284284 0 0
285285 21.0188i 1.24504i
286286 0 0
287287 11.8669i 0.700483i
288288 0 0
289289 15.1421 0.890714
290290 0 0
291291 22.8995i 1.34239i
292292 0 0
293293 3.60625i 0.210679i 0.994436 + 0.105340i 0.0335930π0.0335930\pi
−0.994436 + 0.105340i 0.966407π0.966407\pi
294294 0 0
295295 13.8707i 0.807585i
296296 0 0
297297 0.171573 + 1.36303i 0.00995567 + 0.0790913i
298298 0 0
299299 −6.01673 −0.347956
300300 0 0
301301 −21.1660 −1.21999
302302 0 0
303303 −17.8027 −1.02274
304304 0 0
305305 12.0335i 0.689034i
306306 0 0
307307 13.7272 0.783454 0.391727 0.920082i 0.371878π-0.371878\pi
0.391727 + 0.920082i 0.371878π0.371878\pi
308308 0 0
309309 7.48331 0.425711
310310 0 0
311311 14.9666i 0.848680i 0.905503 + 0.424340i 0.139494π0.139494\pi
−0.905503 + 0.424340i 0.860506π0.860506\pi
312312 0 0
313313 −2.17157 −0.122745 −0.0613723 0.998115i 0.519548π-0.519548\pi
−0.0613723 + 0.998115i 0.519548π0.519548\pi
314314 0 0
315315 −17.0179 −0.958849
316316 0 0
317317 −0.453939 −0.0254958 −0.0127479 0.999919i 0.504058π-0.504058\pi
−0.0127479 + 0.999919i 0.504058π0.504058\pi
318318 0 0
319319 1.88393 + 14.9666i 0.105480 + 0.837970i
320320 0 0
321321 14.5257i 0.810744i
322322 0 0
323323 4.48528i 0.249568i
324324 0 0
325325 10.9804i 0.609081i
326326 0 0
327327 −26.5090 −1.46595
328328 0 0
329329 0 0
330330 0 0
331331 3.92893i 0.215954i −0.994153 0.107977i 0.965563π-0.965563\pi
0.994153 0.107977i 0.0344372π-0.0344372\pi
332332 0 0
333333 −28.6493 −1.56997
334334 0 0
335335 21.3540i 1.16670i
336336 0 0
337337 18.3809i 1.00127i −0.865658 0.500636i 0.833100π-0.833100\pi
0.865658 0.500636i 0.166900π-0.166900\pi
338338 0 0
339339 28.5563i 1.55097i
340340 0 0
341341 2.64575 + 21.0188i 0.143275 + 1.13823i
342342 0 0
343343 20.0768 1.08405
344344 0 0
345345 −7.00000 −0.376867
346346 0 0
347347 12.5980 0.676298 0.338149 0.941093i 0.390199π-0.390199\pi
0.338149 + 0.941093i 0.390199π0.390199\pi
348348 0 0
349349 3.60625i 0.193038i 0.995331 + 0.0965191i 0.0307709π0.0307709\pi
−0.995331 + 0.0965191i 0.969229π0.969229\pi
350350 0 0
351351 2.27411 0.121383
352352 0 0
353353 −3.82843 −0.203767 −0.101883 0.994796i 0.532487π-0.532487\pi
−0.101883 + 0.994796i 0.532487π0.532487\pi
354354 0 0
355355 2.89949i 0.153889i
356356 0 0
357357 −7.48331 −0.396059
358358 0 0
359359 2.27411 0.120023 0.0600114 0.998198i 0.480886π-0.480886\pi
0.0600114 + 0.998198i 0.480886π0.480886\pi
360360 0 0
361361 −8.17157 −0.430083
362362 0 0
363363 6.58132 + 25.7279i 0.345429 + 1.35037i
364364 0 0
365365 21.0188i 1.10017i
366366 0 0
367367 14.7786i 0.771437i −0.922617 0.385718i 0.873954π-0.873954\pi
0.922617 0.385718i 0.126046π-0.126046\pi
368368 0 0
369369 14.7595i 0.768350i
370370 0 0
371371 17.0179 0.883524
372372 0 0
373373 31.9991i 1.65685i −0.560098 0.828426i 0.689236π-0.689236\pi
0.560098 0.828426i 0.310764π-0.310764\pi
374374 0 0
375375 19.1622i 0.989533i
376376 0 0
377377 24.9706 1.28605
378378 0 0
379379 1.92893i 0.0990826i −0.998772 0.0495413i 0.984224π-0.984224\pi
0.998772 0.0495413i 0.0157759π-0.0157759\pi
380380 0 0
381381 31.9991i 1.63937i
382382 0 0
383383 29.7452i 1.51991i 0.649976 + 0.759955i 0.274779π0.274779\pi
−0.649976 + 0.759955i 0.725221π0.725221\pi
384384 0 0
385385 19.7990 2.49221i 1.00905 0.127015i
386386 0 0
387387 −26.3253 −1.33819
388388 0 0
389389 −27.2875 −1.38353 −0.691766 0.722122i 0.743167π-0.743167\pi
−0.691766 + 0.722122i 0.743167π0.743167\pi
390390 0 0
391391 −1.49376 −0.0755426
392392 0 0
393393 23.8331i 1.20222i
394394 0 0
395395 17.0179 0.856262
396396 0 0
397397 −22.4499 −1.12673 −0.563365 0.826208i 0.690494π-0.690494\pi
−0.563365 + 0.826208i 0.690494π0.690494\pi
398398 0 0
399399 18.0663i 0.904447i
400400 0 0
401401 0.828427 0.0413697 0.0206848 0.999786i 0.493415π-0.493415\pi
0.0206848 + 0.999786i 0.493415π0.493415\pi
402402 0 0
403403 35.0681 1.74686
404404 0 0
405405 25.0957 1.24702
406406 0 0
407407 33.3313 4.19560i 1.65217 0.207968i
408408 0 0
409409 15.8887i 0.785646i −0.919614 0.392823i 0.871499π-0.871499\pi
0.919614 0.392823i 0.128501π-0.128501\pi
410410 0 0
411411 6.41421i 0.316390i
412412 0 0
413413 11.9223i 0.586660i
414414 0 0
415415 −17.4125 −0.854747
416416 0 0
417417 21.1070i 1.03361i
418418 0 0
419419 12.1421i 0.593182i 0.955005 + 0.296591i 0.0958498π0.0958498\pi
−0.955005 + 0.296591i 0.904150π0.904150\pi
420420 0 0
421421 −7.48331 −0.364714 −0.182357 0.983232i 0.558373π-0.558373\pi
−0.182357 + 0.983232i 0.558373π0.558373\pi
422422 0 0
423423 0 0
424424 0 0
425425 2.72607i 0.132234i
426426 0 0
427427 10.3431i 0.500540i
428428 0 0
429429 43.6160 5.49019i 2.10580 0.265069i
430430 0 0
431431 24.2349 1.16735 0.583676 0.811987i 0.301614π-0.301614\pi
0.583676 + 0.811987i 0.301614π0.301614\pi
432432 0 0
433433 −28.6569 −1.37716 −0.688580 0.725160i 0.741766π-0.741766\pi
−0.688580 + 0.725160i 0.741766π0.741766\pi
434434 0 0
435435 29.0513 1.39290
436436 0 0
437437 3.60625i 0.172510i
438438 0 0
439439 14.7482 0.703895 0.351948 0.936020i 0.385520π-0.385520\pi
0.351948 + 0.936020i 0.385520π0.385520\pi
440440 0 0
441441 5.17157 0.246265
442442 0 0
443443 23.5858i 1.12059i 0.828292 + 0.560297i 0.189313π0.189313\pi
−0.828292 + 0.560297i 0.810687π0.810687\pi
444444 0 0
445445 1.73787 0.0823831
446446 0 0
447447 19.6866 0.931146
448448 0 0
449449 −17.9706 −0.848083 −0.424042 0.905643i 0.639389π-0.639389\pi
−0.424042 + 0.905643i 0.639389π0.639389\pi
450450 0 0
451451 2.16148 + 17.1716i 0.101780 + 0.808578i
452452 0 0
453453 21.9607i 1.03181i
454454 0 0
455455 33.0329i 1.54861i
456456 0 0
457457 32.9066i 1.53930i −0.638463 0.769652i 0.720430π-0.720430\pi
0.638463 0.769652i 0.279570π-0.279570\pi
458458 0 0
459459 0.564588 0.0263527
460460 0 0
461461 15.5286i 0.723239i 0.932326 + 0.361619i 0.117776π0.117776\pi
−0.932326 + 0.361619i 0.882224π0.882224\pi
462462 0 0
463463 14.7786i 0.686820i 0.939186 + 0.343410i 0.111582π0.111582\pi
−0.939186 + 0.343410i 0.888418π0.888418\pi
464464 0 0
465465 40.7990 1.89201
466466 0 0
467467 21.9289i 1.01475i −0.861725 0.507375i 0.830616π-0.830616\pi
0.861725 0.507375i 0.169384π-0.169384\pi
468468 0 0
469469 18.3545i 0.847532i
470470 0 0
471471 37.2285i 1.71540i
472472 0 0
473473 30.6274 3.85525i 1.40825 0.177264i
474474 0 0
475475 6.58132 0.301971
476476 0 0
477477 21.1660 0.969125
478478 0 0
479479 −32.5509 −1.48729 −0.743645 0.668575i 0.766905π-0.766905\pi
−0.743645 + 0.668575i 0.766905π0.766905\pi
480480 0 0
481481 55.6105i 2.53562i
482482 0 0
483483 −6.01673 −0.273771
484484 0 0
485485 25.0957 1.13954
486486 0 0
487487 10.7710i 0.488082i −0.969765 0.244041i 0.921527π-0.921527\pi
0.969765 0.244041i 0.0784732π-0.0784732\pi
488488 0 0
489489 −17.3137 −0.782953
490490 0 0
491491 37.2295 1.68015 0.840073 0.542474i 0.182512π-0.182512\pi
0.840073 + 0.542474i 0.182512π0.182512\pi
492492 0 0
493493 6.19938 0.279206
494494 0 0
495495 24.6250 3.09969i 1.10681 0.139321i
496496 0 0
497497 2.49221i 0.111791i
498498 0 0
499499 1.51472i 0.0678081i −0.999425 0.0339041i 0.989206π-0.989206\pi
0.999425 0.0339041i 0.0107941π-0.0107941\pi
500500 0 0
501501 25.5670i 1.14225i
502502 0 0
503503 −15.5286 −0.692386 −0.346193 0.938163i 0.612526π-0.612526\pi
−0.346193 + 0.938163i 0.612526π0.612526\pi
504504 0 0
505505 19.5101i 0.868187i
506506 0 0
507507 41.3848i 1.83796i
508508 0 0
509509 −9.22119 −0.408722 −0.204361 0.978896i 0.565512π-0.565512\pi
−0.204361 + 0.978896i 0.565512π0.565512\pi
510510 0 0
511511 18.0663i 0.799207i
512512 0 0
513513 1.36303i 0.0601795i
514514 0 0
515515 8.20101i 0.361380i
516516 0 0
517517 0 0
518518 0 0
519519 −53.0179 −2.32723
520520 0 0
521521 −42.1127 −1.84499 −0.922495 0.386008i 0.873854π-0.873854\pi
−0.922495 + 0.386008i 0.873854π0.873854\pi
522522 0 0
523523 31.2128 1.36484 0.682421 0.730960i 0.260927π-0.260927\pi
0.682421 + 0.730960i 0.260927π0.260927\pi
524524 0 0
525525 10.9804i 0.479223i
526526 0 0
527527 8.70626 0.379251
528528 0 0
529529 21.7990 0.947782
530530 0 0
531531 14.8284i 0.643499i
532532 0 0
533533 28.6493 1.24094
534534 0 0
535535 −15.9188 −0.688228
536536 0 0
537537 −37.9706 −1.63855
538538 0 0
539539 −6.01673 + 0.757359i −0.259159 + 0.0326218i
540540 0 0
541541 7.37412i 0.317038i 0.987356 + 0.158519i 0.0506719π0.0506719\pi
−0.987356 + 0.158519i 0.949328π0.949328\pi
542542 0 0
543543 6.38741i 0.274110i
544544 0 0
545545 29.0513i 1.24442i
546546 0 0
547547 33.3743 1.42698 0.713491 0.700664i 0.247113π-0.247113\pi
0.713491 + 0.700664i 0.247113π0.247113\pi
548548 0 0
549549 12.8643i 0.549035i
550550 0 0
551551 14.9666i 0.637600i
552552 0 0
553553 14.6274 0.622021
554554 0 0
555555 64.6985i 2.74630i
556556 0 0
557557 2.82590i 0.119737i 0.998206 + 0.0598686i 0.0190682π0.0190682\pi
−0.998206 + 0.0598686i 0.980932π0.980932\pi
558558 0 0
559559 51.0993i 2.16127i
560560 0 0
561561 10.8284 1.36303i 0.457177 0.0575474i
562562 0 0
563563 35.6326 1.50174 0.750868 0.660452i 0.229635π-0.229635\pi
0.750868 + 0.660452i 0.229635π0.229635\pi
564564 0 0
565565 −31.2951 −1.31659
566566 0 0
567567 21.5706 0.905879
568568 0 0
569569 22.4700i 0.941992i 0.882135 + 0.470996i 0.156105π0.156105\pi
−0.882135 + 0.470996i 0.843895π0.843895\pi
570570 0 0
571571 5.45214 0.228165 0.114082 0.993471i 0.463607π-0.463607\pi
0.114082 + 0.993471i 0.463607π0.463607\pi
572572 0 0
573573 22.9039 0.956823
574574 0 0
575575 2.19181i 0.0914049i
576576 0 0
577577 13.6274 0.567317 0.283658 0.958925i 0.408452π-0.408452\pi
0.283658 + 0.958925i 0.408452π0.408452\pi
578578 0 0
579579 −44.9400 −1.86764
580580 0 0
581581 −14.9666 −0.620920
582582 0 0
583583 −24.6250 + 3.09969i −1.01986 + 0.128376i
584584 0 0
585585 41.0848i 1.69865i
586586 0 0
587587 26.2843i 1.08487i 0.840098 + 0.542434i 0.182497π0.182497\pi
−0.840098 + 0.542434i 0.817503π0.817503\pi
588588 0 0
589589 21.0188i 0.866064i
590590 0 0
591591 −48.4697 −1.99378
592592 0 0
593593 15.8887i 0.652471i 0.945289 + 0.326235i 0.105780π0.105780\pi
−0.945289 + 0.326235i 0.894220π0.894220\pi
594594 0 0
595595 8.20101i 0.336209i
596596 0 0
597597 −51.0993 −2.09135
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 38.1249i 1.55515i −0.628793 0.777573i 0.716451π-0.716451\pi
0.628793 0.777573i 0.283549π-0.283549\pi
602602 0 0
603603 22.8284i 0.929645i
604604 0 0
605605 −28.1954 + 7.21250i −1.14631 + 0.293230i
606606 0 0
607607 −7.21250 −0.292746 −0.146373 0.989229i 0.546760π-0.546760\pi
−0.146373 + 0.989229i 0.546760π0.546760\pi
608608 0 0
609609 24.9706 1.01186
610610 0 0
611611 0 0
612612 0 0
613613 45.8054i 1.85006i 0.379890 + 0.925032i 0.375962π0.375962\pi
−0.379890 + 0.925032i 0.624038π0.624038\pi
614614 0 0
615615 33.3313 1.34405
616616 0 0
617617 29.1127 1.17203 0.586017 0.810299i 0.300695π-0.300695\pi
0.586017 + 0.810299i 0.300695π0.300695\pi
618618 0 0
619619 33.5269i 1.34756i −0.738932 0.673780i 0.764669π-0.764669\pi
0.738932 0.673780i 0.235331π-0.235331\pi
620620 0 0
621621 0.453939 0.0182160
622622 0 0
623623 1.49376 0.0598462
624624 0 0
625625 −31.0000 −1.24000
626626 0 0
627627 3.29066 + 26.1421i 0.131416 + 1.04402i
628628 0 0
629629 13.8063i 0.550492i
630630 0 0
631631 4.19560i 0.167024i −0.996507 0.0835120i 0.973386π-0.973386\pi
0.996507 0.0835120i 0.0266137π-0.0266137\pi
632632 0 0
633633 31.7774i 1.26304i
634634 0 0
635635 −35.0681 −1.39163
636636 0 0
637637 10.0384i 0.397736i
638638 0 0
639639 3.09969i 0.122622i
640640 0 0
641641 −12.1716 −0.480748 −0.240374 0.970680i 0.577270π-0.577270\pi
−0.240374 + 0.970680i 0.577270π0.577270\pi
642642 0 0
643643 37.3848i 1.47431i −0.675723 0.737156i 0.736168π-0.736168\pi
0.675723 0.737156i 0.263832π-0.263832\pi
644644 0 0
645645 59.4501i 2.34084i
646646 0 0
647647 28.8374i 1.13371i −0.823816 0.566857i 0.808159π-0.808159\pi
0.823816 0.566857i 0.191841π-0.191841\pi
648648 0 0
649649 −2.17157 17.2517i −0.0852417 0.677190i
650650 0 0
651651 35.0681 1.37443
652652 0 0
653653 −21.6199 −0.846054 −0.423027 0.906117i 0.639032π-0.639032\pi
−0.423027 + 0.906117i 0.639032π0.639032\pi
654654 0 0
655655 26.1188 1.02055
656656 0 0
657657 22.4700i 0.876639i
658658 0 0
659659 2.72607 0.106193 0.0530963 0.998589i 0.483091π-0.483091\pi
0.0530963 + 0.998589i 0.483091π0.483091\pi
660660 0 0
661661 −17.6124 −0.685042 −0.342521 0.939510i 0.611281π-0.611281\pi
−0.342521 + 0.939510i 0.611281π0.611281\pi
662662 0 0
663663 18.0663i 0.701638i
664664 0 0
665665 19.7990 0.767772
666666 0 0
667667 4.98442 0.192998
668668 0 0
669669 −28.1954 −1.09010
670670 0 0
671671 −1.88393 14.9666i −0.0727285 0.577780i
672672 0 0
673673 36.7618i 1.41706i −0.705679 0.708532i 0.749358π-0.749358\pi
0.705679 0.708532i 0.250642π-0.250642\pi
674674 0 0
675675 0.828427i 0.0318862i
676676 0 0
677677 21.0188i 0.807817i −0.914799 0.403909i 0.867651π-0.867651\pi
0.914799 0.403909i 0.132349π-0.132349\pi
678678 0 0
679679 21.5706 0.827802
680680 0 0
681681 1.36303i 0.0522316i
682682 0 0
683683 48.4264i 1.85298i 0.376313 + 0.926492i 0.377192π0.377192\pi
−0.376313 + 0.926492i 0.622808π0.622808\pi
684684 0 0
685685 7.02938 0.268579
686686 0 0
687687 11.6789i 0.445578i
688688 0 0
689689 41.0848i 1.56521i
690690 0 0
691691 17.2426i 0.655941i 0.944688 + 0.327970i 0.106365π0.106365\pi
−0.944688 + 0.327970i 0.893635π0.893635\pi
692692 0 0
693693 21.1660 2.66428i 0.804030 0.101208i
694694 0 0
695695 23.1313 0.877419
696696 0 0
697697 7.11270 0.269413
698698 0 0
699699 −60.8287 −2.30075
700700 0 0
701701 50.1920i 1.89573i −0.318677 0.947863i 0.603239π-0.603239\pi
0.318677 0.947863i 0.396761π-0.396761\pi
702702 0 0
703703 33.3313 1.25711
704704 0 0
705705 0 0
706706 0 0
707707 16.7696i 0.630684i
708708 0 0
709709 −1.36182 −0.0511441 −0.0255721 0.999673i 0.508141π-0.508141\pi
−0.0255721 + 0.999673i 0.508141π0.508141\pi
710710 0 0
711711 18.1929 0.682286
712712 0 0
713713 7.00000 0.262152
714714 0 0
715715 6.01673 + 47.7990i 0.225013 + 1.78758i
716716 0 0
717717 53.0179i 1.97999i
718718 0 0
719719 42.5200i 1.58573i 0.609397 + 0.792865i 0.291412π0.291412\pi
−0.609397 + 0.792865i 0.708588π0.708588\pi
720720 0 0
721721 7.04903i 0.262520i
722722 0 0
723723 15.8887 0.590907
724724 0 0
725725 9.09644i 0.337833i
726726 0 0
727727 13.8707i 0.514437i −0.966353 0.257218i 0.917194π-0.917194\pi
0.966353 0.257218i 0.0828060π-0.0828060\pi
728728 0 0
729729 23.8284 0.882534
730730 0 0
731731 12.6863i 0.469219i
732732 0 0
733733 44.7018i 1.65110i −0.564329 0.825550i 0.690865π-0.690865\pi
0.564329 0.825550i 0.309135π-0.309135\pi
734734 0 0
735735 11.6789i 0.430783i
736736 0 0
737737 −3.34315 26.5591i −0.123146 0.978318i
738738 0 0
739739 −42.6817 −1.57007 −0.785035 0.619451i 0.787355π-0.787355\pi
−0.785035 + 0.619451i 0.787355π0.787355\pi
740740 0 0
741741 43.6160 1.60227
742742 0 0
743743 −8.31609 −0.305088 −0.152544 0.988297i 0.548747π-0.548747\pi
−0.152544 + 0.988297i 0.548747π0.548747\pi
744744 0 0
745745 21.5747i 0.790436i
746746 0 0
747747 −18.6148 −0.681079
748748 0 0
749749 −13.6827 −0.499955
750750 0 0
751751 29.7452i 1.08542i 0.839921 + 0.542709i 0.182602π0.182602\pi
−0.839921 + 0.542709i 0.817398π0.817398\pi
752752 0 0
753753 −37.6274 −1.37122
754754 0 0
755755 −24.0669 −0.875885
756756 0 0
757757 13.6827 0.497306 0.248653 0.968593i 0.420012π-0.420012\pi
0.248653 + 0.968593i 0.420012π0.420012\pi
758758 0 0
759759 8.70626 1.09591i 0.316017 0.0397789i
760760 0 0
761761 17.2517i 0.625375i −0.949856 0.312687i 0.898771π-0.898771\pi
0.949856 0.312687i 0.101229π-0.101229\pi
762762 0 0
763763 24.9706i 0.903995i
764764 0 0
765765 10.2000i 0.368782i
766766 0 0
767767 −28.7831 −1.03930
768768 0 0
769769 23.8331i 0.859442i −0.902962 0.429721i 0.858612π-0.858612\pi
0.902962 0.429721i 0.141388π-0.141388\pi
770770 0 0
771771 25.3137i 0.911651i
772772 0 0
773773 51.0993 1.83791 0.918956 0.394359i 0.129033π-0.129033\pi
0.918956 + 0.394359i 0.129033π0.129033\pi
774774 0 0
775775 12.7748i 0.458885i
776776 0 0
777777 55.6105i 1.99501i
778778 0 0
779779 17.1716i 0.615235i
780780 0 0
781781 0.453939 + 3.60625i 0.0162432 + 0.129042i
782782 0 0
783783 −1.88393 −0.0673263
784784 0 0
785785 −40.7990 −1.45618
786786 0 0
787787 −8.17821 −0.291522 −0.145761 0.989320i 0.546563π-0.546563\pi
−0.145761 + 0.989320i 0.546563π0.546563\pi
788788 0 0
789789 0.941967i 0.0335349i
790790 0 0
791791 −26.8991 −0.956423
792792 0 0
793793 −24.9706 −0.886731
794794 0 0
795795 47.7990i 1.69526i
796796 0 0
797797 −14.1366 −0.500745 −0.250373 0.968150i 0.580553π-0.580553\pi
−0.250373 + 0.968150i 0.580553π0.580553\pi
798798 0 0
799799 0 0
800800 0 0
801801 1.85786 0.0656444
802802 0 0
803803 3.29066 + 26.1421i 0.116125 + 0.922536i
804804 0 0
805805 6.59377i 0.232400i
806806 0 0
807807 69.1656i 2.43474i
808808 0 0
809809 7.94435i 0.279308i 0.990200 + 0.139654i 0.0445991π0.0445991\pi
−0.990200 + 0.139654i 0.955401π0.955401\pi
810810 0 0
811811 −47.6661 −1.67378 −0.836892 0.547369i 0.815630π-0.815630\pi
−0.836892 + 0.547369i 0.815630π0.815630\pi
812812 0 0
813813 10.0384i 0.352062i
814814 0 0
815815 18.9742i 0.664637i
816816 0 0
817817 30.6274 1.07152
818818 0 0
819819 35.3137i 1.23396i
820820 0 0
821821 23.8447i 0.832185i −0.909322 0.416092i 0.863399π-0.863399\pi
0.909322 0.416092i 0.136601π-0.136601\pi
822822 0 0
823823 43.4279i 1.51380i −0.653529 0.756901i 0.726712π-0.726712\pi
0.653529 0.756901i 0.273288π-0.273288\pi
824824 0 0
825825 2.00000 + 15.8887i 0.0696311 + 0.553174i
826826 0 0
827827 1.03231 0.0358968 0.0179484 0.999839i 0.494287π-0.494287\pi
0.0179484 + 0.999839i 0.494287π0.494287\pi
828828 0 0
829829 26.9115 0.934673 0.467337 0.884079i 0.345214π-0.345214\pi
0.467337 + 0.884079i 0.345214π0.345214\pi
830830 0 0
831831 37.4893 1.30049
832832 0 0
833833 2.49221i 0.0863500i
834834 0 0
835835 −28.0190 −0.969638
836836 0 0
837837 −2.64575 −0.0914505
838838 0 0
839839 27.9295i 0.964233i 0.876107 + 0.482116i 0.160132π0.160132\pi
−0.876107 + 0.482116i 0.839868π0.839868\pi
840840 0 0
841841 8.31371 0.286680
842842 0 0
843843 22.4700 0.773908
844844 0 0
845845 45.3538 1.56022
846846 0 0
847847 −24.2349 + 6.19938i −0.832719 + 0.213013i
848848 0 0
849849 38.3587i 1.31647i
850850 0 0
851851 11.1005i 0.380520i
852852 0 0
853853 14.4250i 0.493903i 0.969028 + 0.246951i 0.0794288π0.0794288\pi
−0.969028 + 0.246951i 0.920571π0.920571\pi
854854 0 0
855855 24.6250 0.842158
856856 0 0
857857 5.45214i 0.186242i −0.995655 0.0931208i 0.970316π-0.970316\pi
0.995655 0.0931208i 0.0296843π-0.0296843\pi
858858 0 0
859859 40.7574i 1.39062i −0.718708 0.695312i 0.755266π-0.755266\pi
0.718708 0.695312i 0.244734π-0.244734\pi
860860 0 0
861861 28.6493 0.976366
862862 0 0
863863 14.9666i 0.509470i −0.967011 0.254735i 0.918012π-0.918012\pi
0.967011 0.254735i 0.0819882π-0.0819882\pi
864864 0 0
865865 58.1027i 1.97555i
866866 0 0
867867 36.5563i 1.24152i
868868 0 0
869869 −21.1660 + 2.66428i −0.718008 + 0.0903797i
870870 0 0
871871 −44.3117 −1.50144
872872 0 0
873873 26.8284 0.908005
874874 0 0
875875 −18.0502 −0.610208
876876 0 0
877877 24.7866i 0.836985i −0.908220 0.418493i 0.862559π-0.862559\pi
0.908220 0.418493i 0.137441π-0.137441\pi
878878 0 0
879879 −8.70626 −0.293655
880880 0 0
881881 23.4853 0.791239 0.395620 0.918414i 0.370530π-0.370530\pi
0.395620 + 0.918414i 0.370530π0.370530\pi
882882 0 0
883883 15.6569i 0.526895i 0.964674 + 0.263448i 0.0848596π0.0848596\pi
−0.964674 + 0.263448i 0.915140π0.915140\pi
884884 0 0
885885 −33.4869 −1.12565
886886 0 0
887887 −32.1608 −1.07985 −0.539926 0.841712i 0.681548π-0.681548\pi
−0.539926 + 0.841712i 0.681548π0.681548\pi
888888 0 0
889889 −30.1421 −1.01093
890890 0 0
891891 −31.2128 + 3.92893i −1.04567 + 0.131624i
892892 0 0
893893 0 0
894894 0 0
895895 41.6122i 1.39094i
896896 0 0
897897 14.5257i 0.484998i
898898 0 0
899899 −29.0513 −0.968916
900900 0 0
901901 10.2000i 0.339812i
902902 0 0
903903 51.0993i 1.70048i
904904 0 0
905905 −7.00000 −0.232688
906906 0 0
907907 50.4853i 1.67634i −0.545412 0.838168i 0.683627π-0.683627\pi
0.545412 0.838168i 0.316373π-0.316373\pi
908908 0 0
909909 20.8572i 0.691788i
910910 0 0
911911 44.8999i 1.48760i 0.668402 + 0.743800i 0.266978π0.266978\pi
−0.668402 + 0.743800i 0.733022π0.733022\pi
912912 0 0
913913 21.6569 2.72607i 0.716737 0.0902197i
914914 0 0
915915 −29.0513 −0.960407
916916 0 0
917917 22.4499 0.741362
918918 0 0
919919 −29.1732 −0.962337 −0.481168 0.876628i 0.659787π-0.659787\pi
−0.481168 + 0.876628i 0.659787π0.659787\pi
920920 0 0
921921 33.1404i 1.09201i
922922 0 0
923923 6.01673 0.198043
924924 0 0
925925 20.2581 0.666083
926926 0 0
927927 8.76725i 0.287954i
928928 0 0
929929 17.5147 0.574639 0.287320 0.957835i 0.407236π-0.407236\pi
0.287320 + 0.957835i 0.407236π0.407236\pi
930930 0 0
931931 −6.01673 −0.197190
932932 0 0
933933 −36.1326 −1.18293
934934 0 0
935935 1.49376 + 11.8669i 0.0488511 + 0.388090i
936936 0 0
937937 40.8509i 1.33454i −0.744815 0.667271i 0.767462π-0.767462\pi
0.744815 0.667271i 0.232538π-0.232538\pi
938938 0 0
939939 5.24264i 0.171087i
940940 0 0
941941 28.3929i 0.925582i −0.886467 0.462791i 0.846848π-0.846848\pi
0.886467 0.462791i 0.153152π-0.153152\pi
942942 0 0
943943 5.71874 0.186228
944944 0 0
945945 2.49221i 0.0810716i
946946 0 0
947947 21.5858i 0.701444i −0.936480 0.350722i 0.885936π-0.885936\pi
0.936480 0.350722i 0.114064π-0.114064\pi
948948 0 0
949949 43.6160 1.41583
950950 0 0
951951 1.09591i 0.0355372i
952952 0 0
953953 6.34746i 0.205614i 0.994701 + 0.102807i 0.0327824π0.0327824\pi
−0.994701 + 0.102807i 0.967218π0.967218\pi
954954 0 0
955955 25.1005i 0.812233i
956956 0 0
957957 −36.1326 + 4.54822i −1.16800 + 0.147023i
958958 0 0
959959 6.04198 0.195106
960960 0 0
961961 −9.79899 −0.316096
962962 0 0
963963 −17.0179 −0.548393
964964 0 0
965965 49.2501i 1.58542i
966966 0 0
967967 15.5286 0.499366 0.249683 0.968328i 0.419674π-0.419674\pi
0.249683 + 0.968328i 0.419674π0.419674\pi
968968 0 0
969969 10.8284 0.347859
970970 0 0
971971 54.8406i 1.75992i −0.475048 0.879960i 0.657569π-0.657569\pi
0.475048 0.879960i 0.342431π-0.342431\pi
972972 0 0
973973 19.8821 0.637390
974974 0 0
975975 26.5090 0.848966
976976 0 0
977977 −0.372583 −0.0119200 −0.00595999 0.999982i 0.501897π-0.501897\pi
−0.00595999 + 0.999982i 0.501897π0.501897\pi
978978 0 0
979979 −2.16148 + 0.272078i −0.0690813 + 0.00869565i
980980 0 0
981981 31.0572i 0.991579i
982982 0 0
983983 40.3282i 1.28627i 0.765752 + 0.643135i 0.222367π0.222367\pi
−0.765752 + 0.643135i 0.777633π0.777633\pi
984984 0 0
985985 53.1182i 1.69249i
986986 0 0
987987 0 0
988988 0 0
989989 10.2000i 0.324342i
990990 0 0
991991 29.9333i 0.950861i 0.879753 + 0.475431i 0.157708π0.157708\pi
−0.879753 + 0.475431i 0.842292π0.842292\pi
992992 0 0
993993 9.48528 0.301006
994994 0 0
995995 56.0000i 1.77532i
996996 0 0
997997 6.59377i 0.208827i 0.994534 + 0.104413i 0.0332965π0.0332965\pi
−0.994534 + 0.104413i 0.966704π0.966704\pi
998998 0 0
999999 4.19560i 0.132743i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2816.2.e.o.2815.13 16
4.3 odd 2 inner 2816.2.e.o.2815.2 16
8.3 odd 2 inner 2816.2.e.o.2815.16 16
8.5 even 2 inner 2816.2.e.o.2815.3 16
11.10 odd 2 inner 2816.2.e.o.2815.14 16
16.3 odd 4 352.2.g.b.175.7 8
16.5 even 4 352.2.g.b.175.6 8
16.11 odd 4 88.2.g.b.43.4 yes 8
16.13 even 4 88.2.g.b.43.6 yes 8
44.43 even 2 inner 2816.2.e.o.2815.1 16
48.5 odd 4 3168.2.h.g.2287.7 8
48.11 even 4 792.2.h.g.307.5 8
48.29 odd 4 792.2.h.g.307.3 8
48.35 even 4 3168.2.h.g.2287.2 8
88.21 odd 2 inner 2816.2.e.o.2815.4 16
88.43 even 2 inner 2816.2.e.o.2815.15 16
176.13 odd 20 968.2.k.g.403.4 32
176.21 odd 4 352.2.g.b.175.5 8
176.27 odd 20 968.2.k.g.723.4 32
176.29 odd 20 968.2.k.g.699.6 32
176.43 even 4 88.2.g.b.43.5 yes 8
176.59 odd 20 968.2.k.g.699.1 32
176.61 odd 20 968.2.k.g.723.7 32
176.75 odd 20 968.2.k.g.403.7 32
176.91 odd 20 968.2.k.g.475.6 32
176.93 even 20 968.2.k.g.723.2 32
176.107 even 20 968.2.k.g.475.3 32
176.109 odd 4 88.2.g.b.43.3 8
176.123 even 20 968.2.k.g.403.2 32
176.125 even 20 968.2.k.g.699.3 32
176.131 even 4 352.2.g.b.175.8 8
176.139 even 20 968.2.k.g.699.8 32
176.141 even 20 968.2.k.g.403.5 32
176.157 even 20 968.2.k.g.475.8 32
176.171 even 20 968.2.k.g.723.5 32
176.173 odd 20 968.2.k.g.475.1 32
528.131 odd 4 3168.2.h.g.2287.3 8
528.197 even 4 3168.2.h.g.2287.6 8
528.395 odd 4 792.2.h.g.307.4 8
528.461 even 4 792.2.h.g.307.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.g.b.43.3 8 176.109 odd 4
88.2.g.b.43.4 yes 8 16.11 odd 4
88.2.g.b.43.5 yes 8 176.43 even 4
88.2.g.b.43.6 yes 8 16.13 even 4
352.2.g.b.175.5 8 176.21 odd 4
352.2.g.b.175.6 8 16.5 even 4
352.2.g.b.175.7 8 16.3 odd 4
352.2.g.b.175.8 8 176.131 even 4
792.2.h.g.307.3 8 48.29 odd 4
792.2.h.g.307.4 8 528.395 odd 4
792.2.h.g.307.5 8 48.11 even 4
792.2.h.g.307.6 8 528.461 even 4
968.2.k.g.403.2 32 176.123 even 20
968.2.k.g.403.4 32 176.13 odd 20
968.2.k.g.403.5 32 176.141 even 20
968.2.k.g.403.7 32 176.75 odd 20
968.2.k.g.475.1 32 176.173 odd 20
968.2.k.g.475.3 32 176.107 even 20
968.2.k.g.475.6 32 176.91 odd 20
968.2.k.g.475.8 32 176.157 even 20
968.2.k.g.699.1 32 176.59 odd 20
968.2.k.g.699.3 32 176.125 even 20
968.2.k.g.699.6 32 176.29 odd 20
968.2.k.g.699.8 32 176.139 even 20
968.2.k.g.723.2 32 176.93 even 20
968.2.k.g.723.4 32 176.27 odd 20
968.2.k.g.723.5 32 176.171 even 20
968.2.k.g.723.7 32 176.61 odd 20
2816.2.e.o.2815.1 16 44.43 even 2 inner
2816.2.e.o.2815.2 16 4.3 odd 2 inner
2816.2.e.o.2815.3 16 8.5 even 2 inner
2816.2.e.o.2815.4 16 88.21 odd 2 inner
2816.2.e.o.2815.13 16 1.1 even 1 trivial
2816.2.e.o.2815.14 16 11.10 odd 2 inner
2816.2.e.o.2815.15 16 88.43 even 2 inner
2816.2.e.o.2815.16 16 8.3 odd 2 inner
3168.2.h.g.2287.2 8 48.35 even 4
3168.2.h.g.2287.3 8 528.131 odd 4
3168.2.h.g.2287.6 8 528.197 even 4
3168.2.h.g.2287.7 8 48.5 odd 4