Properties

Label 2816.2.e.o.2815.13
Level $2816$
Weight $2$
Character 2816.2815
Analytic conductor $22.486$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2816,2,Mod(2815,2816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2816.2815");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2816.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4858732092\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.1622647227216566419456.8
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} - 44x^{10} + 161x^{8} - 88x^{6} + 32x^{4} - 32x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{26} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2815.13
Root \(-1.00237 - 1.55225i\) of defining polynomial
Character \(\chi\) \(=\) 2816.2815
Dual form 2816.2.e.o.2815.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421i q^{3} -2.64575 q^{5} -2.27411 q^{7} -2.82843 q^{9} +(3.29066 - 0.414214i) q^{11} -5.49019i q^{13} -6.38741i q^{15} -1.36303i q^{17} +3.29066 q^{19} -5.49019i q^{21} -1.09591i q^{23} +2.00000 q^{25} +0.414214i q^{27} +4.54822i q^{29} +6.38741i q^{31} +(1.00000 + 7.94435i) q^{33} +6.01673 q^{35} +10.1291 q^{37} +13.2545 q^{39} +5.21828i q^{41} +9.30739 q^{43} +7.48331 q^{45} -1.82843 q^{49} +3.29066 q^{51} -7.48331 q^{53} +(-8.70626 + 1.09591i) q^{55} +7.94435i q^{57} -5.24264i q^{59} -4.54822i q^{61} +6.43215 q^{63} +14.5257i q^{65} -8.07107i q^{67} +2.64575 q^{69} +1.09591i q^{71} +7.94435i q^{73} +4.82843i q^{75} +(-7.48331 + 0.941967i) q^{77} -6.43215 q^{79} -9.48528 q^{81} +6.58132 q^{83} +3.60625i q^{85} -10.9804 q^{87} -0.656854 q^{89} +12.4853i q^{91} -15.4206 q^{93} -8.70626 q^{95} -9.48528 q^{97} +(-9.30739 + 1.17157i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 32 q^{25} + 16 q^{33} + 16 q^{49} - 16 q^{81} + 80 q^{89} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times\).

\(n\) \(1025\) \(1541\) \(2047\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.41421i 1.39385i 0.717146 + 0.696923i \(0.245448\pi\)
−0.717146 + 0.696923i \(0.754552\pi\)
\(4\) 0 0
\(5\) −2.64575 −1.18322 −0.591608 0.806226i \(-0.701507\pi\)
−0.591608 + 0.806226i \(0.701507\pi\)
\(6\) 0 0
\(7\) −2.27411 −0.859533 −0.429766 0.902940i \(-0.641404\pi\)
−0.429766 + 0.902940i \(0.641404\pi\)
\(8\) 0 0
\(9\) −2.82843 −0.942809
\(10\) 0 0
\(11\) 3.29066 0.414214i 0.992171 0.124890i
\(12\) 0 0
\(13\) 5.49019i 1.52270i −0.648339 0.761352i \(-0.724536\pi\)
0.648339 0.761352i \(-0.275464\pi\)
\(14\) 0 0
\(15\) 6.38741i 1.64922i
\(16\) 0 0
\(17\) 1.36303i 0.330585i −0.986245 0.165292i \(-0.947143\pi\)
0.986245 0.165292i \(-0.0528567\pi\)
\(18\) 0 0
\(19\) 3.29066 0.754929 0.377464 0.926024i \(-0.376796\pi\)
0.377464 + 0.926024i \(0.376796\pi\)
\(20\) 0 0
\(21\) 5.49019i 1.19806i
\(22\) 0 0
\(23\) 1.09591i 0.228512i −0.993451 0.114256i \(-0.963552\pi\)
0.993451 0.114256i \(-0.0364484\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) 0.414214i 0.0797154i
\(28\) 0 0
\(29\) 4.54822i 0.844583i 0.906460 + 0.422291i \(0.138774\pi\)
−0.906460 + 0.422291i \(0.861226\pi\)
\(30\) 0 0
\(31\) 6.38741i 1.14721i 0.819131 + 0.573606i \(0.194456\pi\)
−0.819131 + 0.573606i \(0.805544\pi\)
\(32\) 0 0
\(33\) 1.00000 + 7.94435i 0.174078 + 1.38293i
\(34\) 0 0
\(35\) 6.01673 1.01701
\(36\) 0 0
\(37\) 10.1291 1.66521 0.832604 0.553869i \(-0.186849\pi\)
0.832604 + 0.553869i \(0.186849\pi\)
\(38\) 0 0
\(39\) 13.2545 2.12242
\(40\) 0 0
\(41\) 5.21828i 0.814958i 0.913214 + 0.407479i \(0.133592\pi\)
−0.913214 + 0.407479i \(0.866408\pi\)
\(42\) 0 0
\(43\) 9.30739 1.41936 0.709681 0.704523i \(-0.248839\pi\)
0.709681 + 0.704523i \(0.248839\pi\)
\(44\) 0 0
\(45\) 7.48331 1.11555
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −1.82843 −0.261204
\(50\) 0 0
\(51\) 3.29066 0.460784
\(52\) 0 0
\(53\) −7.48331 −1.02791 −0.513956 0.857816i \(-0.671821\pi\)
−0.513956 + 0.857816i \(0.671821\pi\)
\(54\) 0 0
\(55\) −8.70626 + 1.09591i −1.17395 + 0.147772i
\(56\) 0 0
\(57\) 7.94435i 1.05225i
\(58\) 0 0
\(59\) 5.24264i 0.682534i −0.939966 0.341267i \(-0.889144\pi\)
0.939966 0.341267i \(-0.110856\pi\)
\(60\) 0 0
\(61\) 4.54822i 0.582340i −0.956671 0.291170i \(-0.905956\pi\)
0.956671 0.291170i \(-0.0940445\pi\)
\(62\) 0 0
\(63\) 6.43215 0.810375
\(64\) 0 0
\(65\) 14.5257i 1.80169i
\(66\) 0 0
\(67\) 8.07107i 0.986038i −0.870019 0.493019i \(-0.835893\pi\)
0.870019 0.493019i \(-0.164107\pi\)
\(68\) 0 0
\(69\) 2.64575 0.318511
\(70\) 0 0
\(71\) 1.09591i 0.130060i 0.997883 + 0.0650301i \(0.0207143\pi\)
−0.997883 + 0.0650301i \(0.979286\pi\)
\(72\) 0 0
\(73\) 7.94435i 0.929816i 0.885359 + 0.464908i \(0.153913\pi\)
−0.885359 + 0.464908i \(0.846087\pi\)
\(74\) 0 0
\(75\) 4.82843i 0.557539i
\(76\) 0 0
\(77\) −7.48331 + 0.941967i −0.852803 + 0.107347i
\(78\) 0 0
\(79\) −6.43215 −0.723674 −0.361837 0.932241i \(-0.617850\pi\)
−0.361837 + 0.932241i \(0.617850\pi\)
\(80\) 0 0
\(81\) −9.48528 −1.05392
\(82\) 0 0
\(83\) 6.58132 0.722393 0.361197 0.932490i \(-0.382368\pi\)
0.361197 + 0.932490i \(0.382368\pi\)
\(84\) 0 0
\(85\) 3.60625i 0.391153i
\(86\) 0 0
\(87\) −10.9804 −1.17722
\(88\) 0 0
\(89\) −0.656854 −0.0696264 −0.0348132 0.999394i \(-0.511084\pi\)
−0.0348132 + 0.999394i \(0.511084\pi\)
\(90\) 0 0
\(91\) 12.4853i 1.30881i
\(92\) 0 0
\(93\) −15.4206 −1.59904
\(94\) 0 0
\(95\) −8.70626 −0.893244
\(96\) 0 0
\(97\) −9.48528 −0.963084 −0.481542 0.876423i \(-0.659923\pi\)
−0.481542 + 0.876423i \(0.659923\pi\)
\(98\) 0 0
\(99\) −9.30739 + 1.17157i −0.935427 + 0.117748i
\(100\) 0 0
\(101\) 7.37412i 0.733752i 0.930270 + 0.366876i \(0.119573\pi\)
−0.930270 + 0.366876i \(0.880427\pi\)
\(102\) 0 0
\(103\) 3.09969i 0.305422i −0.988271 0.152711i \(-0.951200\pi\)
0.988271 0.152711i \(-0.0488003\pi\)
\(104\) 0 0
\(105\) 14.5257i 1.41756i
\(106\) 0 0
\(107\) 6.01673 0.581659 0.290830 0.956775i \(-0.406069\pi\)
0.290830 + 0.956775i \(0.406069\pi\)
\(108\) 0 0
\(109\) 10.9804i 1.05173i 0.850568 + 0.525864i \(0.176258\pi\)
−0.850568 + 0.525864i \(0.823742\pi\)
\(110\) 0 0
\(111\) 24.4537i 2.32105i
\(112\) 0 0
\(113\) 11.8284 1.11272 0.556362 0.830940i \(-0.312197\pi\)
0.556362 + 0.830940i \(0.312197\pi\)
\(114\) 0 0
\(115\) 2.89949i 0.270379i
\(116\) 0 0
\(117\) 15.5286i 1.43562i
\(118\) 0 0
\(119\) 3.09969i 0.284148i
\(120\) 0 0
\(121\) 10.6569 2.72607i 0.968805 0.247825i
\(122\) 0 0
\(123\) −12.5980 −1.13593
\(124\) 0 0
\(125\) 7.93725 0.709930
\(126\) 0 0
\(127\) 13.2545 1.17614 0.588072 0.808808i \(-0.299887\pi\)
0.588072 + 0.808808i \(0.299887\pi\)
\(128\) 0 0
\(129\) 22.4700i 1.97837i
\(130\) 0 0
\(131\) −9.87197 −0.862518 −0.431259 0.902228i \(-0.641931\pi\)
−0.431259 + 0.902228i \(0.641931\pi\)
\(132\) 0 0
\(133\) −7.48331 −0.648886
\(134\) 0 0
\(135\) 1.09591i 0.0943206i
\(136\) 0 0
\(137\) −2.65685 −0.226990 −0.113495 0.993539i \(-0.536205\pi\)
−0.113495 + 0.993539i \(0.536205\pi\)
\(138\) 0 0
\(139\) −8.74280 −0.741554 −0.370777 0.928722i \(-0.620909\pi\)
−0.370777 + 0.928722i \(0.620909\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.27411 18.0663i −0.190171 1.51078i
\(144\) 0 0
\(145\) 12.0335i 0.999324i
\(146\) 0 0
\(147\) 4.41421i 0.364078i
\(148\) 0 0
\(149\) 8.15447i 0.668040i −0.942566 0.334020i \(-0.891595\pi\)
0.942566 0.334020i \(-0.108405\pi\)
\(150\) 0 0
\(151\) 9.09644 0.740258 0.370129 0.928980i \(-0.379314\pi\)
0.370129 + 0.928980i \(0.379314\pi\)
\(152\) 0 0
\(153\) 3.85525i 0.311678i
\(154\) 0 0
\(155\) 16.8995i 1.35740i
\(156\) 0 0
\(157\) 15.4206 1.23070 0.615348 0.788256i \(-0.289016\pi\)
0.615348 + 0.788256i \(0.289016\pi\)
\(158\) 0 0
\(159\) 18.0663i 1.43275i
\(160\) 0 0
\(161\) 2.49221i 0.196414i
\(162\) 0 0
\(163\) 7.17157i 0.561721i 0.959749 + 0.280860i \(0.0906198\pi\)
−0.959749 + 0.280860i \(0.909380\pi\)
\(164\) 0 0
\(165\) −2.64575 21.0188i −0.205971 1.63631i
\(166\) 0 0
\(167\) 10.5902 0.819494 0.409747 0.912199i \(-0.365617\pi\)
0.409747 + 0.912199i \(0.365617\pi\)
\(168\) 0 0
\(169\) −17.1421 −1.31863
\(170\) 0 0
\(171\) −9.30739 −0.711754
\(172\) 0 0
\(173\) 21.9607i 1.66964i 0.550520 + 0.834822i \(0.314430\pi\)
−0.550520 + 0.834822i \(0.685570\pi\)
\(174\) 0 0
\(175\) −4.54822 −0.343813
\(176\) 0 0
\(177\) 12.6569 0.951347
\(178\) 0 0
\(179\) 15.7279i 1.17556i 0.809021 + 0.587780i \(0.199998\pi\)
−0.809021 + 0.587780i \(0.800002\pi\)
\(180\) 0 0
\(181\) 2.64575 0.196657 0.0983286 0.995154i \(-0.468650\pi\)
0.0983286 + 0.995154i \(0.468650\pi\)
\(182\) 0 0
\(183\) 10.9804 0.811692
\(184\) 0 0
\(185\) −26.7990 −1.97030
\(186\) 0 0
\(187\) −0.564588 4.48528i −0.0412867 0.327996i
\(188\) 0 0
\(189\) 0.941967i 0.0685180i
\(190\) 0 0
\(191\) 9.48710i 0.686462i −0.939251 0.343231i \(-0.888479\pi\)
0.939251 0.343231i \(-0.111521\pi\)
\(192\) 0 0
\(193\) 18.6148i 1.33992i 0.742397 + 0.669960i \(0.233689\pi\)
−0.742397 + 0.669960i \(0.766311\pi\)
\(194\) 0 0
\(195\) −35.0681 −2.51128
\(196\) 0 0
\(197\) 20.0768i 1.43041i 0.698913 + 0.715207i \(0.253667\pi\)
−0.698913 + 0.715207i \(0.746333\pi\)
\(198\) 0 0
\(199\) 21.1660i 1.50042i 0.661200 + 0.750209i \(0.270047\pi\)
−0.661200 + 0.750209i \(0.729953\pi\)
\(200\) 0 0
\(201\) 19.4853 1.37439
\(202\) 0 0
\(203\) 10.3431i 0.725947i
\(204\) 0 0
\(205\) 13.8063i 0.964272i
\(206\) 0 0
\(207\) 3.09969i 0.215443i
\(208\) 0 0
\(209\) 10.8284 1.36303i 0.749018 0.0942831i
\(210\) 0 0
\(211\) 13.1626 0.906153 0.453076 0.891472i \(-0.350326\pi\)
0.453076 + 0.891472i \(0.350326\pi\)
\(212\) 0 0
\(213\) −2.64575 −0.181284
\(214\) 0 0
\(215\) −24.6250 −1.67941
\(216\) 0 0
\(217\) 14.5257i 0.986066i
\(218\) 0 0
\(219\) −19.1794 −1.29602
\(220\) 0 0
\(221\) −7.48331 −0.503382
\(222\) 0 0
\(223\) 11.6789i 0.782078i 0.920374 + 0.391039i \(0.127884\pi\)
−0.920374 + 0.391039i \(0.872116\pi\)
\(224\) 0 0
\(225\) −5.65685 −0.377124
\(226\) 0 0
\(227\) −0.564588 −0.0374730 −0.0187365 0.999824i \(-0.505964\pi\)
−0.0187365 + 0.999824i \(0.505964\pi\)
\(228\) 0 0
\(229\) 4.83756 0.319675 0.159838 0.987143i \(-0.448903\pi\)
0.159838 + 0.987143i \(0.448903\pi\)
\(230\) 0 0
\(231\) −2.27411 18.0663i −0.149625 1.18868i
\(232\) 0 0
\(233\) 25.1961i 1.65065i 0.564658 + 0.825325i \(0.309008\pi\)
−0.564658 + 0.825325i \(0.690992\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 15.5286i 1.00869i
\(238\) 0 0
\(239\) 21.9607 1.42052 0.710261 0.703938i \(-0.248577\pi\)
0.710261 + 0.703938i \(0.248577\pi\)
\(240\) 0 0
\(241\) 6.58132i 0.423940i −0.977276 0.211970i \(-0.932012\pi\)
0.977276 0.211970i \(-0.0679879\pi\)
\(242\) 0 0
\(243\) 21.6569i 1.38929i
\(244\) 0 0
\(245\) 4.83756 0.309061
\(246\) 0 0
\(247\) 18.0663i 1.14953i
\(248\) 0 0
\(249\) 15.8887i 1.00691i
\(250\) 0 0
\(251\) 15.5858i 0.983766i 0.870661 + 0.491883i \(0.163691\pi\)
−0.870661 + 0.491883i \(0.836309\pi\)
\(252\) 0 0
\(253\) −0.453939 3.60625i −0.0285389 0.226723i
\(254\) 0 0
\(255\) −8.70626 −0.545207
\(256\) 0 0
\(257\) −10.4853 −0.654054 −0.327027 0.945015i \(-0.606047\pi\)
−0.327027 + 0.945015i \(0.606047\pi\)
\(258\) 0 0
\(259\) −23.0346 −1.43130
\(260\) 0 0
\(261\) 12.8643i 0.796280i
\(262\) 0 0
\(263\) 0.390175 0.0240592 0.0120296 0.999928i \(-0.496171\pi\)
0.0120296 + 0.999928i \(0.496171\pi\)
\(264\) 0 0
\(265\) 19.7990 1.21624
\(266\) 0 0
\(267\) 1.58579i 0.0970486i
\(268\) 0 0
\(269\) 28.6493 1.74678 0.873390 0.487021i \(-0.161917\pi\)
0.873390 + 0.487021i \(0.161917\pi\)
\(270\) 0 0
\(271\) −4.15804 −0.252583 −0.126292 0.991993i \(-0.540307\pi\)
−0.126292 + 0.991993i \(0.540307\pi\)
\(272\) 0 0
\(273\) −30.1421 −1.82429
\(274\) 0 0
\(275\) 6.58132 0.828427i 0.396868 0.0499560i
\(276\) 0 0
\(277\) 15.5286i 0.933023i −0.884515 0.466511i \(-0.845511\pi\)
0.884515 0.466511i \(-0.154489\pi\)
\(278\) 0 0
\(279\) 18.0663i 1.08160i
\(280\) 0 0
\(281\) 9.30739i 0.555232i −0.960692 0.277616i \(-0.910456\pi\)
0.960692 0.277616i \(-0.0895443\pi\)
\(282\) 0 0
\(283\) 15.8887 0.944485 0.472243 0.881469i \(-0.343445\pi\)
0.472243 + 0.881469i \(0.343445\pi\)
\(284\) 0 0
\(285\) 21.0188i 1.24504i
\(286\) 0 0
\(287\) 11.8669i 0.700483i
\(288\) 0 0
\(289\) 15.1421 0.890714
\(290\) 0 0
\(291\) 22.8995i 1.34239i
\(292\) 0 0
\(293\) 3.60625i 0.210679i 0.994436 + 0.105340i \(0.0335930\pi\)
−0.994436 + 0.105340i \(0.966407\pi\)
\(294\) 0 0
\(295\) 13.8707i 0.807585i
\(296\) 0 0
\(297\) 0.171573 + 1.36303i 0.00995567 + 0.0790913i
\(298\) 0 0
\(299\) −6.01673 −0.347956
\(300\) 0 0
\(301\) −21.1660 −1.21999
\(302\) 0 0
\(303\) −17.8027 −1.02274
\(304\) 0 0
\(305\) 12.0335i 0.689034i
\(306\) 0 0
\(307\) 13.7272 0.783454 0.391727 0.920082i \(-0.371878\pi\)
0.391727 + 0.920082i \(0.371878\pi\)
\(308\) 0 0
\(309\) 7.48331 0.425711
\(310\) 0 0
\(311\) 14.9666i 0.848680i 0.905503 + 0.424340i \(0.139494\pi\)
−0.905503 + 0.424340i \(0.860506\pi\)
\(312\) 0 0
\(313\) −2.17157 −0.122745 −0.0613723 0.998115i \(-0.519548\pi\)
−0.0613723 + 0.998115i \(0.519548\pi\)
\(314\) 0 0
\(315\) −17.0179 −0.958849
\(316\) 0 0
\(317\) −0.453939 −0.0254958 −0.0127479 0.999919i \(-0.504058\pi\)
−0.0127479 + 0.999919i \(0.504058\pi\)
\(318\) 0 0
\(319\) 1.88393 + 14.9666i 0.105480 + 0.837970i
\(320\) 0 0
\(321\) 14.5257i 0.810744i
\(322\) 0 0
\(323\) 4.48528i 0.249568i
\(324\) 0 0
\(325\) 10.9804i 0.609081i
\(326\) 0 0
\(327\) −26.5090 −1.46595
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.92893i 0.215954i −0.994153 0.107977i \(-0.965563\pi\)
0.994153 0.107977i \(-0.0344372\pi\)
\(332\) 0 0
\(333\) −28.6493 −1.56997
\(334\) 0 0
\(335\) 21.3540i 1.16670i
\(336\) 0 0
\(337\) 18.3809i 1.00127i −0.865658 0.500636i \(-0.833100\pi\)
0.865658 0.500636i \(-0.166900\pi\)
\(338\) 0 0
\(339\) 28.5563i 1.55097i
\(340\) 0 0
\(341\) 2.64575 + 21.0188i 0.143275 + 1.13823i
\(342\) 0 0
\(343\) 20.0768 1.08405
\(344\) 0 0
\(345\) −7.00000 −0.376867
\(346\) 0 0
\(347\) 12.5980 0.676298 0.338149 0.941093i \(-0.390199\pi\)
0.338149 + 0.941093i \(0.390199\pi\)
\(348\) 0 0
\(349\) 3.60625i 0.193038i 0.995331 + 0.0965191i \(0.0307709\pi\)
−0.995331 + 0.0965191i \(0.969229\pi\)
\(350\) 0 0
\(351\) 2.27411 0.121383
\(352\) 0 0
\(353\) −3.82843 −0.203767 −0.101883 0.994796i \(-0.532487\pi\)
−0.101883 + 0.994796i \(0.532487\pi\)
\(354\) 0 0
\(355\) 2.89949i 0.153889i
\(356\) 0 0
\(357\) −7.48331 −0.396059
\(358\) 0 0
\(359\) 2.27411 0.120023 0.0600114 0.998198i \(-0.480886\pi\)
0.0600114 + 0.998198i \(0.480886\pi\)
\(360\) 0 0
\(361\) −8.17157 −0.430083
\(362\) 0 0
\(363\) 6.58132 + 25.7279i 0.345429 + 1.35037i
\(364\) 0 0
\(365\) 21.0188i 1.10017i
\(366\) 0 0
\(367\) 14.7786i 0.771437i −0.922617 0.385718i \(-0.873954\pi\)
0.922617 0.385718i \(-0.126046\pi\)
\(368\) 0 0
\(369\) 14.7595i 0.768350i
\(370\) 0 0
\(371\) 17.0179 0.883524
\(372\) 0 0
\(373\) 31.9991i 1.65685i −0.560098 0.828426i \(-0.689236\pi\)
0.560098 0.828426i \(-0.310764\pi\)
\(374\) 0 0
\(375\) 19.1622i 0.989533i
\(376\) 0 0
\(377\) 24.9706 1.28605
\(378\) 0 0
\(379\) 1.92893i 0.0990826i −0.998772 0.0495413i \(-0.984224\pi\)
0.998772 0.0495413i \(-0.0157759\pi\)
\(380\) 0 0
\(381\) 31.9991i 1.63937i
\(382\) 0 0
\(383\) 29.7452i 1.51991i 0.649976 + 0.759955i \(0.274779\pi\)
−0.649976 + 0.759955i \(0.725221\pi\)
\(384\) 0 0
\(385\) 19.7990 2.49221i 1.00905 0.127015i
\(386\) 0 0
\(387\) −26.3253 −1.33819
\(388\) 0 0
\(389\) −27.2875 −1.38353 −0.691766 0.722122i \(-0.743167\pi\)
−0.691766 + 0.722122i \(0.743167\pi\)
\(390\) 0 0
\(391\) −1.49376 −0.0755426
\(392\) 0 0
\(393\) 23.8331i 1.20222i
\(394\) 0 0
\(395\) 17.0179 0.856262
\(396\) 0 0
\(397\) −22.4499 −1.12673 −0.563365 0.826208i \(-0.690494\pi\)
−0.563365 + 0.826208i \(0.690494\pi\)
\(398\) 0 0
\(399\) 18.0663i 0.904447i
\(400\) 0 0
\(401\) 0.828427 0.0413697 0.0206848 0.999786i \(-0.493415\pi\)
0.0206848 + 0.999786i \(0.493415\pi\)
\(402\) 0 0
\(403\) 35.0681 1.74686
\(404\) 0 0
\(405\) 25.0957 1.24702
\(406\) 0 0
\(407\) 33.3313 4.19560i 1.65217 0.207968i
\(408\) 0 0
\(409\) 15.8887i 0.785646i −0.919614 0.392823i \(-0.871499\pi\)
0.919614 0.392823i \(-0.128501\pi\)
\(410\) 0 0
\(411\) 6.41421i 0.316390i
\(412\) 0 0
\(413\) 11.9223i 0.586660i
\(414\) 0 0
\(415\) −17.4125 −0.854747
\(416\) 0 0
\(417\) 21.1070i 1.03361i
\(418\) 0 0
\(419\) 12.1421i 0.593182i 0.955005 + 0.296591i \(0.0958498\pi\)
−0.955005 + 0.296591i \(0.904150\pi\)
\(420\) 0 0
\(421\) −7.48331 −0.364714 −0.182357 0.983232i \(-0.558373\pi\)
−0.182357 + 0.983232i \(0.558373\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.72607i 0.132234i
\(426\) 0 0
\(427\) 10.3431i 0.500540i
\(428\) 0 0
\(429\) 43.6160 5.49019i 2.10580 0.265069i
\(430\) 0 0
\(431\) 24.2349 1.16735 0.583676 0.811987i \(-0.301614\pi\)
0.583676 + 0.811987i \(0.301614\pi\)
\(432\) 0 0
\(433\) −28.6569 −1.37716 −0.688580 0.725160i \(-0.741766\pi\)
−0.688580 + 0.725160i \(0.741766\pi\)
\(434\) 0 0
\(435\) 29.0513 1.39290
\(436\) 0 0
\(437\) 3.60625i 0.172510i
\(438\) 0 0
\(439\) 14.7482 0.703895 0.351948 0.936020i \(-0.385520\pi\)
0.351948 + 0.936020i \(0.385520\pi\)
\(440\) 0 0
\(441\) 5.17157 0.246265
\(442\) 0 0
\(443\) 23.5858i 1.12059i 0.828292 + 0.560297i \(0.189313\pi\)
−0.828292 + 0.560297i \(0.810687\pi\)
\(444\) 0 0
\(445\) 1.73787 0.0823831
\(446\) 0 0
\(447\) 19.6866 0.931146
\(448\) 0 0
\(449\) −17.9706 −0.848083 −0.424042 0.905643i \(-0.639389\pi\)
−0.424042 + 0.905643i \(0.639389\pi\)
\(450\) 0 0
\(451\) 2.16148 + 17.1716i 0.101780 + 0.808578i
\(452\) 0 0
\(453\) 21.9607i 1.03181i
\(454\) 0 0
\(455\) 33.0329i 1.54861i
\(456\) 0 0
\(457\) 32.9066i 1.53930i −0.638463 0.769652i \(-0.720430\pi\)
0.638463 0.769652i \(-0.279570\pi\)
\(458\) 0 0
\(459\) 0.564588 0.0263527
\(460\) 0 0
\(461\) 15.5286i 0.723239i 0.932326 + 0.361619i \(0.117776\pi\)
−0.932326 + 0.361619i \(0.882224\pi\)
\(462\) 0 0
\(463\) 14.7786i 0.686820i 0.939186 + 0.343410i \(0.111582\pi\)
−0.939186 + 0.343410i \(0.888418\pi\)
\(464\) 0 0
\(465\) 40.7990 1.89201
\(466\) 0 0
\(467\) 21.9289i 1.01475i −0.861725 0.507375i \(-0.830616\pi\)
0.861725 0.507375i \(-0.169384\pi\)
\(468\) 0 0
\(469\) 18.3545i 0.847532i
\(470\) 0 0
\(471\) 37.2285i 1.71540i
\(472\) 0 0
\(473\) 30.6274 3.85525i 1.40825 0.177264i
\(474\) 0 0
\(475\) 6.58132 0.301971
\(476\) 0 0
\(477\) 21.1660 0.969125
\(478\) 0 0
\(479\) −32.5509 −1.48729 −0.743645 0.668575i \(-0.766905\pi\)
−0.743645 + 0.668575i \(0.766905\pi\)
\(480\) 0 0
\(481\) 55.6105i 2.53562i
\(482\) 0 0
\(483\) −6.01673 −0.273771
\(484\) 0 0
\(485\) 25.0957 1.13954
\(486\) 0 0
\(487\) 10.7710i 0.488082i −0.969765 0.244041i \(-0.921527\pi\)
0.969765 0.244041i \(-0.0784732\pi\)
\(488\) 0 0
\(489\) −17.3137 −0.782953
\(490\) 0 0
\(491\) 37.2295 1.68015 0.840073 0.542474i \(-0.182512\pi\)
0.840073 + 0.542474i \(0.182512\pi\)
\(492\) 0 0
\(493\) 6.19938 0.279206
\(494\) 0 0
\(495\) 24.6250 3.09969i 1.10681 0.139321i
\(496\) 0 0
\(497\) 2.49221i 0.111791i
\(498\) 0 0
\(499\) 1.51472i 0.0678081i −0.999425 0.0339041i \(-0.989206\pi\)
0.999425 0.0339041i \(-0.0107941\pi\)
\(500\) 0 0
\(501\) 25.5670i 1.14225i
\(502\) 0 0
\(503\) −15.5286 −0.692386 −0.346193 0.938163i \(-0.612526\pi\)
−0.346193 + 0.938163i \(0.612526\pi\)
\(504\) 0 0
\(505\) 19.5101i 0.868187i
\(506\) 0 0
\(507\) 41.3848i 1.83796i
\(508\) 0 0
\(509\) −9.22119 −0.408722 −0.204361 0.978896i \(-0.565512\pi\)
−0.204361 + 0.978896i \(0.565512\pi\)
\(510\) 0 0
\(511\) 18.0663i 0.799207i
\(512\) 0 0
\(513\) 1.36303i 0.0601795i
\(514\) 0 0
\(515\) 8.20101i 0.361380i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −53.0179 −2.32723
\(520\) 0 0
\(521\) −42.1127 −1.84499 −0.922495 0.386008i \(-0.873854\pi\)
−0.922495 + 0.386008i \(0.873854\pi\)
\(522\) 0 0
\(523\) 31.2128 1.36484 0.682421 0.730960i \(-0.260927\pi\)
0.682421 + 0.730960i \(0.260927\pi\)
\(524\) 0 0
\(525\) 10.9804i 0.479223i
\(526\) 0 0
\(527\) 8.70626 0.379251
\(528\) 0 0
\(529\) 21.7990 0.947782
\(530\) 0 0
\(531\) 14.8284i 0.643499i
\(532\) 0 0
\(533\) 28.6493 1.24094
\(534\) 0 0
\(535\) −15.9188 −0.688228
\(536\) 0 0
\(537\) −37.9706 −1.63855
\(538\) 0 0
\(539\) −6.01673 + 0.757359i −0.259159 + 0.0326218i
\(540\) 0 0
\(541\) 7.37412i 0.317038i 0.987356 + 0.158519i \(0.0506719\pi\)
−0.987356 + 0.158519i \(0.949328\pi\)
\(542\) 0 0
\(543\) 6.38741i 0.274110i
\(544\) 0 0
\(545\) 29.0513i 1.24442i
\(546\) 0 0
\(547\) 33.3743 1.42698 0.713491 0.700664i \(-0.247113\pi\)
0.713491 + 0.700664i \(0.247113\pi\)
\(548\) 0 0
\(549\) 12.8643i 0.549035i
\(550\) 0 0
\(551\) 14.9666i 0.637600i
\(552\) 0 0
\(553\) 14.6274 0.622021
\(554\) 0 0
\(555\) 64.6985i 2.74630i
\(556\) 0 0
\(557\) 2.82590i 0.119737i 0.998206 + 0.0598686i \(0.0190682\pi\)
−0.998206 + 0.0598686i \(0.980932\pi\)
\(558\) 0 0
\(559\) 51.0993i 2.16127i
\(560\) 0 0
\(561\) 10.8284 1.36303i 0.457177 0.0575474i
\(562\) 0 0
\(563\) 35.6326 1.50174 0.750868 0.660452i \(-0.229635\pi\)
0.750868 + 0.660452i \(0.229635\pi\)
\(564\) 0 0
\(565\) −31.2951 −1.31659
\(566\) 0 0
\(567\) 21.5706 0.905879
\(568\) 0 0
\(569\) 22.4700i 0.941992i 0.882135 + 0.470996i \(0.156105\pi\)
−0.882135 + 0.470996i \(0.843895\pi\)
\(570\) 0 0
\(571\) 5.45214 0.228165 0.114082 0.993471i \(-0.463607\pi\)
0.114082 + 0.993471i \(0.463607\pi\)
\(572\) 0 0
\(573\) 22.9039 0.956823
\(574\) 0 0
\(575\) 2.19181i 0.0914049i
\(576\) 0 0
\(577\) 13.6274 0.567317 0.283658 0.958925i \(-0.408452\pi\)
0.283658 + 0.958925i \(0.408452\pi\)
\(578\) 0 0
\(579\) −44.9400 −1.86764
\(580\) 0 0
\(581\) −14.9666 −0.620920
\(582\) 0 0
\(583\) −24.6250 + 3.09969i −1.01986 + 0.128376i
\(584\) 0 0
\(585\) 41.0848i 1.69865i
\(586\) 0 0
\(587\) 26.2843i 1.08487i 0.840098 + 0.542434i \(0.182497\pi\)
−0.840098 + 0.542434i \(0.817503\pi\)
\(588\) 0 0
\(589\) 21.0188i 0.866064i
\(590\) 0 0
\(591\) −48.4697 −1.99378
\(592\) 0 0
\(593\) 15.8887i 0.652471i 0.945289 + 0.326235i \(0.105780\pi\)
−0.945289 + 0.326235i \(0.894220\pi\)
\(594\) 0 0
\(595\) 8.20101i 0.336209i
\(596\) 0 0
\(597\) −51.0993 −2.09135
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 38.1249i 1.55515i −0.628793 0.777573i \(-0.716451\pi\)
0.628793 0.777573i \(-0.283549\pi\)
\(602\) 0 0
\(603\) 22.8284i 0.929645i
\(604\) 0 0
\(605\) −28.1954 + 7.21250i −1.14631 + 0.293230i
\(606\) 0 0
\(607\) −7.21250 −0.292746 −0.146373 0.989229i \(-0.546760\pi\)
−0.146373 + 0.989229i \(0.546760\pi\)
\(608\) 0 0
\(609\) 24.9706 1.01186
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 45.8054i 1.85006i 0.379890 + 0.925032i \(0.375962\pi\)
−0.379890 + 0.925032i \(0.624038\pi\)
\(614\) 0 0
\(615\) 33.3313 1.34405
\(616\) 0 0
\(617\) 29.1127 1.17203 0.586017 0.810299i \(-0.300695\pi\)
0.586017 + 0.810299i \(0.300695\pi\)
\(618\) 0 0
\(619\) 33.5269i 1.34756i −0.738932 0.673780i \(-0.764669\pi\)
0.738932 0.673780i \(-0.235331\pi\)
\(620\) 0 0
\(621\) 0.453939 0.0182160
\(622\) 0 0
\(623\) 1.49376 0.0598462
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 3.29066 + 26.1421i 0.131416 + 1.04402i
\(628\) 0 0
\(629\) 13.8063i 0.550492i
\(630\) 0 0
\(631\) 4.19560i 0.167024i −0.996507 0.0835120i \(-0.973386\pi\)
0.996507 0.0835120i \(-0.0266137\pi\)
\(632\) 0 0
\(633\) 31.7774i 1.26304i
\(634\) 0 0
\(635\) −35.0681 −1.39163
\(636\) 0 0
\(637\) 10.0384i 0.397736i
\(638\) 0 0
\(639\) 3.09969i 0.122622i
\(640\) 0 0
\(641\) −12.1716 −0.480748 −0.240374 0.970680i \(-0.577270\pi\)
−0.240374 + 0.970680i \(0.577270\pi\)
\(642\) 0 0
\(643\) 37.3848i 1.47431i −0.675723 0.737156i \(-0.736168\pi\)
0.675723 0.737156i \(-0.263832\pi\)
\(644\) 0 0
\(645\) 59.4501i 2.34084i
\(646\) 0 0
\(647\) 28.8374i 1.13371i −0.823816 0.566857i \(-0.808159\pi\)
0.823816 0.566857i \(-0.191841\pi\)
\(648\) 0 0
\(649\) −2.17157 17.2517i −0.0852417 0.677190i
\(650\) 0 0
\(651\) 35.0681 1.37443
\(652\) 0 0
\(653\) −21.6199 −0.846054 −0.423027 0.906117i \(-0.639032\pi\)
−0.423027 + 0.906117i \(0.639032\pi\)
\(654\) 0 0
\(655\) 26.1188 1.02055
\(656\) 0 0
\(657\) 22.4700i 0.876639i
\(658\) 0 0
\(659\) 2.72607 0.106193 0.0530963 0.998589i \(-0.483091\pi\)
0.0530963 + 0.998589i \(0.483091\pi\)
\(660\) 0 0
\(661\) −17.6124 −0.685042 −0.342521 0.939510i \(-0.611281\pi\)
−0.342521 + 0.939510i \(0.611281\pi\)
\(662\) 0 0
\(663\) 18.0663i 0.701638i
\(664\) 0 0
\(665\) 19.7990 0.767772
\(666\) 0 0
\(667\) 4.98442 0.192998
\(668\) 0 0
\(669\) −28.1954 −1.09010
\(670\) 0 0
\(671\) −1.88393 14.9666i −0.0727285 0.577780i
\(672\) 0 0
\(673\) 36.7618i 1.41706i −0.705679 0.708532i \(-0.749358\pi\)
0.705679 0.708532i \(-0.250642\pi\)
\(674\) 0 0
\(675\) 0.828427i 0.0318862i
\(676\) 0 0
\(677\) 21.0188i 0.807817i −0.914799 0.403909i \(-0.867651\pi\)
0.914799 0.403909i \(-0.132349\pi\)
\(678\) 0 0
\(679\) 21.5706 0.827802
\(680\) 0 0
\(681\) 1.36303i 0.0522316i
\(682\) 0 0
\(683\) 48.4264i 1.85298i 0.376313 + 0.926492i \(0.377192\pi\)
−0.376313 + 0.926492i \(0.622808\pi\)
\(684\) 0 0
\(685\) 7.02938 0.268579
\(686\) 0 0
\(687\) 11.6789i 0.445578i
\(688\) 0 0
\(689\) 41.0848i 1.56521i
\(690\) 0 0
\(691\) 17.2426i 0.655941i 0.944688 + 0.327970i \(0.106365\pi\)
−0.944688 + 0.327970i \(0.893635\pi\)
\(692\) 0 0
\(693\) 21.1660 2.66428i 0.804030 0.101208i
\(694\) 0 0
\(695\) 23.1313 0.877419
\(696\) 0 0
\(697\) 7.11270 0.269413
\(698\) 0 0
\(699\) −60.8287 −2.30075
\(700\) 0 0
\(701\) 50.1920i 1.89573i −0.318677 0.947863i \(-0.603239\pi\)
0.318677 0.947863i \(-0.396761\pi\)
\(702\) 0 0
\(703\) 33.3313 1.25711
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.7696i 0.630684i
\(708\) 0 0
\(709\) −1.36182 −0.0511441 −0.0255721 0.999673i \(-0.508141\pi\)
−0.0255721 + 0.999673i \(0.508141\pi\)
\(710\) 0 0
\(711\) 18.1929 0.682286
\(712\) 0 0
\(713\) 7.00000 0.262152
\(714\) 0 0
\(715\) 6.01673 + 47.7990i 0.225013 + 1.78758i
\(716\) 0 0
\(717\) 53.0179i 1.97999i
\(718\) 0 0
\(719\) 42.5200i 1.58573i 0.609397 + 0.792865i \(0.291412\pi\)
−0.609397 + 0.792865i \(0.708588\pi\)
\(720\) 0 0
\(721\) 7.04903i 0.262520i
\(722\) 0 0
\(723\) 15.8887 0.590907
\(724\) 0 0
\(725\) 9.09644i 0.337833i
\(726\) 0 0
\(727\) 13.8707i 0.514437i −0.966353 0.257218i \(-0.917194\pi\)
0.966353 0.257218i \(-0.0828060\pi\)
\(728\) 0 0
\(729\) 23.8284 0.882534
\(730\) 0 0
\(731\) 12.6863i 0.469219i
\(732\) 0 0
\(733\) 44.7018i 1.65110i −0.564329 0.825550i \(-0.690865\pi\)
0.564329 0.825550i \(-0.309135\pi\)
\(734\) 0 0
\(735\) 11.6789i 0.430783i
\(736\) 0 0
\(737\) −3.34315 26.5591i −0.123146 0.978318i
\(738\) 0 0
\(739\) −42.6817 −1.57007 −0.785035 0.619451i \(-0.787355\pi\)
−0.785035 + 0.619451i \(0.787355\pi\)
\(740\) 0 0
\(741\) 43.6160 1.60227
\(742\) 0 0
\(743\) −8.31609 −0.305088 −0.152544 0.988297i \(-0.548747\pi\)
−0.152544 + 0.988297i \(0.548747\pi\)
\(744\) 0 0
\(745\) 21.5747i 0.790436i
\(746\) 0 0
\(747\) −18.6148 −0.681079
\(748\) 0 0
\(749\) −13.6827 −0.499955
\(750\) 0 0
\(751\) 29.7452i 1.08542i 0.839921 + 0.542709i \(0.182602\pi\)
−0.839921 + 0.542709i \(0.817398\pi\)
\(752\) 0 0
\(753\) −37.6274 −1.37122
\(754\) 0 0
\(755\) −24.0669 −0.875885
\(756\) 0 0
\(757\) 13.6827 0.497306 0.248653 0.968593i \(-0.420012\pi\)
0.248653 + 0.968593i \(0.420012\pi\)
\(758\) 0 0
\(759\) 8.70626 1.09591i 0.316017 0.0397789i
\(760\) 0 0
\(761\) 17.2517i 0.625375i −0.949856 0.312687i \(-0.898771\pi\)
0.949856 0.312687i \(-0.101229\pi\)
\(762\) 0 0
\(763\) 24.9706i 0.903995i
\(764\) 0 0
\(765\) 10.2000i 0.368782i
\(766\) 0 0
\(767\) −28.7831 −1.03930
\(768\) 0 0
\(769\) 23.8331i 0.859442i −0.902962 0.429721i \(-0.858612\pi\)
0.902962 0.429721i \(-0.141388\pi\)
\(770\) 0 0
\(771\) 25.3137i 0.911651i
\(772\) 0 0
\(773\) 51.0993 1.83791 0.918956 0.394359i \(-0.129033\pi\)
0.918956 + 0.394359i \(0.129033\pi\)
\(774\) 0 0
\(775\) 12.7748i 0.458885i
\(776\) 0 0
\(777\) 55.6105i 1.99501i
\(778\) 0 0
\(779\) 17.1716i 0.615235i
\(780\) 0 0
\(781\) 0.453939 + 3.60625i 0.0162432 + 0.129042i
\(782\) 0 0
\(783\) −1.88393 −0.0673263
\(784\) 0 0
\(785\) −40.7990 −1.45618
\(786\) 0 0
\(787\) −8.17821 −0.291522 −0.145761 0.989320i \(-0.546563\pi\)
−0.145761 + 0.989320i \(0.546563\pi\)
\(788\) 0 0
\(789\) 0.941967i 0.0335349i
\(790\) 0 0
\(791\) −26.8991 −0.956423
\(792\) 0 0
\(793\) −24.9706 −0.886731
\(794\) 0 0
\(795\) 47.7990i 1.69526i
\(796\) 0 0
\(797\) −14.1366 −0.500745 −0.250373 0.968150i \(-0.580553\pi\)
−0.250373 + 0.968150i \(0.580553\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 1.85786 0.0656444
\(802\) 0 0
\(803\) 3.29066 + 26.1421i 0.116125 + 0.922536i
\(804\) 0 0
\(805\) 6.59377i 0.232400i
\(806\) 0 0
\(807\) 69.1656i 2.43474i
\(808\) 0 0
\(809\) 7.94435i 0.279308i 0.990200 + 0.139654i \(0.0445991\pi\)
−0.990200 + 0.139654i \(0.955401\pi\)
\(810\) 0 0
\(811\) −47.6661 −1.67378 −0.836892 0.547369i \(-0.815630\pi\)
−0.836892 + 0.547369i \(0.815630\pi\)
\(812\) 0 0
\(813\) 10.0384i 0.352062i
\(814\) 0 0
\(815\) 18.9742i 0.664637i
\(816\) 0 0
\(817\) 30.6274 1.07152
\(818\) 0 0
\(819\) 35.3137i 1.23396i
\(820\) 0 0
\(821\) 23.8447i 0.832185i −0.909322 0.416092i \(-0.863399\pi\)
0.909322 0.416092i \(-0.136601\pi\)
\(822\) 0 0
\(823\) 43.4279i 1.51380i −0.653529 0.756901i \(-0.726712\pi\)
0.653529 0.756901i \(-0.273288\pi\)
\(824\) 0 0
\(825\) 2.00000 + 15.8887i 0.0696311 + 0.553174i
\(826\) 0 0
\(827\) 1.03231 0.0358968 0.0179484 0.999839i \(-0.494287\pi\)
0.0179484 + 0.999839i \(0.494287\pi\)
\(828\) 0 0
\(829\) 26.9115 0.934673 0.467337 0.884079i \(-0.345214\pi\)
0.467337 + 0.884079i \(0.345214\pi\)
\(830\) 0 0
\(831\) 37.4893 1.30049
\(832\) 0 0
\(833\) 2.49221i 0.0863500i
\(834\) 0 0
\(835\) −28.0190 −0.969638
\(836\) 0 0
\(837\) −2.64575 −0.0914505
\(838\) 0 0
\(839\) 27.9295i 0.964233i 0.876107 + 0.482116i \(0.160132\pi\)
−0.876107 + 0.482116i \(0.839868\pi\)
\(840\) 0 0
\(841\) 8.31371 0.286680
\(842\) 0 0
\(843\) 22.4700 0.773908
\(844\) 0 0
\(845\) 45.3538 1.56022
\(846\) 0 0
\(847\) −24.2349 + 6.19938i −0.832719 + 0.213013i
\(848\) 0 0
\(849\) 38.3587i 1.31647i
\(850\) 0 0
\(851\) 11.1005i 0.380520i
\(852\) 0 0
\(853\) 14.4250i 0.493903i 0.969028 + 0.246951i \(0.0794288\pi\)
−0.969028 + 0.246951i \(0.920571\pi\)
\(854\) 0 0
\(855\) 24.6250 0.842158
\(856\) 0 0
\(857\) 5.45214i 0.186242i −0.995655 0.0931208i \(-0.970316\pi\)
0.995655 0.0931208i \(-0.0296843\pi\)
\(858\) 0 0
\(859\) 40.7574i 1.39062i −0.718708 0.695312i \(-0.755266\pi\)
0.718708 0.695312i \(-0.244734\pi\)
\(860\) 0 0
\(861\) 28.6493 0.976366
\(862\) 0 0
\(863\) 14.9666i 0.509470i −0.967011 0.254735i \(-0.918012\pi\)
0.967011 0.254735i \(-0.0819882\pi\)
\(864\) 0 0
\(865\) 58.1027i 1.97555i
\(866\) 0 0
\(867\) 36.5563i 1.24152i
\(868\) 0 0
\(869\) −21.1660 + 2.66428i −0.718008 + 0.0903797i
\(870\) 0 0
\(871\) −44.3117 −1.50144
\(872\) 0 0
\(873\) 26.8284 0.908005
\(874\) 0 0
\(875\) −18.0502 −0.610208
\(876\) 0 0
\(877\) 24.7866i 0.836985i −0.908220 0.418493i \(-0.862559\pi\)
0.908220 0.418493i \(-0.137441\pi\)
\(878\) 0 0
\(879\) −8.70626 −0.293655
\(880\) 0 0
\(881\) 23.4853 0.791239 0.395620 0.918414i \(-0.370530\pi\)
0.395620 + 0.918414i \(0.370530\pi\)
\(882\) 0 0
\(883\) 15.6569i 0.526895i 0.964674 + 0.263448i \(0.0848596\pi\)
−0.964674 + 0.263448i \(0.915140\pi\)
\(884\) 0 0
\(885\) −33.4869 −1.12565
\(886\) 0 0
\(887\) −32.1608 −1.07985 −0.539926 0.841712i \(-0.681548\pi\)
−0.539926 + 0.841712i \(0.681548\pi\)
\(888\) 0 0
\(889\) −30.1421 −1.01093
\(890\) 0 0
\(891\) −31.2128 + 3.92893i −1.04567 + 0.131624i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 41.6122i 1.39094i
\(896\) 0 0
\(897\) 14.5257i 0.484998i
\(898\) 0 0
\(899\) −29.0513 −0.968916
\(900\) 0 0
\(901\) 10.2000i 0.339812i
\(902\) 0 0
\(903\) 51.0993i 1.70048i
\(904\) 0 0
\(905\) −7.00000 −0.232688
\(906\) 0 0
\(907\) 50.4853i 1.67634i −0.545412 0.838168i \(-0.683627\pi\)
0.545412 0.838168i \(-0.316373\pi\)
\(908\) 0 0
\(909\) 20.8572i 0.691788i
\(910\) 0 0
\(911\) 44.8999i 1.48760i 0.668402 + 0.743800i \(0.266978\pi\)
−0.668402 + 0.743800i \(0.733022\pi\)
\(912\) 0 0
\(913\) 21.6569 2.72607i 0.716737 0.0902197i
\(914\) 0 0
\(915\) −29.0513 −0.960407
\(916\) 0 0
\(917\) 22.4499 0.741362
\(918\) 0 0
\(919\) −29.1732 −0.962337 −0.481168 0.876628i \(-0.659787\pi\)
−0.481168 + 0.876628i \(0.659787\pi\)
\(920\) 0 0
\(921\) 33.1404i 1.09201i
\(922\) 0 0
\(923\) 6.01673 0.198043
\(924\) 0 0
\(925\) 20.2581 0.666083
\(926\) 0 0
\(927\) 8.76725i 0.287954i
\(928\) 0 0
\(929\) 17.5147 0.574639 0.287320 0.957835i \(-0.407236\pi\)
0.287320 + 0.957835i \(0.407236\pi\)
\(930\) 0 0
\(931\) −6.01673 −0.197190
\(932\) 0 0
\(933\) −36.1326 −1.18293
\(934\) 0 0
\(935\) 1.49376 + 11.8669i 0.0488511 + 0.388090i
\(936\) 0 0
\(937\) 40.8509i 1.33454i −0.744815 0.667271i \(-0.767462\pi\)
0.744815 0.667271i \(-0.232538\pi\)
\(938\) 0 0
\(939\) 5.24264i 0.171087i
\(940\) 0 0
\(941\) 28.3929i 0.925582i −0.886467 0.462791i \(-0.846848\pi\)
0.886467 0.462791i \(-0.153152\pi\)
\(942\) 0 0
\(943\) 5.71874 0.186228
\(944\) 0 0
\(945\) 2.49221i 0.0810716i
\(946\) 0 0
\(947\) 21.5858i 0.701444i −0.936480 0.350722i \(-0.885936\pi\)
0.936480 0.350722i \(-0.114064\pi\)
\(948\) 0 0
\(949\) 43.6160 1.41583
\(950\) 0 0
\(951\) 1.09591i 0.0355372i
\(952\) 0 0
\(953\) 6.34746i 0.205614i 0.994701 + 0.102807i \(0.0327824\pi\)
−0.994701 + 0.102807i \(0.967218\pi\)
\(954\) 0 0
\(955\) 25.1005i 0.812233i
\(956\) 0 0
\(957\) −36.1326 + 4.54822i −1.16800 + 0.147023i
\(958\) 0 0
\(959\) 6.04198 0.195106
\(960\) 0 0
\(961\) −9.79899 −0.316096
\(962\) 0 0
\(963\) −17.0179 −0.548393
\(964\) 0 0
\(965\) 49.2501i 1.58542i
\(966\) 0 0
\(967\) 15.5286 0.499366 0.249683 0.968328i \(-0.419674\pi\)
0.249683 + 0.968328i \(0.419674\pi\)
\(968\) 0 0
\(969\) 10.8284 0.347859
\(970\) 0 0
\(971\) 54.8406i 1.75992i −0.475048 0.879960i \(-0.657569\pi\)
0.475048 0.879960i \(-0.342431\pi\)
\(972\) 0 0
\(973\) 19.8821 0.637390
\(974\) 0 0
\(975\) 26.5090 0.848966
\(976\) 0 0
\(977\) −0.372583 −0.0119200 −0.00595999 0.999982i \(-0.501897\pi\)
−0.00595999 + 0.999982i \(0.501897\pi\)
\(978\) 0 0
\(979\) −2.16148 + 0.272078i −0.0690813 + 0.00869565i
\(980\) 0 0
\(981\) 31.0572i 0.991579i
\(982\) 0 0
\(983\) 40.3282i 1.28627i 0.765752 + 0.643135i \(0.222367\pi\)
−0.765752 + 0.643135i \(0.777633\pi\)
\(984\) 0 0
\(985\) 53.1182i 1.69249i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.2000i 0.324342i
\(990\) 0 0
\(991\) 29.9333i 0.950861i 0.879753 + 0.475431i \(0.157708\pi\)
−0.879753 + 0.475431i \(0.842292\pi\)
\(992\) 0 0
\(993\) 9.48528 0.301006
\(994\) 0 0
\(995\) 56.0000i 1.77532i
\(996\) 0 0
\(997\) 6.59377i 0.208827i 0.994534 + 0.104413i \(0.0332965\pi\)
−0.994534 + 0.104413i \(0.966704\pi\)
\(998\) 0 0
\(999\) 4.19560i 0.132743i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2816.2.e.o.2815.13 16
4.3 odd 2 inner 2816.2.e.o.2815.2 16
8.3 odd 2 inner 2816.2.e.o.2815.16 16
8.5 even 2 inner 2816.2.e.o.2815.3 16
11.10 odd 2 inner 2816.2.e.o.2815.14 16
16.3 odd 4 352.2.g.b.175.7 8
16.5 even 4 352.2.g.b.175.6 8
16.11 odd 4 88.2.g.b.43.4 yes 8
16.13 even 4 88.2.g.b.43.6 yes 8
44.43 even 2 inner 2816.2.e.o.2815.1 16
48.5 odd 4 3168.2.h.g.2287.7 8
48.11 even 4 792.2.h.g.307.5 8
48.29 odd 4 792.2.h.g.307.3 8
48.35 even 4 3168.2.h.g.2287.2 8
88.21 odd 2 inner 2816.2.e.o.2815.4 16
88.43 even 2 inner 2816.2.e.o.2815.15 16
176.13 odd 20 968.2.k.g.403.4 32
176.21 odd 4 352.2.g.b.175.5 8
176.27 odd 20 968.2.k.g.723.4 32
176.29 odd 20 968.2.k.g.699.6 32
176.43 even 4 88.2.g.b.43.5 yes 8
176.59 odd 20 968.2.k.g.699.1 32
176.61 odd 20 968.2.k.g.723.7 32
176.75 odd 20 968.2.k.g.403.7 32
176.91 odd 20 968.2.k.g.475.6 32
176.93 even 20 968.2.k.g.723.2 32
176.107 even 20 968.2.k.g.475.3 32
176.109 odd 4 88.2.g.b.43.3 8
176.123 even 20 968.2.k.g.403.2 32
176.125 even 20 968.2.k.g.699.3 32
176.131 even 4 352.2.g.b.175.8 8
176.139 even 20 968.2.k.g.699.8 32
176.141 even 20 968.2.k.g.403.5 32
176.157 even 20 968.2.k.g.475.8 32
176.171 even 20 968.2.k.g.723.5 32
176.173 odd 20 968.2.k.g.475.1 32
528.131 odd 4 3168.2.h.g.2287.3 8
528.197 even 4 3168.2.h.g.2287.6 8
528.395 odd 4 792.2.h.g.307.4 8
528.461 even 4 792.2.h.g.307.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.g.b.43.3 8 176.109 odd 4
88.2.g.b.43.4 yes 8 16.11 odd 4
88.2.g.b.43.5 yes 8 176.43 even 4
88.2.g.b.43.6 yes 8 16.13 even 4
352.2.g.b.175.5 8 176.21 odd 4
352.2.g.b.175.6 8 16.5 even 4
352.2.g.b.175.7 8 16.3 odd 4
352.2.g.b.175.8 8 176.131 even 4
792.2.h.g.307.3 8 48.29 odd 4
792.2.h.g.307.4 8 528.395 odd 4
792.2.h.g.307.5 8 48.11 even 4
792.2.h.g.307.6 8 528.461 even 4
968.2.k.g.403.2 32 176.123 even 20
968.2.k.g.403.4 32 176.13 odd 20
968.2.k.g.403.5 32 176.141 even 20
968.2.k.g.403.7 32 176.75 odd 20
968.2.k.g.475.1 32 176.173 odd 20
968.2.k.g.475.3 32 176.107 even 20
968.2.k.g.475.6 32 176.91 odd 20
968.2.k.g.475.8 32 176.157 even 20
968.2.k.g.699.1 32 176.59 odd 20
968.2.k.g.699.3 32 176.125 even 20
968.2.k.g.699.6 32 176.29 odd 20
968.2.k.g.699.8 32 176.139 even 20
968.2.k.g.723.2 32 176.93 even 20
968.2.k.g.723.4 32 176.27 odd 20
968.2.k.g.723.5 32 176.171 even 20
968.2.k.g.723.7 32 176.61 odd 20
2816.2.e.o.2815.1 16 44.43 even 2 inner
2816.2.e.o.2815.2 16 4.3 odd 2 inner
2816.2.e.o.2815.3 16 8.5 even 2 inner
2816.2.e.o.2815.4 16 88.21 odd 2 inner
2816.2.e.o.2815.13 16 1.1 even 1 trivial
2816.2.e.o.2815.14 16 11.10 odd 2 inner
2816.2.e.o.2815.15 16 88.43 even 2 inner
2816.2.e.o.2815.16 16 8.3 odd 2 inner
3168.2.h.g.2287.2 8 48.35 even 4
3168.2.h.g.2287.3 8 528.131 odd 4
3168.2.h.g.2287.6 8 528.197 even 4
3168.2.h.g.2287.7 8 48.5 odd 4