Properties

Label 3168.2.h.i.2287.3
Level $3168$
Weight $2$
Character 3168.2287
Analytic conductor $25.297$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3168,2,Mod(2287,3168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3168.2287");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.3342602057661458415616.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 20x^{14} + 164x^{12} - 666x^{10} + 1300x^{8} - 924x^{6} + 273x^{4} + 404x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{26} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2287.3
Root \(0.946412 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 3168.2287
Dual form 3168.2.h.i.2287.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{5} -0.936426 q^{7} +(-3.09218 + 1.19935i) q^{11} +4.27156 q^{13} +3.33513i q^{17} -2.89560i q^{19} +5.12311i q^{23} +1.00000 q^{25} +6.60421 q^{29} -1.73642i q^{31} +1.87285i q^{35} +6.18435i q^{37} +1.46228i q^{41} -10.3128i q^{43} +6.00000i q^{47} -6.12311 q^{49} -8.24621i q^{53} +(2.39871 + 6.18435i) q^{55} +9.65719 q^{59} +9.06897 q^{61} -8.54312i q^{65} +10.2462 q^{67} +4.24621i q^{71} -13.2084i q^{73} +(2.89560 - 1.12311i) q^{77} +3.86098 q^{79} -2.39871i q^{83} +6.67026 q^{85} -3.47284 q^{89} -4.00000 q^{91} -5.79119 q^{95} +11.3693 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{25} - 32 q^{49} + 32 q^{67} - 64 q^{91} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.00000i 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) −0.936426 −0.353936 −0.176968 0.984217i \(-0.556629\pi\)
−0.176968 + 0.984217i \(0.556629\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.09218 + 1.19935i −0.932326 + 0.361618i
\(12\) 0 0
\(13\) 4.27156 1.18472 0.592359 0.805674i \(-0.298197\pi\)
0.592359 + 0.805674i \(0.298197\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.33513i 0.808888i 0.914563 + 0.404444i \(0.132535\pi\)
−0.914563 + 0.404444i \(0.867465\pi\)
\(18\) 0 0
\(19\) 2.89560i 0.664295i −0.943227 0.332148i \(-0.892227\pi\)
0.943227 0.332148i \(-0.107773\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.12311i 1.06824i 0.845408 + 0.534121i \(0.179357\pi\)
−0.845408 + 0.534121i \(0.820643\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.60421 1.22637 0.613185 0.789939i \(-0.289888\pi\)
0.613185 + 0.789939i \(0.289888\pi\)
\(30\) 0 0
\(31\) 1.73642i 0.311870i −0.987767 0.155935i \(-0.950161\pi\)
0.987767 0.155935i \(-0.0498391\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.87285i 0.316570i
\(36\) 0 0
\(37\) 6.18435i 1.01670i 0.861150 + 0.508351i \(0.169745\pi\)
−0.861150 + 0.508351i \(0.830255\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.46228i 0.228370i 0.993460 + 0.114185i \(0.0364256\pi\)
−0.993460 + 0.114185i \(0.963574\pi\)
\(42\) 0 0
\(43\) 10.3128i 1.57269i −0.617788 0.786345i \(-0.711971\pi\)
0.617788 0.786345i \(-0.288029\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.00000i 0.875190i 0.899172 + 0.437595i \(0.144170\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(48\) 0 0
\(49\) −6.12311 −0.874729
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.24621i 1.13270i −0.824163 0.566352i \(-0.808354\pi\)
0.824163 0.566352i \(-0.191646\pi\)
\(54\) 0 0
\(55\) 2.39871 + 6.18435i 0.323441 + 0.833898i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.65719 1.25726 0.628630 0.777705i \(-0.283616\pi\)
0.628630 + 0.777705i \(0.283616\pi\)
\(60\) 0 0
\(61\) 9.06897 1.16116 0.580581 0.814202i \(-0.302825\pi\)
0.580581 + 0.814202i \(0.302825\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.54312i 1.05964i
\(66\) 0 0
\(67\) 10.2462 1.25177 0.625887 0.779914i \(-0.284737\pi\)
0.625887 + 0.779914i \(0.284737\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.24621i 0.503933i 0.967736 + 0.251966i \(0.0810772\pi\)
−0.967736 + 0.251966i \(0.918923\pi\)
\(72\) 0 0
\(73\) 13.2084i 1.54593i −0.634450 0.772964i \(-0.718773\pi\)
0.634450 0.772964i \(-0.281227\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.89560 1.12311i 0.329984 0.127990i
\(78\) 0 0
\(79\) 3.86098 0.434395 0.217197 0.976128i \(-0.430308\pi\)
0.217197 + 0.976128i \(0.430308\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.39871i 0.263292i −0.991297 0.131646i \(-0.957974\pi\)
0.991297 0.131646i \(-0.0420262\pi\)
\(84\) 0 0
\(85\) 6.67026 0.723492
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.47284 −0.368120 −0.184060 0.982915i \(-0.558924\pi\)
−0.184060 + 0.982915i \(0.558924\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.79119 −0.594164
\(96\) 0 0
\(97\) 11.3693 1.15438 0.577190 0.816610i \(-0.304149\pi\)
0.577190 + 0.816610i \(0.304149\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.60421 −0.657143 −0.328571 0.944479i \(-0.606567\pi\)
−0.328571 + 0.944479i \(0.606567\pi\)
\(102\) 0 0
\(103\) 1.73642i 0.171095i −0.996334 0.0855473i \(-0.972736\pi\)
0.996334 0.0855473i \(-0.0272639\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.06897i 0.876730i −0.898797 0.438365i \(-0.855558\pi\)
0.898797 0.438365i \(-0.144442\pi\)
\(108\) 0 0
\(109\) −1.34700 −0.129019 −0.0645096 0.997917i \(-0.520548\pi\)
−0.0645096 + 0.997917i \(0.520548\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15.8415 −1.49025 −0.745124 0.666926i \(-0.767610\pi\)
−0.745124 + 0.666926i \(0.767610\pi\)
\(114\) 0 0
\(115\) 10.2462 0.955464
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.12311i 0.286295i
\(120\) 0 0
\(121\) 8.12311 7.41722i 0.738464 0.674293i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 16.1498 1.43306 0.716532 0.697554i \(-0.245728\pi\)
0.716532 + 0.697554i \(0.245728\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.8147i 1.11962i 0.828620 + 0.559812i \(0.189127\pi\)
−0.828620 + 0.559812i \(0.810873\pi\)
\(132\) 0 0
\(133\) 2.71151i 0.235118i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.8415 1.35343 0.676717 0.736243i \(-0.263402\pi\)
0.676717 + 0.736243i \(0.263402\pi\)
\(138\) 0 0
\(139\) 10.3128i 0.874722i −0.899286 0.437361i \(-0.855913\pi\)
0.899286 0.437361i \(-0.144087\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −13.2084 + 5.12311i −1.10454 + 0.428416i
\(144\) 0 0
\(145\) 13.2084i 1.09690i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.813015 −0.0666048 −0.0333024 0.999445i \(-0.510602\pi\)
−0.0333024 + 0.999445i \(0.510602\pi\)
\(150\) 0 0
\(151\) 20.9472 1.70466 0.852330 0.523004i \(-0.175189\pi\)
0.852330 + 0.523004i \(0.175189\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.47284 −0.278945
\(156\) 0 0
\(157\) 15.8415i 1.26429i −0.774849 0.632146i \(-0.782174\pi\)
0.774849 0.632146i \(-0.217826\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.79741i 0.378089i
\(162\) 0 0
\(163\) −12.4924 −0.978482 −0.489241 0.872149i \(-0.662726\pi\)
−0.489241 + 0.872149i \(0.662726\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.79119 0.448136 0.224068 0.974574i \(-0.428066\pi\)
0.224068 + 0.974574i \(0.428066\pi\)
\(168\) 0 0
\(169\) 5.24621 0.403555
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.813015 0.0618124 0.0309062 0.999522i \(-0.490161\pi\)
0.0309062 + 0.999522i \(0.490161\pi\)
\(174\) 0 0
\(175\) −0.936426 −0.0707872
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 8.89586i 0.661224i 0.943767 + 0.330612i \(0.107255\pi\)
−0.943767 + 0.330612i \(0.892745\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.3687 0.909365
\(186\) 0 0
\(187\) −4.00000 10.3128i −0.292509 0.754148i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.2462i 0.886105i −0.896496 0.443052i \(-0.853896\pi\)
0.896496 0.443052i \(-0.146104\pi\)
\(192\) 0 0
\(193\) 1.62603i 0.117044i 0.998286 + 0.0585221i \(0.0186388\pi\)
−0.998286 + 0.0585221i \(0.981361\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.3954 −0.883135 −0.441568 0.897228i \(-0.645577\pi\)
−0.441568 + 0.897228i \(0.645577\pi\)
\(198\) 0 0
\(199\) 14.1051i 0.999886i 0.866058 + 0.499943i \(0.166646\pi\)
−0.866058 + 0.499943i \(0.833354\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.18435 −0.434056
\(204\) 0 0
\(205\) 2.92456 0.204260
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.47284 + 8.95369i 0.240221 + 0.619340i
\(210\) 0 0
\(211\) 2.89560i 0.199341i −0.995020 0.0996705i \(-0.968221\pi\)
0.995020 0.0996705i \(-0.0317789\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −20.6256 −1.40666
\(216\) 0 0
\(217\) 1.62603i 0.110382i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.2462i 0.958304i
\(222\) 0 0
\(223\) 26.4738i 1.77282i 0.462902 + 0.886409i \(0.346808\pi\)
−0.462902 + 0.886409i \(0.653192\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 26.9764i 1.79048i −0.445581 0.895242i \(-0.647003\pi\)
0.445581 0.895242i \(-0.352997\pi\)
\(228\) 0 0
\(229\) 25.4987i 1.68500i 0.538693 + 0.842502i \(0.318918\pi\)
−0.538693 + 0.842502i \(0.681082\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.28343i 0.149592i −0.997199 0.0747961i \(-0.976169\pi\)
0.997199 0.0747961i \(-0.0238306\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.6256 1.33416 0.667081 0.744986i \(-0.267544\pi\)
0.667081 + 0.744986i \(0.267544\pi\)
\(240\) 0 0
\(241\) 28.0429i 1.80640i −0.429221 0.903199i \(-0.641212\pi\)
0.429221 0.903199i \(-0.358788\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.2462i 0.782382i
\(246\) 0 0
\(247\) 12.3687i 0.787002i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.47284 −0.219204 −0.109602 0.993976i \(-0.534958\pi\)
−0.109602 + 0.993976i \(0.534958\pi\)
\(252\) 0 0
\(253\) −6.14441 15.8415i −0.386296 0.995949i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.89586 −0.554909 −0.277454 0.960739i \(-0.589491\pi\)
−0.277454 + 0.960739i \(0.589491\pi\)
\(258\) 0 0
\(259\) 5.79119i 0.359847i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 32.2080 1.98603 0.993016 0.117984i \(-0.0376430\pi\)
0.993016 + 0.117984i \(0.0376430\pi\)
\(264\) 0 0
\(265\) −16.4924 −1.01312
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.246211i 0.0150118i −0.999972 0.00750588i \(-0.997611\pi\)
0.999972 0.00750588i \(-0.00238922\pi\)
\(270\) 0 0
\(271\) 5.73384 0.348306 0.174153 0.984719i \(-0.444281\pi\)
0.174153 + 0.984719i \(0.444281\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.09218 + 1.19935i −0.186465 + 0.0723237i
\(276\) 0 0
\(277\) 2.39871 0.144124 0.0720621 0.997400i \(-0.477042\pi\)
0.0720621 + 0.997400i \(0.477042\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.1671i 1.44169i 0.693098 + 0.720843i \(0.256245\pi\)
−0.693098 + 0.720843i \(0.743755\pi\)
\(282\) 0 0
\(283\) 17.7300i 1.05394i 0.849884 + 0.526971i \(0.176672\pi\)
−0.849884 + 0.526971i \(0.823328\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.36932i 0.0808282i
\(288\) 0 0
\(289\) 5.87689 0.345700
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 27.2298 1.59078 0.795392 0.606095i \(-0.207265\pi\)
0.795392 + 0.606095i \(0.207265\pi\)
\(294\) 0 0
\(295\) 19.3144i 1.12453i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 21.8836i 1.26556i
\(300\) 0 0
\(301\) 9.65719i 0.556631i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 18.1379i 1.03858i
\(306\) 0 0
\(307\) 4.52162i 0.258063i −0.991641 0.129031i \(-0.958813\pi\)
0.991641 0.129031i \(-0.0411868\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.1231i 0.744143i −0.928204 0.372072i \(-0.878648\pi\)
0.928204 0.372072i \(-0.121352\pi\)
\(312\) 0 0
\(313\) −5.12311 −0.289575 −0.144788 0.989463i \(-0.546250\pi\)
−0.144788 + 0.989463i \(0.546250\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.4924i 1.26330i 0.775254 + 0.631650i \(0.217622\pi\)
−0.775254 + 0.631650i \(0.782378\pi\)
\(318\) 0 0
\(319\) −20.4214 + 7.92077i −1.14338 + 0.443478i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.65719 0.537341
\(324\) 0 0
\(325\) 4.27156 0.236943
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.61856i 0.309761i
\(330\) 0 0
\(331\) −1.75379 −0.0963969 −0.0481985 0.998838i \(-0.515348\pi\)
−0.0481985 + 0.998838i \(0.515348\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 20.4924i 1.11962i
\(336\) 0 0
\(337\) 24.7908i 1.35044i 0.737616 + 0.675220i \(0.235951\pi\)
−0.737616 + 0.675220i \(0.764049\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.08258 + 5.36932i 0.112778 + 0.290765i
\(342\) 0 0
\(343\) 12.2888 0.663534
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.5366i 1.10246i 0.834352 + 0.551232i \(0.185842\pi\)
−0.834352 + 0.551232i \(0.814158\pi\)
\(348\) 0 0
\(349\) 31.7738 1.70081 0.850405 0.526128i \(-0.176357\pi\)
0.850405 + 0.526128i \(0.176357\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.3687 −0.658320 −0.329160 0.944274i \(-0.606765\pi\)
−0.329160 + 0.944274i \(0.606765\pi\)
\(354\) 0 0
\(355\) 8.49242 0.450731
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.04325 0.477284 0.238642 0.971108i \(-0.423298\pi\)
0.238642 + 0.971108i \(0.423298\pi\)
\(360\) 0 0
\(361\) 10.6155 0.558712
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −26.4168 −1.38272
\(366\) 0 0
\(367\) 29.9467i 1.56320i −0.623778 0.781602i \(-0.714403\pi\)
0.623778 0.781602i \(-0.285597\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.72197i 0.400905i
\(372\) 0 0
\(373\) −11.9935 −0.621001 −0.310501 0.950573i \(-0.600497\pi\)
−0.310501 + 0.950573i \(0.600497\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 28.2102 1.45290
\(378\) 0 0
\(379\) 14.2462 0.731779 0.365889 0.930658i \(-0.380765\pi\)
0.365889 + 0.930658i \(0.380765\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.630683i 0.0322264i −0.999870 0.0161132i \(-0.994871\pi\)
0.999870 0.0161132i \(-0.00512921\pi\)
\(384\) 0 0
\(385\) −2.24621 5.79119i −0.114478 0.295146i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.4924i 1.54603i 0.634389 + 0.773014i \(0.281252\pi\)
−0.634389 + 0.773014i \(0.718748\pi\)
\(390\) 0 0
\(391\) −17.0862 −0.864088
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.72197i 0.388534i
\(396\) 0 0
\(397\) 18.5531i 0.931151i −0.885008 0.465576i \(-0.845847\pi\)
0.885008 0.465576i \(-0.154153\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.7374 −1.23533 −0.617664 0.786442i \(-0.711921\pi\)
−0.617664 + 0.786442i \(0.711921\pi\)
\(402\) 0 0
\(403\) 7.41722i 0.369478i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.41722 19.1231i −0.367658 0.947897i
\(408\) 0 0
\(409\) 26.4168i 1.30623i 0.757260 + 0.653114i \(0.226538\pi\)
−0.757260 + 0.653114i \(0.773462\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.04325 −0.444989
\(414\) 0 0
\(415\) −4.79741 −0.235496
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.47284 −0.169659 −0.0848297 0.996395i \(-0.527035\pi\)
−0.0848297 + 0.996395i \(0.527035\pi\)
\(420\) 0 0
\(421\) 15.8415i 0.772070i −0.922484 0.386035i \(-0.873844\pi\)
0.922484 0.386035i \(-0.126156\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.33513i 0.161778i
\(426\) 0 0
\(427\) −8.49242 −0.410977
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.5824 0.557904 0.278952 0.960305i \(-0.410013\pi\)
0.278952 + 0.960305i \(0.410013\pi\)
\(432\) 0 0
\(433\) −6.87689 −0.330482 −0.165241 0.986253i \(-0.552840\pi\)
−0.165241 + 0.986253i \(0.552840\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.8344 0.709628
\(438\) 0 0
\(439\) −30.3115 −1.44669 −0.723344 0.690488i \(-0.757396\pi\)
−0.723344 + 0.690488i \(0.757396\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.18435 0.293827 0.146914 0.989149i \(-0.453066\pi\)
0.146914 + 0.989149i \(0.453066\pi\)
\(444\) 0 0
\(445\) 6.94568i 0.329257i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −28.2102 −1.33132 −0.665662 0.746253i \(-0.731851\pi\)
−0.665662 + 0.746253i \(0.731851\pi\)
\(450\) 0 0
\(451\) −1.75379 4.52162i −0.0825827 0.212915i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.00000i 0.375046i
\(456\) 0 0
\(457\) 11.5824i 0.541801i 0.962607 + 0.270900i \(0.0873214\pi\)
−0.962607 + 0.270900i \(0.912679\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −31.3950 −1.46221 −0.731105 0.682265i \(-0.760995\pi\)
−0.731105 + 0.682265i \(0.760995\pi\)
\(462\) 0 0
\(463\) 7.15944i 0.332728i −0.986064 0.166364i \(-0.946797\pi\)
0.986064 0.166364i \(-0.0532026\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.18435 −0.286178 −0.143089 0.989710i \(-0.545703\pi\)
−0.143089 + 0.989710i \(0.545703\pi\)
\(468\) 0 0
\(469\) −9.59482 −0.443048
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.3687 + 31.8890i 0.568714 + 1.46626i
\(474\) 0 0
\(475\) 2.89560i 0.132859i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −14.8344 −0.677803 −0.338901 0.940822i \(-0.610055\pi\)
−0.338901 + 0.940822i \(0.610055\pi\)
\(480\) 0 0
\(481\) 26.4168i 1.20450i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 22.7386i 1.03251i
\(486\) 0 0
\(487\) 21.0508i 0.953903i 0.878930 + 0.476952i \(0.158258\pi\)
−0.878930 + 0.476952i \(0.841742\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 29.9009i 1.34941i −0.738088 0.674705i \(-0.764271\pi\)
0.738088 0.674705i \(-0.235729\pi\)
\(492\) 0 0
\(493\) 22.0259i 0.991996i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.97626i 0.178360i
\(498\) 0 0
\(499\) −34.7386 −1.55511 −0.777557 0.628812i \(-0.783542\pi\)
−0.777557 + 0.628812i \(0.783542\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11.5824 −0.516433 −0.258216 0.966087i \(-0.583135\pi\)
−0.258216 + 0.966087i \(0.583135\pi\)
\(504\) 0 0
\(505\) 13.2084i 0.587767i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.0000i 0.443242i −0.975133 0.221621i \(-0.928865\pi\)
0.975133 0.221621i \(-0.0711348\pi\)
\(510\) 0 0
\(511\) 12.3687i 0.547159i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.47284 −0.153032
\(516\) 0 0
\(517\) −7.19612 18.5531i −0.316485 0.815962i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.7374 1.08377 0.541883 0.840454i \(-0.317712\pi\)
0.541883 + 0.840454i \(0.317712\pi\)
\(522\) 0 0
\(523\) 25.1473i 1.09961i 0.835292 + 0.549806i \(0.185298\pi\)
−0.835292 + 0.549806i \(0.814702\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.79119 0.252268
\(528\) 0 0
\(529\) −3.24621 −0.141140
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.24621i 0.270553i
\(534\) 0 0
\(535\) −18.1379 −0.784172
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.9337 7.34376i 0.815533 0.316318i
\(540\) 0 0
\(541\) −14.6875 −0.631466 −0.315733 0.948848i \(-0.602250\pi\)
−0.315733 + 0.948848i \(0.602250\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.69400i 0.115398i
\(546\) 0 0
\(547\) 23.5212i 1.00570i 0.864375 + 0.502848i \(0.167714\pi\)
−0.864375 + 0.502848i \(0.832286\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 19.1231i 0.814672i
\(552\) 0 0
\(553\) −3.61553 −0.153748
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 42.0643 1.78232 0.891160 0.453689i \(-0.149892\pi\)
0.891160 + 0.453689i \(0.149892\pi\)
\(558\) 0 0
\(559\) 44.0518i 1.86319i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.295294i 0.0124452i 0.999981 + 0.00622258i \(0.00198072\pi\)
−0.999981 + 0.00622258i \(0.998019\pi\)
\(564\) 0 0
\(565\) 31.6831i 1.33292i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.5830i 1.44980i −0.688856 0.724898i \(-0.741887\pi\)
0.688856 0.724898i \(-0.258113\pi\)
\(570\) 0 0
\(571\) 16.1040i 0.673932i 0.941517 + 0.336966i \(0.109401\pi\)
−0.941517 + 0.336966i \(0.890599\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.12311i 0.213648i
\(576\) 0 0
\(577\) 8.24621 0.343294 0.171647 0.985158i \(-0.445091\pi\)
0.171647 + 0.985158i \(0.445091\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.24621i 0.0931885i
\(582\) 0 0
\(583\) 9.89012 + 25.4987i 0.409607 + 1.05605i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −41.3403 −1.70630 −0.853148 0.521669i \(-0.825310\pi\)
−0.853148 + 0.521669i \(0.825310\pi\)
\(588\) 0 0
\(589\) −5.02797 −0.207174
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.4968i 0.718508i −0.933240 0.359254i \(-0.883031\pi\)
0.933240 0.359254i \(-0.116969\pi\)
\(594\) 0 0
\(595\) −6.24621 −0.256070
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.63068i 0.352640i 0.984333 + 0.176320i \(0.0564194\pi\)
−0.984333 + 0.176320i \(0.943581\pi\)
\(600\) 0 0
\(601\) 24.7908i 1.01124i −0.862757 0.505619i \(-0.831264\pi\)
0.862757 0.505619i \(-0.168736\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.8344 16.2462i −0.603106 0.660502i
\(606\) 0 0
\(607\) −43.8826 −1.78114 −0.890569 0.454848i \(-0.849694\pi\)
−0.890569 + 0.454848i \(0.849694\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 25.6294i 1.03685i
\(612\) 0 0
\(613\) −25.1035 −1.01392 −0.506960 0.861969i \(-0.669231\pi\)
−0.506960 + 0.861969i \(0.669231\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.5790 1.63365 0.816824 0.576888i \(-0.195733\pi\)
0.816824 + 0.576888i \(0.195733\pi\)
\(618\) 0 0
\(619\) 8.49242 0.341339 0.170670 0.985328i \(-0.445407\pi\)
0.170670 + 0.985328i \(0.445407\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.25206 0.130291
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −20.6256 −0.822398
\(630\) 0 0
\(631\) 26.4738i 1.05391i −0.849894 0.526953i \(-0.823334\pi\)
0.849894 0.526953i \(-0.176666\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 32.2996i 1.28177i
\(636\) 0 0
\(637\) −26.1552 −1.03631
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.42302 −0.214197 −0.107098 0.994248i \(-0.534156\pi\)
−0.107098 + 0.994248i \(0.534156\pi\)
\(642\) 0 0
\(643\) −36.9848 −1.45854 −0.729270 0.684226i \(-0.760140\pi\)
−0.729270 + 0.684226i \(0.760140\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 45.1231i 1.77397i 0.461796 + 0.886986i \(0.347205\pi\)
−0.461796 + 0.886986i \(0.652795\pi\)
\(648\) 0 0
\(649\) −29.8617 + 11.5824i −1.17218 + 0.454648i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.9848i 0.899466i −0.893163 0.449733i \(-0.851519\pi\)
0.893163 0.449733i \(-0.148481\pi\)
\(654\) 0 0
\(655\) 25.6294 1.00142
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.525853i 0.0204843i −0.999948 0.0102422i \(-0.996740\pi\)
0.999948 0.0102422i \(-0.00326024\pi\)
\(660\) 0 0
\(661\) 40.5790i 1.57834i −0.614176 0.789169i \(-0.710511\pi\)
0.614176 0.789169i \(-0.289489\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.42302 0.210296
\(666\) 0 0
\(667\) 33.8340i 1.31006i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −28.0429 + 10.8769i −1.08258 + 0.419898i
\(672\) 0 0
\(673\) 14.8344i 0.571826i 0.958256 + 0.285913i \(0.0922968\pi\)
−0.958256 + 0.285913i \(0.907703\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.6475 −0.601381 −0.300690 0.953722i \(-0.597217\pi\)
−0.300690 + 0.953722i \(0.597217\pi\)
\(678\) 0 0
\(679\) −10.6465 −0.408576
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10.4185 0.398654 0.199327 0.979933i \(-0.436124\pi\)
0.199327 + 0.979933i \(0.436124\pi\)
\(684\) 0 0
\(685\) 31.6831i 1.21055i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 35.2242i 1.34193i
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.6256 −0.782375
\(696\) 0 0
\(697\) −4.87689 −0.184726
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27.2298 1.02846 0.514228 0.857653i \(-0.328078\pi\)
0.514228 + 0.857653i \(0.328078\pi\)
\(702\) 0 0
\(703\) 17.9074 0.675390
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.18435 0.232586
\(708\) 0 0
\(709\) 18.5531i 0.696775i −0.937351 0.348387i \(-0.886729\pi\)
0.937351 0.348387i \(-0.113271\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.89586 0.333153
\(714\) 0 0
\(715\) 10.2462 + 26.4168i 0.383187 + 0.987933i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.9848i 0.558840i 0.960169 + 0.279420i \(0.0901422\pi\)
−0.960169 + 0.279420i \(0.909858\pi\)
\(720\) 0 0
\(721\) 1.62603i 0.0605565i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.60421 0.245274
\(726\) 0 0
\(727\) 14.1051i 0.523130i 0.965186 + 0.261565i \(0.0842386\pi\)
−0.965186 + 0.261565i \(0.915761\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 34.3946 1.27213
\(732\) 0 0
\(733\) −37.6229 −1.38963 −0.694816 0.719187i \(-0.744514\pi\)
−0.694816 + 0.719187i \(0.744514\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −31.6831 + 12.2888i −1.16706 + 0.452665i
\(738\) 0 0
\(739\) 14.4780i 0.532581i 0.963893 + 0.266290i \(0.0857980\pi\)
−0.963893 + 0.266290i \(0.914202\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −41.2513 −1.51336 −0.756681 0.653784i \(-0.773180\pi\)
−0.756681 + 0.653784i \(0.773180\pi\)
\(744\) 0 0
\(745\) 1.62603i 0.0595731i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.49242i 0.310306i
\(750\) 0 0
\(751\) 24.5236i 0.894881i 0.894314 + 0.447440i \(0.147664\pi\)
−0.894314 + 0.447440i \(0.852336\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 41.8944i 1.52469i
\(756\) 0 0
\(757\) 22.7872i 0.828216i 0.910228 + 0.414108i \(0.135906\pi\)
−0.910228 + 0.414108i \(0.864094\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29.1950i 1.05832i 0.848522 + 0.529160i \(0.177493\pi\)
−0.848522 + 0.529160i \(0.822507\pi\)
\(762\) 0 0
\(763\) 1.26137 0.0456645
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 41.2513 1.48950
\(768\) 0 0
\(769\) 39.6252i 1.42892i 0.699675 + 0.714461i \(0.253328\pi\)
−0.699675 + 0.714461i \(0.746672\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 49.2311i 1.77072i −0.464908 0.885359i \(-0.653913\pi\)
0.464908 0.885359i \(-0.346087\pi\)
\(774\) 0 0
\(775\) 1.73642i 0.0623741i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.23417 0.151705
\(780\) 0 0
\(781\) −5.09271 13.1300i −0.182231 0.469830i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −31.6831 −1.13082
\(786\) 0 0
\(787\) 48.3120i 1.72214i 0.508489 + 0.861069i \(0.330204\pi\)
−0.508489 + 0.861069i \(0.669796\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 14.8344 0.527452
\(792\) 0 0
\(793\) 38.7386 1.37565
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.7538i 0.416341i −0.978093 0.208170i \(-0.933249\pi\)
0.978093 0.208170i \(-0.0667508\pi\)
\(798\) 0 0
\(799\) −20.0108 −0.707931
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 15.8415 + 40.8427i 0.559036 + 1.44131i
\(804\) 0 0
\(805\) −9.59482 −0.338173
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 48.1541i 1.69301i 0.532382 + 0.846504i \(0.321297\pi\)
−0.532382 + 0.846504i \(0.678703\pi\)
\(810\) 0 0
\(811\) 30.9384i 1.08640i −0.839605 0.543198i \(-0.817213\pi\)
0.839605 0.543198i \(-0.182787\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24.9848i 0.875181i
\(816\) 0 0
\(817\) −29.8617 −1.04473
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.8559 1.00708 0.503538 0.863973i \(-0.332031\pi\)
0.503538 + 0.863973i \(0.332031\pi\)
\(822\) 0 0
\(823\) 47.7384i 1.66406i −0.554734 0.832028i \(-0.687180\pi\)
0.554734 0.832028i \(-0.312820\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 51.7846i 1.80073i 0.435140 + 0.900363i \(0.356699\pi\)
−0.435140 + 0.900363i \(0.643301\pi\)
\(828\) 0 0
\(829\) 25.4987i 0.885608i 0.896618 + 0.442804i \(0.146016\pi\)
−0.896618 + 0.442804i \(0.853984\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 20.4214i 0.707558i
\(834\) 0 0
\(835\) 11.5824i 0.400825i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.8769i 0.651703i −0.945421 0.325851i \(-0.894349\pi\)
0.945421 0.325851i \(-0.105651\pi\)
\(840\) 0 0
\(841\) 14.6155 0.503984
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.4924i 0.360950i
\(846\) 0 0
\(847\) −7.60669 + 6.94568i −0.261369 + 0.238656i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −31.6831 −1.08608
\(852\) 0 0
\(853\) −17.3815 −0.595132 −0.297566 0.954701i \(-0.596175\pi\)
−0.297566 + 0.954701i \(0.596175\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.0571i 0.377703i 0.982006 + 0.188852i \(0.0604765\pi\)
−0.982006 + 0.188852i \(0.939523\pi\)
\(858\) 0 0
\(859\) −24.0000 −0.818869 −0.409435 0.912339i \(-0.634274\pi\)
−0.409435 + 0.912339i \(0.634274\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 48.3542i 1.64599i 0.568045 + 0.822997i \(0.307700\pi\)
−0.568045 + 0.822997i \(0.692300\pi\)
\(864\) 0 0
\(865\) 1.62603i 0.0552867i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.9388 + 4.63068i −0.404998 + 0.157085i
\(870\) 0 0
\(871\) 43.7673 1.48300
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11.2371i 0.379884i
\(876\) 0 0
\(877\) −50.1423 −1.69318 −0.846592 0.532243i \(-0.821349\pi\)
−0.846592 + 0.532243i \(0.821349\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −37.1061 −1.25014 −0.625068 0.780570i \(-0.714929\pi\)
−0.625068 + 0.780570i \(0.714929\pi\)
\(882\) 0 0
\(883\) −5.75379 −0.193630 −0.0968152 0.995302i \(-0.530866\pi\)
−0.0968152 + 0.995302i \(0.530866\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29.6689 0.996184 0.498092 0.867124i \(-0.334034\pi\)
0.498092 + 0.867124i \(0.334034\pi\)
\(888\) 0 0
\(889\) −15.1231 −0.507213
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 17.3736 0.581384
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11.4677i 0.382468i
\(900\) 0 0
\(901\) 27.5022 0.916231
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 17.7917 0.591417
\(906\) 0 0
\(907\) −30.7386 −1.02066 −0.510330 0.859979i \(-0.670477\pi\)
−0.510330 + 0.859979i \(0.670477\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48.7386i 1.61478i −0.590016 0.807391i \(-0.700879\pi\)
0.590016 0.807391i \(-0.299121\pi\)
\(912\) 0 0
\(913\) 2.87689 + 7.41722i 0.0952113 + 0.245474i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) −33.2360 −1.09636 −0.548178 0.836362i \(-0.684678\pi\)
−0.548178 + 0.836362i \(0.684678\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 18.1379i 0.597018i
\(924\) 0 0
\(925\) 6.18435i 0.203340i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.2102 −0.925548 −0.462774 0.886476i \(-0.653146\pi\)
−0.462774 + 0.886476i \(0.653146\pi\)
\(930\) 0 0
\(931\) 17.7300i 0.581078i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −20.6256 + 8.00000i −0.674530 + 0.261628i
\(936\) 0 0
\(937\) 14.8344i 0.484620i −0.970199 0.242310i \(-0.922095\pi\)
0.970199 0.242310i \(-0.0779051\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −15.6475 −0.510092 −0.255046 0.966929i \(-0.582091\pi\)
−0.255046 + 0.966929i \(0.582091\pi\)
\(942\) 0 0
\(943\) −7.49141 −0.243954
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.94568 0.225704 0.112852 0.993612i \(-0.464001\pi\)
0.112852 + 0.993612i \(0.464001\pi\)
\(948\) 0 0
\(949\) 56.4205i 1.83149i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 43.9473i 1.42359i −0.702386 0.711796i \(-0.747882\pi\)
0.702386 0.711796i \(-0.252118\pi\)
\(954\) 0 0
\(955\) −24.4924 −0.792556
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14.8344 −0.479029
\(960\) 0 0
\(961\) 27.9848 0.902737
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.25206 0.104687
\(966\) 0 0
\(967\) −26.7963 −0.861712 −0.430856 0.902421i \(-0.641788\pi\)
−0.430856 + 0.902421i \(0.641788\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −30.9218 −0.992327 −0.496163 0.868229i \(-0.665258\pi\)
−0.496163 + 0.868229i \(0.665258\pi\)
\(972\) 0 0
\(973\) 9.65719i 0.309595i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −30.1604 −0.964918 −0.482459 0.875919i \(-0.660256\pi\)
−0.482459 + 0.875919i \(0.660256\pi\)
\(978\) 0 0
\(979\) 10.7386 4.16516i 0.343208 0.133119i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 47.3693i 1.51085i 0.655237 + 0.755423i \(0.272569\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(984\) 0 0
\(985\) 24.7908i 0.789900i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 52.8336 1.68001
\(990\) 0 0
\(991\) 47.7384i 1.51646i 0.651987 + 0.758230i \(0.273936\pi\)
−0.651987 + 0.758230i \(0.726064\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 28.2102 0.894325
\(996\) 0 0
\(997\) 28.0281 0.887657 0.443829 0.896112i \(-0.353620\pi\)
0.443829 + 0.896112i \(0.353620\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.h.i.2287.3 16
3.2 odd 2 inner 3168.2.h.i.2287.12 16
4.3 odd 2 792.2.h.i.307.11 yes 16
8.3 odd 2 inner 3168.2.h.i.2287.13 16
8.5 even 2 792.2.h.i.307.8 yes 16
11.10 odd 2 inner 3168.2.h.i.2287.5 16
12.11 even 2 792.2.h.i.307.6 yes 16
24.5 odd 2 792.2.h.i.307.9 yes 16
24.11 even 2 inner 3168.2.h.i.2287.6 16
33.32 even 2 inner 3168.2.h.i.2287.14 16
44.43 even 2 792.2.h.i.307.5 16
88.21 odd 2 792.2.h.i.307.10 yes 16
88.43 even 2 inner 3168.2.h.i.2287.11 16
132.131 odd 2 792.2.h.i.307.12 yes 16
264.131 odd 2 inner 3168.2.h.i.2287.4 16
264.197 even 2 792.2.h.i.307.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.h.i.307.5 16 44.43 even 2
792.2.h.i.307.6 yes 16 12.11 even 2
792.2.h.i.307.7 yes 16 264.197 even 2
792.2.h.i.307.8 yes 16 8.5 even 2
792.2.h.i.307.9 yes 16 24.5 odd 2
792.2.h.i.307.10 yes 16 88.21 odd 2
792.2.h.i.307.11 yes 16 4.3 odd 2
792.2.h.i.307.12 yes 16 132.131 odd 2
3168.2.h.i.2287.3 16 1.1 even 1 trivial
3168.2.h.i.2287.4 16 264.131 odd 2 inner
3168.2.h.i.2287.5 16 11.10 odd 2 inner
3168.2.h.i.2287.6 16 24.11 even 2 inner
3168.2.h.i.2287.11 16 88.43 even 2 inner
3168.2.h.i.2287.12 16 3.2 odd 2 inner
3168.2.h.i.2287.13 16 8.3 odd 2 inner
3168.2.h.i.2287.14 16 33.32 even 2 inner