Properties

Label 3168.2.o.f.703.12
Level $3168$
Weight $2$
Character 3168.703
Analytic conductor $25.297$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3168,2,Mod(703,3168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3168.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.o (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.12
Character \(\chi\) \(=\) 3168.703
Dual form 3168.2.o.f.703.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.09364 q^{5} -0.221727 q^{7} +(-2.10394 + 2.56387i) q^{11} -3.84759i q^{13} +3.39691i q^{17} +5.17250 q^{19} -0.780070i q^{23} -3.80395 q^{25} -3.63940i q^{29} -3.14688i q^{31} +0.242490 q^{35} -3.14688 q^{37} +0.810970i q^{41} +2.07922 q^{43} +6.53495i q^{47} -6.95084 q^{49} +11.9763 q^{53} +(2.30095 - 2.80395i) q^{55} -5.75488i q^{59} -0.754311i q^{61} +4.20788i q^{65} -12.7548i q^{67} -8.72223i q^{71} -9.90155i q^{73} +(0.466500 - 0.568480i) q^{77} +7.47345 q^{79} +9.62224 q^{83} -3.71499i q^{85} -11.8156 q^{89} +0.853115i q^{91} -5.65685 q^{95} -5.95084 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 40 q^{25} + 40 q^{49} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.09364 −0.489090 −0.244545 0.969638i \(-0.578639\pi\)
−0.244545 + 0.969638i \(0.578639\pi\)
\(6\) 0 0
\(7\) −0.221727 −0.0838050 −0.0419025 0.999122i \(-0.513342\pi\)
−0.0419025 + 0.999122i \(0.513342\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.10394 + 2.56387i −0.634361 + 0.773037i
\(12\) 0 0
\(13\) 3.84759i 1.06713i −0.845759 0.533565i \(-0.820852\pi\)
0.845759 0.533565i \(-0.179148\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.39691i 0.823871i 0.911213 + 0.411936i \(0.135147\pi\)
−0.911213 + 0.411936i \(0.864853\pi\)
\(18\) 0 0
\(19\) 5.17250 1.18665 0.593327 0.804962i \(-0.297814\pi\)
0.593327 + 0.804962i \(0.297814\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.780070i 0.162656i −0.996687 0.0813279i \(-0.974084\pi\)
0.996687 0.0813279i \(-0.0259161\pi\)
\(24\) 0 0
\(25\) −3.80395 −0.760790
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.63940i 0.675819i −0.941179 0.337910i \(-0.890280\pi\)
0.941179 0.337910i \(-0.109720\pi\)
\(30\) 0 0
\(31\) 3.14688i 0.565197i −0.959238 0.282599i \(-0.908804\pi\)
0.959238 0.282599i \(-0.0911964\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.242490 0.0409882
\(36\) 0 0
\(37\) −3.14688 −0.517345 −0.258672 0.965965i \(-0.583285\pi\)
−0.258672 + 0.965965i \(0.583285\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.810970i 0.126652i 0.997993 + 0.0633261i \(0.0201708\pi\)
−0.997993 + 0.0633261i \(0.979829\pi\)
\(42\) 0 0
\(43\) 2.07922 0.317079 0.158539 0.987353i \(-0.449322\pi\)
0.158539 + 0.987353i \(0.449322\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.53495i 0.953221i 0.879115 + 0.476611i \(0.158135\pi\)
−0.879115 + 0.476611i \(0.841865\pi\)
\(48\) 0 0
\(49\) −6.95084 −0.992977
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.9763 1.64507 0.822534 0.568717i \(-0.192560\pi\)
0.822534 + 0.568717i \(0.192560\pi\)
\(54\) 0 0
\(55\) 2.30095 2.80395i 0.310260 0.378085i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.75488i 0.749222i −0.927182 0.374611i \(-0.877776\pi\)
0.927182 0.374611i \(-0.122224\pi\)
\(60\) 0 0
\(61\) 0.754311i 0.0965796i −0.998833 0.0482898i \(-0.984623\pi\)
0.998833 0.0482898i \(-0.0153771\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.20788i 0.521923i
\(66\) 0 0
\(67\) 12.7548i 1.55825i −0.626871 0.779123i \(-0.715665\pi\)
0.626871 0.779123i \(-0.284335\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.72223i 1.03514i −0.855641 0.517569i \(-0.826837\pi\)
0.855641 0.517569i \(-0.173163\pi\)
\(72\) 0 0
\(73\) 9.90155i 1.15889i −0.815012 0.579445i \(-0.803270\pi\)
0.815012 0.579445i \(-0.196730\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.466500 0.568480i 0.0531627 0.0647843i
\(78\) 0 0
\(79\) 7.47345 0.840829 0.420415 0.907332i \(-0.361885\pi\)
0.420415 + 0.907332i \(0.361885\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.62224 1.05618 0.528089 0.849189i \(-0.322909\pi\)
0.528089 + 0.849189i \(0.322909\pi\)
\(84\) 0 0
\(85\) 3.71499i 0.402947i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.8156 −1.25245 −0.626227 0.779641i \(-0.715402\pi\)
−0.626227 + 0.779641i \(0.715402\pi\)
\(90\) 0 0
\(91\) 0.853115i 0.0894308i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.65685 −0.580381
\(96\) 0 0
\(97\) −5.95084 −0.604216 −0.302108 0.953274i \(-0.597690\pi\)
−0.302108 + 0.953274i \(0.597690\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.77636i 0.475265i −0.971355 0.237633i \(-0.923629\pi\)
0.971355 0.237633i \(-0.0763714\pi\)
\(102\) 0 0
\(103\) 8.75479i 0.862635i −0.902200 0.431318i \(-0.858049\pi\)
0.902200 0.431318i \(-0.141951\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.86473 −0.953660 −0.476830 0.878996i \(-0.658214\pi\)
−0.476830 + 0.878996i \(0.658214\pi\)
\(108\) 0 0
\(109\) 16.8424i 1.61321i −0.591090 0.806606i \(-0.701302\pi\)
0.591090 0.806606i \(-0.298698\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.69535 −0.817990 −0.408995 0.912537i \(-0.634121\pi\)
−0.408995 + 0.912537i \(0.634121\pi\)
\(114\) 0 0
\(115\) 0.853115i 0.0795534i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.753187i 0.0690445i
\(120\) 0 0
\(121\) −2.14688 10.7885i −0.195171 0.980769i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.62835 0.861186
\(126\) 0 0
\(127\) 18.2619 1.62048 0.810241 0.586096i \(-0.199336\pi\)
0.810241 + 0.586096i \(0.199336\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.96539 0.346458 0.173229 0.984882i \(-0.444580\pi\)
0.173229 + 0.984882i \(0.444580\pi\)
\(132\) 0 0
\(133\) −1.14688 −0.0994475
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.8826 −0.929766 −0.464883 0.885372i \(-0.653904\pi\)
−0.464883 + 0.885372i \(0.653904\pi\)
\(138\) 0 0
\(139\) 17.0261 1.44414 0.722069 0.691821i \(-0.243191\pi\)
0.722069 + 0.691821i \(0.243191\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.86473 + 8.09509i 0.824930 + 0.676946i
\(144\) 0 0
\(145\) 3.98019i 0.330537i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.880497i 0.0721331i 0.999349 + 0.0360666i \(0.0114828\pi\)
−0.999349 + 0.0360666i \(0.988517\pi\)
\(150\) 0 0
\(151\) 5.52138 0.449323 0.224662 0.974437i \(-0.427872\pi\)
0.224662 + 0.974437i \(0.427872\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.44156i 0.276433i
\(156\) 0 0
\(157\) −13.9017 −1.10947 −0.554737 0.832026i \(-0.687181\pi\)
−0.554737 + 0.832026i \(0.687181\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.172963i 0.0136314i
\(162\) 0 0
\(163\) 5.60790i 0.439245i −0.975585 0.219623i \(-0.929517\pi\)
0.975585 0.219623i \(-0.0704826\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.17187 0.400212 0.200106 0.979774i \(-0.435871\pi\)
0.200106 + 0.979774i \(0.435871\pi\)
\(168\) 0 0
\(169\) −1.80395 −0.138766
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.7120i 1.34662i −0.739361 0.673309i \(-0.764872\pi\)
0.739361 0.673309i \(-0.235128\pi\)
\(174\) 0 0
\(175\) 0.843440 0.0637580
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.69535i 0.649921i 0.945728 + 0.324960i \(0.105351\pi\)
−0.945728 + 0.324960i \(0.894649\pi\)
\(180\) 0 0
\(181\) −7.60790 −0.565491 −0.282746 0.959195i \(-0.591245\pi\)
−0.282746 + 0.959195i \(0.591245\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.44156 0.253028
\(186\) 0 0
\(187\) −8.70924 7.14688i −0.636883 0.522632i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.78923i 0.563609i −0.959472 0.281805i \(-0.909067\pi\)
0.959472 0.281805i \(-0.0909330\pi\)
\(192\) 0 0
\(193\) 11.4102i 0.821322i −0.911788 0.410661i \(-0.865298\pi\)
0.911788 0.410661i \(-0.134702\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0552i 0.858894i −0.903092 0.429447i \(-0.858709\pi\)
0.903092 0.429447i \(-0.141291\pi\)
\(198\) 0 0
\(199\) 4.85312i 0.344028i 0.985094 + 0.172014i \(0.0550275\pi\)
−0.985094 + 0.172014i \(0.944973\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.806953i 0.0566370i
\(204\) 0 0
\(205\) 0.886909i 0.0619444i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.8826 + 13.2616i −0.752767 + 0.917327i
\(210\) 0 0
\(211\) 4.72905 0.325561 0.162781 0.986662i \(-0.447954\pi\)
0.162781 + 0.986662i \(0.447954\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.27392 −0.155080
\(216\) 0 0
\(217\) 0.697750i 0.0473663i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.0699 0.879177
\(222\) 0 0
\(223\) 11.1469i 0.746451i −0.927741 0.373225i \(-0.878252\pi\)
0.927741 0.373225i \(-0.121748\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.10583 −0.471631 −0.235815 0.971798i \(-0.575776\pi\)
−0.235815 + 0.971798i \(0.575776\pi\)
\(228\) 0 0
\(229\) −8.75479 −0.578533 −0.289266 0.957249i \(-0.593411\pi\)
−0.289266 + 0.957249i \(0.593411\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.6774i 1.42013i 0.704134 + 0.710067i \(0.251335\pi\)
−0.704134 + 0.710067i \(0.748665\pi\)
\(234\) 0 0
\(235\) 7.14688i 0.466211i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.75890 0.178458 0.0892292 0.996011i \(-0.471560\pi\)
0.0892292 + 0.996011i \(0.471560\pi\)
\(240\) 0 0
\(241\) 3.98019i 0.256386i −0.991749 0.128193i \(-0.959082\pi\)
0.991749 0.128193i \(-0.0409178\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.60171 0.485655
\(246\) 0 0
\(247\) 19.9017i 1.26631i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.3775i 1.15998i −0.814625 0.579988i \(-0.803057\pi\)
0.814625 0.579988i \(-0.196943\pi\)
\(252\) 0 0
\(253\) 2.00000 + 1.64122i 0.125739 + 0.103183i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.0699 −0.815278 −0.407639 0.913143i \(-0.633648\pi\)
−0.407639 + 0.913143i \(0.633648\pi\)
\(258\) 0 0
\(259\) 0.697750 0.0433561
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −13.5876 −0.837849 −0.418925 0.908021i \(-0.637593\pi\)
−0.418925 + 0.908021i \(0.637593\pi\)
\(264\) 0 0
\(265\) −13.0977 −0.804587
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.6046 1.31726 0.658628 0.752468i \(-0.271137\pi\)
0.658628 + 0.752468i \(0.271137\pi\)
\(270\) 0 0
\(271\) −21.3552 −1.29724 −0.648618 0.761114i \(-0.724653\pi\)
−0.648618 + 0.761114i \(0.724653\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.00328 9.75285i 0.482616 0.588119i
\(276\) 0 0
\(277\) 15.5230i 0.932684i −0.884604 0.466342i \(-0.845572\pi\)
0.884604 0.466342i \(-0.154428\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.6113i 1.40854i 0.709935 + 0.704268i \(0.248724\pi\)
−0.709935 + 0.704268i \(0.751276\pi\)
\(282\) 0 0
\(283\) 27.1929 1.61645 0.808224 0.588875i \(-0.200429\pi\)
0.808224 + 0.588875i \(0.200429\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.179814i 0.0106141i
\(288\) 0 0
\(289\) 5.46102 0.321236
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 28.5407i 1.66737i −0.552242 0.833684i \(-0.686228\pi\)
0.552242 0.833684i \(-0.313772\pi\)
\(294\) 0 0
\(295\) 6.29377i 0.366437i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.00139 −0.173575
\(300\) 0 0
\(301\) −0.461020 −0.0265728
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.824944i 0.0472362i
\(306\) 0 0
\(307\) −3.66388 −0.209109 −0.104554 0.994519i \(-0.533342\pi\)
−0.104554 + 0.994519i \(0.533342\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.28814i 0.413273i −0.978418 0.206636i \(-0.933748\pi\)
0.978418 0.206636i \(-0.0662517\pi\)
\(312\) 0 0
\(313\) 12.7548 0.720943 0.360472 0.932770i \(-0.382616\pi\)
0.360472 + 0.932770i \(0.382616\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.46820 −0.307125 −0.153562 0.988139i \(-0.549075\pi\)
−0.153562 + 0.988139i \(0.549075\pi\)
\(318\) 0 0
\(319\) 9.33095 + 7.65707i 0.522433 + 0.428713i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 17.5705i 0.977650i
\(324\) 0 0
\(325\) 14.6361i 0.811862i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.44898i 0.0798847i
\(330\) 0 0
\(331\) 3.90167i 0.214455i 0.994234 + 0.107228i \(0.0341974\pi\)
−0.994234 + 0.107228i \(0.965803\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 13.9491i 0.762123i
\(336\) 0 0
\(337\) 9.90155i 0.539372i −0.962948 0.269686i \(-0.913080\pi\)
0.962948 0.269686i \(-0.0869199\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.06821 + 6.62085i 0.436918 + 0.358539i
\(342\) 0 0
\(343\) 3.09328 0.167021
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.0052 0.698154 0.349077 0.937094i \(-0.386495\pi\)
0.349077 + 0.937094i \(0.386495\pi\)
\(348\) 0 0
\(349\) 18.6162i 0.996504i 0.867032 + 0.498252i \(0.166025\pi\)
−0.867032 + 0.498252i \(0.833975\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.62884 0.299593 0.149796 0.988717i \(-0.452138\pi\)
0.149796 + 0.988717i \(0.452138\pi\)
\(354\) 0 0
\(355\) 9.53898i 0.506276i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −25.3863 −1.33984 −0.669919 0.742434i \(-0.733671\pi\)
−0.669919 + 0.742434i \(0.733671\pi\)
\(360\) 0 0
\(361\) 7.75479 0.408147
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10.8287i 0.566802i
\(366\) 0 0
\(367\) 16.7548i 0.874593i 0.899317 + 0.437296i \(0.144064\pi\)
−0.899317 + 0.437296i \(0.855936\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.65546 −0.137865
\(372\) 0 0
\(373\) 1.45206i 0.0751848i −0.999293 0.0375924i \(-0.988031\pi\)
0.999293 0.0375924i \(-0.0119689\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −14.0029 −0.721187
\(378\) 0 0
\(379\) 14.2938i 0.734222i 0.930177 + 0.367111i \(0.119653\pi\)
−0.930177 + 0.367111i \(0.880347\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.2915i 0.883556i 0.897124 + 0.441778i \(0.145652\pi\)
−0.897124 + 0.441778i \(0.854348\pi\)
\(384\) 0 0
\(385\) −0.510183 + 0.621712i −0.0260013 + 0.0316854i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.9093 0.654526 0.327263 0.944933i \(-0.393874\pi\)
0.327263 + 0.944933i \(0.393874\pi\)
\(390\) 0 0
\(391\) 2.64983 0.134007
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.17326 −0.411242
\(396\) 0 0
\(397\) −10.4610 −0.525024 −0.262512 0.964929i \(-0.584551\pi\)
−0.262512 + 0.964929i \(0.584551\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.18728 0.109228 0.0546138 0.998508i \(-0.482607\pi\)
0.0546138 + 0.998508i \(0.482607\pi\)
\(402\) 0 0
\(403\) −12.1079 −0.603139
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.62085 8.06821i 0.328183 0.399926i
\(408\) 0 0
\(409\) 5.92136i 0.292793i −0.989226 0.146396i \(-0.953233\pi\)
0.989226 0.146396i \(-0.0467675\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.27601i 0.0627886i
\(414\) 0 0
\(415\) −10.5233 −0.516567
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 22.7520i 1.11151i 0.831346 + 0.555755i \(0.187571\pi\)
−0.831346 + 0.555755i \(0.812429\pi\)
\(420\) 0 0
\(421\) 29.8033 1.45253 0.726263 0.687417i \(-0.241255\pi\)
0.726263 + 0.687417i \(0.241255\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.9217i 0.626793i
\(426\) 0 0
\(427\) 0.167251i 0.00809385i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.6302 1.37907 0.689534 0.724253i \(-0.257815\pi\)
0.689534 + 0.724253i \(0.257815\pi\)
\(432\) 0 0
\(433\) −1.53898 −0.0739586 −0.0369793 0.999316i \(-0.511774\pi\)
−0.0369793 + 0.999316i \(0.511774\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.03491i 0.193016i
\(438\) 0 0
\(439\) −16.9316 −0.808099 −0.404049 0.914737i \(-0.632398\pi\)
−0.404049 + 0.914737i \(0.632398\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 32.8277i 1.55969i −0.625972 0.779846i \(-0.715298\pi\)
0.625972 0.779846i \(-0.284702\pi\)
\(444\) 0 0
\(445\) 12.9220 0.612563
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −40.1427 −1.89445 −0.947226 0.320566i \(-0.896127\pi\)
−0.947226 + 0.320566i \(0.896127\pi\)
\(450\) 0 0
\(451\) −2.07922 1.70623i −0.0979068 0.0803433i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.933001i 0.0437398i
\(456\) 0 0
\(457\) 29.2721i 1.36929i 0.728876 + 0.684646i \(0.240043\pi\)
−0.728876 + 0.684646i \(0.759957\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.94823i 0.463335i −0.972795 0.231668i \(-0.925582\pi\)
0.972795 0.231668i \(-0.0744182\pi\)
\(462\) 0 0
\(463\) 19.1469i 0.889831i 0.895573 + 0.444916i \(0.146766\pi\)
−0.895573 + 0.444916i \(0.853234\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 28.5069i 1.31914i 0.751642 + 0.659571i \(0.229262\pi\)
−0.751642 + 0.659571i \(0.770738\pi\)
\(468\) 0 0
\(469\) 2.82808i 0.130589i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.37456 + 5.33086i −0.201142 + 0.245113i
\(474\) 0 0
\(475\) −19.6760 −0.902795
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30.5582 1.39624 0.698120 0.715981i \(-0.254020\pi\)
0.698120 + 0.715981i \(0.254020\pi\)
\(480\) 0 0
\(481\) 12.1079i 0.552074i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.50807 0.295516
\(486\) 0 0
\(487\) 26.4610i 1.19906i −0.800351 0.599532i \(-0.795354\pi\)
0.800351 0.599532i \(-0.204646\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −40.9079 −1.84615 −0.923074 0.384623i \(-0.874332\pi\)
−0.923074 + 0.384623i \(0.874332\pi\)
\(492\) 0 0
\(493\) 12.3627 0.556788
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.93396i 0.0867498i
\(498\) 0 0
\(499\) 8.00000i 0.358129i −0.983837 0.179065i \(-0.942693\pi\)
0.983837 0.179065i \(-0.0573071\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −39.9439 −1.78101 −0.890505 0.454973i \(-0.849649\pi\)
−0.890505 + 0.454973i \(0.849649\pi\)
\(504\) 0 0
\(505\) 5.22361i 0.232448i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.2838 0.766092 0.383046 0.923729i \(-0.374875\pi\)
0.383046 + 0.923729i \(0.374875\pi\)
\(510\) 0 0
\(511\) 2.19544i 0.0971207i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.57458i 0.421907i
\(516\) 0 0
\(517\) −16.7548 13.7491i −0.736875 0.604687i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15.2034 −0.666074 −0.333037 0.942914i \(-0.608073\pi\)
−0.333037 + 0.942914i \(0.608073\pi\)
\(522\) 0 0
\(523\) −21.8823 −0.956847 −0.478424 0.878129i \(-0.658792\pi\)
−0.478424 + 0.878129i \(0.658792\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.6897 0.465650
\(528\) 0 0
\(529\) 22.3915 0.973543
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.12028 0.135154
\(534\) 0 0
\(535\) 10.7885 0.466426
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14.6241 17.8211i 0.629906 0.767607i
\(540\) 0 0
\(541\) 38.1541i 1.64037i 0.572095 + 0.820187i \(0.306131\pi\)
−0.572095 + 0.820187i \(0.693869\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 18.4195i 0.789006i
\(546\) 0 0
\(547\) −25.6082 −1.09493 −0.547464 0.836829i \(-0.684407\pi\)
−0.547464 + 0.836829i \(0.684407\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 18.8248i 0.801963i
\(552\) 0 0
\(553\) −1.65707 −0.0704657
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20.6100i 0.873272i −0.899638 0.436636i \(-0.856170\pi\)
0.899638 0.436636i \(-0.143830\pi\)
\(558\) 0 0
\(559\) 8.00000i 0.338364i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 23.9373 1.00884 0.504419 0.863459i \(-0.331707\pi\)
0.504419 + 0.863459i \(0.331707\pi\)
\(564\) 0 0
\(565\) 9.50958 0.400071
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.8825i 0.833517i −0.909017 0.416759i \(-0.863166\pi\)
0.909017 0.416759i \(-0.136834\pi\)
\(570\) 0 0
\(571\) −13.7546 −0.575612 −0.287806 0.957689i \(-0.592926\pi\)
−0.287806 + 0.957689i \(0.592926\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.96735i 0.123747i
\(576\) 0 0
\(577\) −2.51018 −0.104500 −0.0522501 0.998634i \(-0.516639\pi\)
−0.0522501 + 0.998634i \(0.516639\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.13351 −0.0885130
\(582\) 0 0
\(583\) −25.1973 + 30.7056i −1.04357 + 1.27170i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.6358i 0.480262i −0.970741 0.240131i \(-0.922810\pi\)
0.970741 0.240131i \(-0.0771903\pi\)
\(588\) 0 0
\(589\) 16.2773i 0.670693i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.0915i 0.783992i 0.919967 + 0.391996i \(0.128215\pi\)
−0.919967 + 0.391996i \(0.871785\pi\)
\(594\) 0 0
\(595\) 0.823715i 0.0337690i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 32.2274i 1.31678i −0.752678 0.658389i \(-0.771238\pi\)
0.752678 0.658389i \(-0.228762\pi\)
\(600\) 0 0
\(601\) 40.6823i 1.65946i 0.558162 + 0.829732i \(0.311507\pi\)
−0.558162 + 0.829732i \(0.688493\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.34792 + 11.7987i 0.0954564 + 0.479685i
\(606\) 0 0
\(607\) 0.221727 0.00899963 0.00449981 0.999990i \(-0.498568\pi\)
0.00449981 + 0.999990i \(0.498568\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 25.1438 1.01721
\(612\) 0 0
\(613\) 6.94087i 0.280339i 0.990128 + 0.140170i \(0.0447648\pi\)
−0.990128 + 0.140170i \(0.955235\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.5614 0.425184 0.212592 0.977141i \(-0.431809\pi\)
0.212592 + 0.977141i \(0.431809\pi\)
\(618\) 0 0
\(619\) 35.0486i 1.40872i 0.709843 + 0.704360i \(0.248766\pi\)
−0.709843 + 0.704360i \(0.751234\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.61985 0.104962
\(624\) 0 0
\(625\) 8.48982 0.339593
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.6897i 0.426225i
\(630\) 0 0
\(631\) 42.2644i 1.68252i 0.540632 + 0.841259i \(0.318185\pi\)
−0.540632 + 0.841259i \(0.681815\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19.9720 −0.792563
\(636\) 0 0
\(637\) 26.7440i 1.05963i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 25.2068 0.995609 0.497805 0.867289i \(-0.334140\pi\)
0.497805 + 0.867289i \(0.334140\pi\)
\(642\) 0 0
\(643\) 3.24521i 0.127979i 0.997951 + 0.0639893i \(0.0203824\pi\)
−0.997951 + 0.0639893i \(0.979618\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.35344i 0.0532093i −0.999646 0.0266047i \(-0.991530\pi\)
0.999646 0.0266047i \(-0.00846953\pi\)
\(648\) 0 0
\(649\) 14.7548 + 12.1079i 0.579176 + 0.475278i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −29.0995 −1.13875 −0.569375 0.822078i \(-0.692815\pi\)
−0.569375 + 0.822078i \(0.692815\pi\)
\(654\) 0 0
\(655\) −4.33670 −0.169449
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.96678 0.271387 0.135694 0.990751i \(-0.456674\pi\)
0.135694 + 0.990751i \(0.456674\pi\)
\(660\) 0 0
\(661\) 21.9017 0.851876 0.425938 0.904752i \(-0.359944\pi\)
0.425938 + 0.904752i \(0.359944\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.25428 0.0486388
\(666\) 0 0
\(667\) −2.83898 −0.109926
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.93396 + 1.58702i 0.0746596 + 0.0612664i
\(672\) 0 0
\(673\) 32.2893i 1.24466i 0.782754 + 0.622331i \(0.213814\pi\)
−0.782754 + 0.622331i \(0.786186\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 39.8544i 1.53173i 0.643001 + 0.765865i \(0.277689\pi\)
−0.643001 + 0.765865i \(0.722311\pi\)
\(678\) 0 0
\(679\) 1.31946 0.0506363
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 31.3936i 1.20124i −0.799533 0.600622i \(-0.794920\pi\)
0.799533 0.600622i \(-0.205080\pi\)
\(684\) 0 0
\(685\) 11.9017 0.454740
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 46.0798i 1.75550i
\(690\) 0 0
\(691\) 36.5581i 1.39074i 0.718653 + 0.695369i \(0.244759\pi\)
−0.718653 + 0.695369i \(0.755241\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −18.6205 −0.706314
\(696\) 0 0
\(697\) −2.75479 −0.104345
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 46.6483i 1.76188i −0.473228 0.880940i \(-0.656911\pi\)
0.473228 0.880940i \(-0.343089\pi\)
\(702\) 0 0
\(703\) −16.2773 −0.613909
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.05905i 0.0398296i
\(708\) 0 0
\(709\) 7.04856 0.264714 0.132357 0.991202i \(-0.457745\pi\)
0.132357 + 0.991202i \(0.457745\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.45479 −0.0919326
\(714\) 0 0
\(715\) −10.7885 8.85312i −0.403466 0.331088i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.9985i 1.90192i 0.309311 + 0.950961i \(0.399902\pi\)
−0.309311 + 0.950961i \(0.600098\pi\)
\(720\) 0 0
\(721\) 1.94117i 0.0722931i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.8441i 0.514157i
\(726\) 0 0
\(727\) 19.1469i 0.710119i 0.934844 + 0.355059i \(0.115539\pi\)
−0.934844 + 0.355059i \(0.884461\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.06293i 0.261232i
\(732\) 0 0
\(733\) 16.8424i 0.622089i −0.950395 0.311045i \(-0.899321\pi\)
0.950395 0.311045i \(-0.100679\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 32.7017 + 26.8353i 1.20458 + 0.988491i
\(738\) 0 0
\(739\) 1.45751 0.0536154 0.0268077 0.999641i \(-0.491466\pi\)
0.0268077 + 0.999641i \(0.491466\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.4561 1.22739 0.613693 0.789544i \(-0.289683\pi\)
0.613693 + 0.789544i \(0.289683\pi\)
\(744\) 0 0
\(745\) 0.962946i 0.0352796i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.18728 0.0799214
\(750\) 0 0
\(751\) 15.2452i 0.556306i −0.960537 0.278153i \(-0.910278\pi\)
0.960537 0.278153i \(-0.0897222\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.03840 −0.219760
\(756\) 0 0
\(757\) 21.9017 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.4667i 0.415669i 0.978164 + 0.207834i \(0.0666415\pi\)
−0.978164 + 0.207834i \(0.933358\pi\)
\(762\) 0 0
\(763\) 3.73442i 0.135195i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −22.1424 −0.799517
\(768\) 0 0
\(769\) 32.9871i 1.18955i −0.803894 0.594773i \(-0.797242\pi\)
0.803894 0.594773i \(-0.202758\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.72248 −0.241791 −0.120895 0.992665i \(-0.538577\pi\)
−0.120895 + 0.992665i \(0.538577\pi\)
\(774\) 0 0
\(775\) 11.9706i 0.429997i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.19474i 0.150292i
\(780\) 0 0
\(781\) 22.3627 + 18.3510i 0.800200 + 0.656652i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.2034 0.542633
\(786\) 0 0
\(787\) 31.9730 1.13972 0.569858 0.821743i \(-0.306998\pi\)
0.569858 + 0.821743i \(0.306998\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.92800 0.0685516
\(792\) 0 0
\(793\) −2.90228 −0.103063
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35.6075 −1.26128 −0.630642 0.776074i \(-0.717208\pi\)
−0.630642 + 0.776074i \(0.717208\pi\)
\(798\) 0 0
\(799\) −22.1986 −0.785331
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 25.3863 + 20.8323i 0.895864 + 0.735154i
\(804\) 0 0
\(805\) 0.189159i 0.00666697i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 29.7472i 1.04586i 0.852377 + 0.522928i \(0.175160\pi\)
−0.852377 + 0.522928i \(0.824840\pi\)
\(810\) 0 0
\(811\) −15.6958 −0.551153 −0.275576 0.961279i \(-0.588869\pi\)
−0.275576 + 0.961279i \(0.588869\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.13303i 0.214831i
\(816\) 0 0
\(817\) 10.7548 0.376262
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 29.1648i 1.01786i −0.860809 0.508929i \(-0.830042\pi\)
0.860809 0.508929i \(-0.169958\pi\)
\(822\) 0 0
\(823\) 16.7548i 0.584035i −0.956413 0.292018i \(-0.905673\pi\)
0.956413 0.292018i \(-0.0943266\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.55241 −0.0539827 −0.0269913 0.999636i \(-0.508593\pi\)
−0.0269913 + 0.999636i \(0.508593\pi\)
\(828\) 0 0
\(829\) 11.1469 0.387147 0.193574 0.981086i \(-0.437992\pi\)
0.193574 + 0.981086i \(0.437992\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 23.6113i 0.818085i
\(834\) 0 0
\(835\) −5.65617 −0.195740
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.28644i 0.0789368i −0.999221 0.0394684i \(-0.987434\pi\)
0.999221 0.0394684i \(-0.0125664\pi\)
\(840\) 0 0
\(841\) 15.7548 0.543269
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.97287 0.0678689
\(846\) 0 0
\(847\) 0.476023 + 2.39210i 0.0163563 + 0.0821934i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.45479i 0.0841491i
\(852\) 0 0
\(853\) 29.1395i 0.997718i 0.866683 + 0.498859i \(0.166247\pi\)
−0.866683 + 0.498859i \(0.833753\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 36.2350i 1.23776i −0.785484 0.618882i \(-0.787586\pi\)
0.785484 0.618882i \(-0.212414\pi\)
\(858\) 0 0
\(859\) 49.5096i 1.68925i −0.535362 0.844623i \(-0.679825\pi\)
0.535362 0.844623i \(-0.320175\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.0390i 0.716174i −0.933688 0.358087i \(-0.883429\pi\)
0.933688 0.358087i \(-0.116571\pi\)
\(864\) 0 0
\(865\) 19.3706i 0.658618i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −15.7237 + 19.1610i −0.533390 + 0.649992i
\(870\) 0 0
\(871\) −49.0752 −1.66285
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.13487 −0.0721717
\(876\) 0 0
\(877\) 5.16705i 0.174479i −0.996187 0.0872395i \(-0.972195\pi\)
0.996187 0.0872395i \(-0.0278045\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −27.3941 −0.922931 −0.461465 0.887158i \(-0.652676\pi\)
−0.461465 + 0.887158i \(0.652676\pi\)
\(882\) 0 0
\(883\) 49.6768i 1.67176i 0.548913 + 0.835879i \(0.315042\pi\)
−0.548913 + 0.835879i \(0.684958\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −50.2877 −1.68849 −0.844247 0.535954i \(-0.819952\pi\)
−0.844247 + 0.535954i \(0.819952\pi\)
\(888\) 0 0
\(889\) −4.04916 −0.135805
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 33.8021i 1.13114i
\(894\) 0 0
\(895\) 9.50958i 0.317870i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.4528 −0.381971
\(900\) 0 0
\(901\) 40.6823i 1.35532i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.32031 0.276576
\(906\) 0 0
\(907\) 36.7548i 1.22042i 0.792239 + 0.610211i \(0.208915\pi\)
−0.792239 + 0.610211i \(0.791085\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 46.3564i 1.53586i 0.640536 + 0.767928i \(0.278712\pi\)
−0.640536 + 0.767928i \(0.721288\pi\)
\(912\) 0 0
\(913\) −20.2446 + 24.6702i −0.669999 + 0.816465i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.879234 −0.0290349
\(918\) 0 0
\(919\) −59.4637 −1.96153 −0.980763 0.195203i \(-0.937464\pi\)
−0.980763 + 0.195203i \(0.937464\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −33.5596 −1.10463
\(924\) 0 0
\(925\) 11.9706 0.393591
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22.7520 −0.746470 −0.373235 0.927737i \(-0.621751\pi\)
−0.373235 + 0.927737i \(0.621751\pi\)
\(930\) 0 0
\(931\) −35.9532 −1.17832
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9.52477 + 7.81612i 0.311493 + 0.255614i
\(936\) 0 0
\(937\) 46.1711i 1.50834i −0.656677 0.754172i \(-0.728039\pi\)
0.656677 0.754172i \(-0.271961\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 56.0340i 1.82666i 0.407226 + 0.913328i \(0.366496\pi\)
−0.407226 + 0.913328i \(0.633504\pi\)
\(942\) 0 0
\(943\) 0.632613 0.0206007
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.2567i 0.625759i 0.949793 + 0.312879i \(0.101294\pi\)
−0.949793 + 0.312879i \(0.898706\pi\)
\(948\) 0 0
\(949\) −38.0971 −1.23668
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.9157i 0.418381i −0.977875 0.209190i \(-0.932917\pi\)
0.977875 0.209190i \(-0.0670829\pi\)
\(954\) 0 0
\(955\) 8.51861i 0.275656i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.41297 0.0779190
\(960\) 0 0
\(961\) 21.0971 0.680552
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.4786i 0.401701i
\(966\) 0 0
\(967\) 45.3276 1.45764 0.728819 0.684706i \(-0.240069\pi\)
0.728819 + 0.684706i \(0.240069\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.82188i 0.154742i 0.997002 + 0.0773708i \(0.0246525\pi\)
−0.997002 + 0.0773708i \(0.975347\pi\)
\(972\) 0 0
\(973\) −3.77516 −0.121026
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 57.4797 1.83894 0.919469 0.393163i \(-0.128619\pi\)
0.919469 + 0.393163i \(0.128619\pi\)
\(978\) 0 0
\(979\) 24.8594 30.2938i 0.794509 0.968193i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 61.4338i 1.95943i −0.200388 0.979717i \(-0.564220\pi\)
0.200388 0.979717i \(-0.435780\pi\)
\(984\) 0 0
\(985\) 13.1840i 0.420077i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.62194i 0.0515747i
\(990\) 0 0
\(991\) 41.4407i 1.31641i 0.752841 + 0.658203i \(0.228683\pi\)
−0.752841 + 0.658203i \(0.771317\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.30756i 0.168261i
\(996\) 0 0
\(997\) 6.05396i 0.191731i −0.995394 0.0958654i \(-0.969438\pi\)
0.995394 0.0958654i \(-0.0305619\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.o.f.703.12 yes 24
3.2 odd 2 inner 3168.2.o.f.703.14 yes 24
4.3 odd 2 inner 3168.2.o.f.703.10 yes 24
11.10 odd 2 inner 3168.2.o.f.703.11 yes 24
12.11 even 2 inner 3168.2.o.f.703.16 yes 24
33.32 even 2 inner 3168.2.o.f.703.13 yes 24
44.43 even 2 inner 3168.2.o.f.703.9 24
132.131 odd 2 inner 3168.2.o.f.703.15 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3168.2.o.f.703.9 24 44.43 even 2 inner
3168.2.o.f.703.10 yes 24 4.3 odd 2 inner
3168.2.o.f.703.11 yes 24 11.10 odd 2 inner
3168.2.o.f.703.12 yes 24 1.1 even 1 trivial
3168.2.o.f.703.13 yes 24 33.32 even 2 inner
3168.2.o.f.703.14 yes 24 3.2 odd 2 inner
3168.2.o.f.703.15 yes 24 132.131 odd 2 inner
3168.2.o.f.703.16 yes 24 12.11 even 2 inner