Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3168,2,Mod(703,3168)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3168, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3168.703");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3168.o (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(25.2966073603\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
703.1 | 0 | 0 | 0 | −3.91261 | 0 | −3.25594 | 0 | 0 | 0 | ||||||||||||||||||
703.2 | 0 | 0 | 0 | −3.91261 | 0 | 3.25594 | 0 | 0 | 0 | ||||||||||||||||||
703.3 | 0 | 0 | 0 | −3.91261 | 0 | 3.25594 | 0 | 0 | 0 | ||||||||||||||||||
703.4 | 0 | 0 | 0 | −3.91261 | 0 | −3.25594 | 0 | 0 | 0 | ||||||||||||||||||
703.5 | 0 | 0 | 0 | −1.86960 | 0 | −3.91787 | 0 | 0 | 0 | ||||||||||||||||||
703.6 | 0 | 0 | 0 | −1.86960 | 0 | 3.91787 | 0 | 0 | 0 | ||||||||||||||||||
703.7 | 0 | 0 | 0 | −1.86960 | 0 | 3.91787 | 0 | 0 | 0 | ||||||||||||||||||
703.8 | 0 | 0 | 0 | −1.86960 | 0 | −3.91787 | 0 | 0 | 0 | ||||||||||||||||||
703.9 | 0 | 0 | 0 | −1.09364 | 0 | −0.221727 | 0 | 0 | 0 | ||||||||||||||||||
703.10 | 0 | 0 | 0 | −1.09364 | 0 | 0.221727 | 0 | 0 | 0 | ||||||||||||||||||
703.11 | 0 | 0 | 0 | −1.09364 | 0 | 0.221727 | 0 | 0 | 0 | ||||||||||||||||||
703.12 | 0 | 0 | 0 | −1.09364 | 0 | −0.221727 | 0 | 0 | 0 | ||||||||||||||||||
703.13 | 0 | 0 | 0 | 1.09364 | 0 | 0.221727 | 0 | 0 | 0 | ||||||||||||||||||
703.14 | 0 | 0 | 0 | 1.09364 | 0 | −0.221727 | 0 | 0 | 0 | ||||||||||||||||||
703.15 | 0 | 0 | 0 | 1.09364 | 0 | −0.221727 | 0 | 0 | 0 | ||||||||||||||||||
703.16 | 0 | 0 | 0 | 1.09364 | 0 | 0.221727 | 0 | 0 | 0 | ||||||||||||||||||
703.17 | 0 | 0 | 0 | 1.86960 | 0 | 3.91787 | 0 | 0 | 0 | ||||||||||||||||||
703.18 | 0 | 0 | 0 | 1.86960 | 0 | −3.91787 | 0 | 0 | 0 | ||||||||||||||||||
703.19 | 0 | 0 | 0 | 1.86960 | 0 | −3.91787 | 0 | 0 | 0 | ||||||||||||||||||
703.20 | 0 | 0 | 0 | 1.86960 | 0 | 3.91787 | 0 | 0 | 0 | ||||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
33.d | even | 2 | 1 | inner |
44.c | even | 2 | 1 | inner |
132.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3168.2.o.f | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 3168.2.o.f | ✓ | 24 |
4.b | odd | 2 | 1 | inner | 3168.2.o.f | ✓ | 24 |
11.b | odd | 2 | 1 | inner | 3168.2.o.f | ✓ | 24 |
12.b | even | 2 | 1 | inner | 3168.2.o.f | ✓ | 24 |
33.d | even | 2 | 1 | inner | 3168.2.o.f | ✓ | 24 |
44.c | even | 2 | 1 | inner | 3168.2.o.f | ✓ | 24 |
132.d | odd | 2 | 1 | inner | 3168.2.o.f | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3168.2.o.f | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
3168.2.o.f | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
3168.2.o.f | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
3168.2.o.f | ✓ | 24 | 11.b | odd | 2 | 1 | inner |
3168.2.o.f | ✓ | 24 | 12.b | even | 2 | 1 | inner |
3168.2.o.f | ✓ | 24 | 33.d | even | 2 | 1 | inner |
3168.2.o.f | ✓ | 24 | 44.c | even | 2 | 1 | inner |
3168.2.o.f | ✓ | 24 | 132.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3168, [\chi])\):
\( T_{5}^{6} - 20T_{5}^{4} + 76T_{5}^{2} - 64 \) |
\( T_{7}^{6} - 26T_{7}^{4} + 164T_{7}^{2} - 8 \) |