Properties

Label 3168.2.o.f.703.18
Level $3168$
Weight $2$
Character 3168.703
Analytic conductor $25.297$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3168,2,Mod(703,3168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3168.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.o (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.18
Character \(\chi\) \(=\) 3168.703
Dual form 3168.2.o.f.703.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.86960 q^{5} -3.91787 q^{7} +(3.30563 - 0.269894i) q^{11} -3.53618i q^{13} +1.77102i q^{17} -3.02570 q^{19} +7.41031i q^{23} -1.50459 q^{25} +5.55384i q^{29} +9.85431i q^{31} -7.32485 q^{35} +9.85431 q^{37} -8.38227i q^{41} +2.26233 q^{43} +3.13132i q^{47} +8.34972 q^{49} +8.13224 q^{53} +(6.18020 - 0.504595i) q^{55} -10.5416i q^{59} -8.82421i q^{61} -6.61125i q^{65} +4.84513i q^{67} +0.607882i q^{71} +13.8871i q^{73} +(-12.9510 + 1.05741i) q^{77} +3.15450 q^{79} +6.37046 q^{83} +3.31109i q^{85} +15.9002 q^{89} +13.8543i q^{91} -5.65685 q^{95} +9.34972 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 40 q^{25} + 40 q^{49} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.86960 0.836111 0.418055 0.908422i \(-0.362712\pi\)
0.418055 + 0.908422i \(0.362712\pi\)
\(6\) 0 0
\(7\) −3.91787 −1.48082 −0.740408 0.672158i \(-0.765368\pi\)
−0.740408 + 0.672158i \(0.765368\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.30563 0.269894i 0.996683 0.0813762i
\(12\) 0 0
\(13\) 3.53618i 0.980761i −0.871508 0.490380i \(-0.836858\pi\)
0.871508 0.490380i \(-0.163142\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.77102i 0.429534i 0.976665 + 0.214767i \(0.0688993\pi\)
−0.976665 + 0.214767i \(0.931101\pi\)
\(18\) 0 0
\(19\) −3.02570 −0.694144 −0.347072 0.937839i \(-0.612824\pi\)
−0.347072 + 0.937839i \(0.612824\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.41031i 1.54516i 0.634920 + 0.772578i \(0.281033\pi\)
−0.634920 + 0.772578i \(0.718967\pi\)
\(24\) 0 0
\(25\) −1.50459 −0.300919
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.55384i 1.03132i 0.856793 + 0.515661i \(0.172454\pi\)
−0.856793 + 0.515661i \(0.827546\pi\)
\(30\) 0 0
\(31\) 9.85431i 1.76989i 0.465698 + 0.884944i \(0.345803\pi\)
−0.465698 + 0.884944i \(0.654197\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −7.32485 −1.23813
\(36\) 0 0
\(37\) 9.85431 1.62004 0.810020 0.586403i \(-0.199456\pi\)
0.810020 + 0.586403i \(0.199456\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.38227i 1.30909i −0.756023 0.654545i \(-0.772860\pi\)
0.756023 0.654545i \(-0.227140\pi\)
\(42\) 0 0
\(43\) 2.26233 0.345001 0.172501 0.985009i \(-0.444815\pi\)
0.172501 + 0.985009i \(0.444815\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.13132i 0.456750i 0.973573 + 0.228375i \(0.0733412\pi\)
−0.973573 + 0.228375i \(0.926659\pi\)
\(48\) 0 0
\(49\) 8.34972 1.19282
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.13224 1.11705 0.558524 0.829488i \(-0.311368\pi\)
0.558524 + 0.829488i \(0.311368\pi\)
\(54\) 0 0
\(55\) 6.18020 0.504595i 0.833338 0.0680395i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.5416i 1.37240i −0.727412 0.686201i \(-0.759277\pi\)
0.727412 0.686201i \(-0.240723\pi\)
\(60\) 0 0
\(61\) 8.82421i 1.12982i −0.825151 0.564912i \(-0.808910\pi\)
0.825151 0.564912i \(-0.191090\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.61125i 0.820025i
\(66\) 0 0
\(67\) 4.84513i 0.591926i 0.955199 + 0.295963i \(0.0956406\pi\)
−0.955199 + 0.295963i \(0.904359\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.607882i 0.0721423i 0.999349 + 0.0360712i \(0.0114843\pi\)
−0.999349 + 0.0360712i \(0.988516\pi\)
\(72\) 0 0
\(73\) 13.8871i 1.62537i 0.582705 + 0.812684i \(0.301994\pi\)
−0.582705 + 0.812684i \(0.698006\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.9510 + 1.05741i −1.47591 + 0.120503i
\(78\) 0 0
\(79\) 3.15450 0.354908 0.177454 0.984129i \(-0.443214\pi\)
0.177454 + 0.984129i \(0.443214\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.37046 0.699249 0.349624 0.936890i \(-0.386309\pi\)
0.349624 + 0.936890i \(0.386309\pi\)
\(84\) 0 0
\(85\) 3.31109i 0.359138i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.9002 1.68542 0.842709 0.538370i \(-0.180960\pi\)
0.842709 + 0.538370i \(0.180960\pi\)
\(90\) 0 0
\(91\) 13.8543i 1.45233i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.65685 −0.580381
\(96\) 0 0
\(97\) 9.34972 0.949320 0.474660 0.880169i \(-0.342571\pi\)
0.474660 + 0.880169i \(0.342571\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.66866i 0.763060i 0.924356 + 0.381530i \(0.124603\pi\)
−0.924356 + 0.381530i \(0.875397\pi\)
\(102\) 0 0
\(103\) 8.84513i 0.871536i 0.900059 + 0.435768i \(0.143523\pi\)
−0.900059 + 0.435768i \(0.856477\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.954396 0.0922649 0.0461325 0.998935i \(-0.485310\pi\)
0.0461325 + 0.998935i \(0.485310\pi\)
\(108\) 0 0
\(109\) 15.6390i 1.49794i 0.662602 + 0.748972i \(0.269452\pi\)
−0.662602 + 0.748972i \(0.730548\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.7410 −1.29265 −0.646324 0.763063i \(-0.723695\pi\)
−0.646324 + 0.763063i \(0.723695\pi\)
\(114\) 0 0
\(115\) 13.8543i 1.29192i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.93861i 0.636062i
\(120\) 0 0
\(121\) 10.8543 1.78434i 0.986756 0.162213i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.1610 −1.08771
\(126\) 0 0
\(127\) 4.93883 0.438251 0.219125 0.975697i \(-0.429680\pi\)
0.219125 + 0.975697i \(0.429680\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.713604 0.0623479 0.0311740 0.999514i \(-0.490075\pi\)
0.0311740 + 0.999514i \(0.490075\pi\)
\(132\) 0 0
\(133\) 11.8543 1.02790
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0018 −0.854515 −0.427257 0.904130i \(-0.640520\pi\)
−0.427257 + 0.904130i \(0.640520\pi\)
\(138\) 0 0
\(139\) 8.57132 0.727010 0.363505 0.931592i \(-0.381580\pi\)
0.363505 + 0.931592i \(0.381580\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.954396 11.6893i −0.0798106 0.977508i
\(144\) 0 0
\(145\) 10.3835i 0.862299i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.3255i 1.09167i 0.837893 + 0.545834i \(0.183787\pi\)
−0.837893 + 0.545834i \(0.816213\pi\)
\(150\) 0 0
\(151\) −22.3297 −1.81716 −0.908581 0.417708i \(-0.862834\pi\)
−0.908581 + 0.417708i \(0.862834\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 18.4236i 1.47982i
\(156\) 0 0
\(157\) 16.6994 1.33276 0.666380 0.745612i \(-0.267843\pi\)
0.666380 + 0.745612i \(0.267843\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 29.0326i 2.28809i
\(162\) 0 0
\(163\) 1.00919i 0.0790458i −0.999219 0.0395229i \(-0.987416\pi\)
0.999219 0.0395229i \(-0.0125838\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 20.3066 1.57137 0.785685 0.618627i \(-0.212311\pi\)
0.785685 + 0.618627i \(0.212311\pi\)
\(168\) 0 0
\(169\) 0.495405 0.0381081
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.1195i 0.997456i 0.866759 + 0.498728i \(0.166199\pi\)
−0.866759 + 0.498728i \(0.833801\pi\)
\(174\) 0 0
\(175\) 5.89481 0.445606
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 13.7410i 1.02705i 0.858074 + 0.513527i \(0.171661\pi\)
−0.858074 + 0.513527i \(0.828339\pi\)
\(180\) 0 0
\(181\) −3.00919 −0.223671 −0.111836 0.993727i \(-0.535673\pi\)
−0.111836 + 0.993727i \(0.535673\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18.4236 1.35453
\(186\) 0 0
\(187\) 0.477987 + 5.85431i 0.0349539 + 0.428110i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 25.2941i 1.83022i −0.403204 0.915110i \(-0.632103\pi\)
0.403204 0.915110i \(-0.367897\pi\)
\(192\) 0 0
\(193\) 3.76128i 0.270743i −0.990795 0.135371i \(-0.956777\pi\)
0.990795 0.135371i \(-0.0432227\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.7763i 1.33776i 0.743371 + 0.668879i \(0.233226\pi\)
−0.743371 + 0.668879i \(0.766774\pi\)
\(198\) 0 0
\(199\) 17.8543i 1.26566i 0.774291 + 0.632829i \(0.218107\pi\)
−0.774291 + 0.632829i \(0.781893\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 21.7592i 1.52720i
\(204\) 0 0
\(205\) 15.6715i 1.09454i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.0018 + 0.816620i −0.691842 + 0.0564868i
\(210\) 0 0
\(211\) −10.8614 −0.747733 −0.373866 0.927483i \(-0.621968\pi\)
−0.373866 + 0.927483i \(0.621968\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.22965 0.288459
\(216\) 0 0
\(217\) 38.6079i 2.62088i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.26264 0.421271
\(222\) 0 0
\(223\) 1.85431i 0.124174i 0.998071 + 0.0620870i \(0.0197756\pi\)
−0.998071 + 0.0620870i \(0.980224\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.9250 −1.18972 −0.594861 0.803829i \(-0.702793\pi\)
−0.594861 + 0.803829i \(0.702793\pi\)
\(228\) 0 0
\(229\) 8.84513 0.584502 0.292251 0.956342i \(-0.405596\pi\)
0.292251 + 0.956342i \(0.405596\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.4059i 0.812736i −0.913709 0.406368i \(-0.866795\pi\)
0.913709 0.406368i \(-0.133205\pi\)
\(234\) 0 0
\(235\) 5.85431i 0.381893i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −18.8794 −1.22120 −0.610602 0.791938i \(-0.709072\pi\)
−0.610602 + 0.791938i \(0.709072\pi\)
\(240\) 0 0
\(241\) 10.3835i 0.668857i −0.942421 0.334429i \(-0.891457\pi\)
0.942421 0.334429i \(-0.108543\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.6106 0.997327
\(246\) 0 0
\(247\) 10.6994i 0.680789i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.1178i 1.71166i 0.517257 + 0.855830i \(0.326953\pi\)
−0.517257 + 0.855830i \(0.673047\pi\)
\(252\) 0 0
\(253\) 2.00000 + 24.4957i 0.125739 + 1.54003i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.26264 −0.390653 −0.195326 0.980738i \(-0.562577\pi\)
−0.195326 + 0.980738i \(0.562577\pi\)
\(258\) 0 0
\(259\) −38.6079 −2.39898
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.08406 −0.436822 −0.218411 0.975857i \(-0.570087\pi\)
−0.218411 + 0.975857i \(0.570087\pi\)
\(264\) 0 0
\(265\) 15.2040 0.933976
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.02875 −0.245638 −0.122819 0.992429i \(-0.539193\pi\)
−0.122819 + 0.992429i \(0.539193\pi\)
\(270\) 0 0
\(271\) 0.349194 0.0212120 0.0106060 0.999944i \(-0.496624\pi\)
0.0106060 + 0.999944i \(0.496624\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.97363 + 0.406082i −0.299921 + 0.0244876i
\(276\) 0 0
\(277\) 20.9920i 1.26129i −0.776072 0.630644i \(-0.782791\pi\)
0.776072 0.630644i \(-0.217209\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.7875i 0.882147i −0.897471 0.441074i \(-0.854598\pi\)
0.897471 0.441074i \(-0.145402\pi\)
\(282\) 0 0
\(283\) 8.37872 0.498063 0.249032 0.968495i \(-0.419888\pi\)
0.249032 + 0.968495i \(0.419888\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 32.8406i 1.93852i
\(288\) 0 0
\(289\) 13.8635 0.815500
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.8439i 0.750351i −0.926954 0.375175i \(-0.877583\pi\)
0.926954 0.375175i \(-0.122417\pi\)
\(294\) 0 0
\(295\) 19.7086i 1.14748i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 26.2042 1.51543
\(300\) 0 0
\(301\) −8.86350 −0.510884
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 16.4977i 0.944658i
\(306\) 0 0
\(307\) 20.6741 1.17993 0.589967 0.807427i \(-0.299141\pi\)
0.589967 + 0.807427i \(0.299141\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.0699i 0.571013i −0.958377 0.285507i \(-0.907838\pi\)
0.958377 0.285507i \(-0.0921619\pi\)
\(312\) 0 0
\(313\) −4.84513 −0.273863 −0.136931 0.990581i \(-0.543724\pi\)
−0.136931 + 0.990581i \(0.543724\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.34800 0.525036 0.262518 0.964927i \(-0.415447\pi\)
0.262518 + 0.964927i \(0.415447\pi\)
\(318\) 0 0
\(319\) 1.49895 + 18.3589i 0.0839251 + 1.02790i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.35857i 0.298159i
\(324\) 0 0
\(325\) 5.32052i 0.295129i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.2681i 0.676362i
\(330\) 0 0
\(331\) 26.6994i 1.46753i −0.679401 0.733767i \(-0.737760\pi\)
0.679401 0.733767i \(-0.262240\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.05845i 0.494916i
\(336\) 0 0
\(337\) 13.8871i 0.756481i 0.925707 + 0.378241i \(0.123471\pi\)
−0.925707 + 0.378241i \(0.876529\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.65962 + 32.5747i 0.144027 + 1.76402i
\(342\) 0 0
\(343\) −5.28803 −0.285527
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.2570 0.872719 0.436360 0.899772i \(-0.356268\pi\)
0.436360 + 0.899772i \(0.356268\pi\)
\(348\) 0 0
\(349\) 15.7040i 0.840615i 0.907382 + 0.420307i \(0.138078\pi\)
−0.907382 + 0.420307i \(0.861922\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.6844 0.781573 0.390787 0.920481i \(-0.372203\pi\)
0.390787 + 0.920481i \(0.372203\pi\)
\(354\) 0 0
\(355\) 1.13650i 0.0603190i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.74806 −0.197815 −0.0989076 0.995097i \(-0.531535\pi\)
−0.0989076 + 0.995097i \(0.531535\pi\)
\(360\) 0 0
\(361\) −9.84513 −0.518164
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 25.9634i 1.35899i
\(366\) 0 0
\(367\) 0.845125i 0.0441152i −0.999757 0.0220576i \(-0.992978\pi\)
0.999757 0.0220576i \(-0.00702172\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −31.8611 −1.65414
\(372\) 0 0
\(373\) 29.7837i 1.54214i 0.636749 + 0.771071i \(0.280279\pi\)
−0.636749 + 0.771071i \(0.719721\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.6394 1.01148
\(378\) 0 0
\(379\) 11.7086i 0.601432i −0.953714 0.300716i \(-0.902774\pi\)
0.953714 0.300716i \(-0.0972256\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.2760i 0.882760i 0.897320 + 0.441380i \(0.145511\pi\)
−0.897320 + 0.441380i \(0.854489\pi\)
\(384\) 0 0
\(385\) −24.2132 + 1.97694i −1.23402 + 0.100754i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.7698 −0.900964 −0.450482 0.892785i \(-0.648748\pi\)
−0.450482 + 0.892785i \(0.648748\pi\)
\(390\) 0 0
\(391\) −13.1238 −0.663698
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.89765 0.296743
\(396\) 0 0
\(397\) −18.8635 −0.946732 −0.473366 0.880866i \(-0.656961\pi\)
−0.473366 + 0.880866i \(0.656961\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.73920 −0.186727 −0.0933634 0.995632i \(-0.529762\pi\)
−0.0933634 + 0.995632i \(0.529762\pi\)
\(402\) 0 0
\(403\) 34.8467 1.73584
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 32.5747 2.65962i 1.61467 0.131833i
\(408\) 0 0
\(409\) 24.2706i 1.20010i 0.799961 + 0.600052i \(0.204854\pi\)
−0.799961 + 0.600052i \(0.795146\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 41.3007i 2.03228i
\(414\) 0 0
\(415\) 11.9102 0.584649
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 34.5962i 1.69013i −0.534660 0.845067i \(-0.679560\pi\)
0.534660 0.845067i \(-0.320440\pi\)
\(420\) 0 0
\(421\) −31.3989 −1.53029 −0.765144 0.643859i \(-0.777332\pi\)
−0.765144 + 0.643859i \(0.777332\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.66466i 0.129255i
\(426\) 0 0
\(427\) 34.5721i 1.67306i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −29.7810 −1.43450 −0.717250 0.696816i \(-0.754600\pi\)
−0.717250 + 0.696816i \(0.754600\pi\)
\(432\) 0 0
\(433\) 6.86350 0.329839 0.164919 0.986307i \(-0.447264\pi\)
0.164919 + 0.986307i \(0.447264\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 22.4214i 1.07256i
\(438\) 0 0
\(439\) 18.5684 0.886221 0.443111 0.896467i \(-0.353875\pi\)
0.443111 + 0.896467i \(0.353875\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.83513i 0.134701i 0.997729 + 0.0673506i \(0.0214546\pi\)
−0.997729 + 0.0673506i \(0.978545\pi\)
\(444\) 0 0
\(445\) 29.7270 1.40920
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.11412 0.335736 0.167868 0.985809i \(-0.446312\pi\)
0.167868 + 0.985809i \(0.446312\pi\)
\(450\) 0 0
\(451\) −2.26233 27.7086i −0.106529 1.30475i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 25.9020i 1.21431i
\(456\) 0 0
\(457\) 10.6410i 0.497767i 0.968533 + 0.248884i \(0.0800636\pi\)
−0.968533 + 0.248884i \(0.919936\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.6379i 0.588606i −0.955712 0.294303i \(-0.904913\pi\)
0.955712 0.294303i \(-0.0950874\pi\)
\(462\) 0 0
\(463\) 6.14569i 0.285614i 0.989751 + 0.142807i \(0.0456129\pi\)
−0.989751 + 0.142807i \(0.954387\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.0546i 1.11311i −0.830810 0.556556i \(-0.812122\pi\)
0.830810 0.556556i \(-0.187878\pi\)
\(468\) 0 0
\(469\) 18.9826i 0.876534i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.47840 0.610589i 0.343857 0.0280749i
\(474\) 0 0
\(475\) 4.55246 0.208881
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.0546 1.09908 0.549542 0.835466i \(-0.314802\pi\)
0.549542 + 0.835466i \(0.314802\pi\)
\(480\) 0 0
\(481\) 34.8467i 1.58887i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.4802 0.793737
\(486\) 0 0
\(487\) 34.8635i 1.57982i −0.613225 0.789908i \(-0.710128\pi\)
0.613225 0.789908i \(-0.289872\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.45052 −0.381367 −0.190683 0.981652i \(-0.561070\pi\)
−0.190683 + 0.981652i \(0.561070\pi\)
\(492\) 0 0
\(493\) −9.83594 −0.442988
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.38160i 0.106830i
\(498\) 0 0
\(499\) 8.00000i 0.358129i −0.983837 0.179065i \(-0.942693\pi\)
0.983837 0.179065i \(-0.0573071\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.4673 0.823416 0.411708 0.911316i \(-0.364932\pi\)
0.411708 + 0.911316i \(0.364932\pi\)
\(504\) 0 0
\(505\) 14.3373i 0.638003i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −25.2482 −1.11911 −0.559553 0.828794i \(-0.689027\pi\)
−0.559553 + 0.828794i \(0.689027\pi\)
\(510\) 0 0
\(511\) 54.4081i 2.40687i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.5368i 0.728701i
\(516\) 0 0
\(517\) 0.845125 + 10.3510i 0.0371686 + 0.455235i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −31.2213 −1.36783 −0.683914 0.729562i \(-0.739724\pi\)
−0.683914 + 0.729562i \(0.739724\pi\)
\(522\) 0 0
\(523\) 25.5120 1.11556 0.557780 0.829989i \(-0.311653\pi\)
0.557780 + 0.829989i \(0.311653\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17.4521 −0.760227
\(528\) 0 0
\(529\) −31.9127 −1.38751
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −29.6412 −1.28390
\(534\) 0 0
\(535\) 1.78434 0.0771437
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 27.6010 2.25354i 1.18886 0.0970669i
\(540\) 0 0
\(541\) 25.7649i 1.10772i −0.832610 0.553859i \(-0.813155\pi\)
0.832610 0.553859i \(-0.186845\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 29.2387i 1.25245i
\(546\) 0 0
\(547\) −31.3152 −1.33894 −0.669470 0.742839i \(-0.733479\pi\)
−0.669470 + 0.742839i \(0.733479\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 16.8043i 0.715886i
\(552\) 0 0
\(553\) −12.3589 −0.525554
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.4167i 0.483742i −0.970308 0.241871i \(-0.922239\pi\)
0.970308 0.241871i \(-0.0777611\pi\)
\(558\) 0 0
\(559\) 8.00000i 0.338364i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −8.52004 −0.359077 −0.179538 0.983751i \(-0.557460\pi\)
−0.179538 + 0.983751i \(0.557460\pi\)
\(564\) 0 0
\(565\) −25.6903 −1.08080
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.3913i 1.39984i −0.714223 0.699918i \(-0.753220\pi\)
0.714223 0.699918i \(-0.246780\pi\)
\(570\) 0 0
\(571\) −19.7182 −0.825179 −0.412589 0.910917i \(-0.635376\pi\)
−0.412589 + 0.910917i \(0.635376\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 11.1495i 0.464967i
\(576\) 0 0
\(577\) −26.2132 −1.09127 −0.545635 0.838023i \(-0.683712\pi\)
−0.545635 + 0.838023i \(0.683712\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −24.9586 −1.03546
\(582\) 0 0
\(583\) 26.8821 2.19484i 1.11334 0.0909012i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.9405i 0.699207i −0.936898 0.349604i \(-0.886316\pi\)
0.936898 0.349604i \(-0.113684\pi\)
\(588\) 0 0
\(589\) 29.8162i 1.22856i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.5592i 0.926394i −0.886255 0.463197i \(-0.846702\pi\)
0.886255 0.463197i \(-0.153298\pi\)
\(594\) 0 0
\(595\) 12.9724i 0.531818i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 28.2655i 1.15490i 0.816428 + 0.577448i \(0.195951\pi\)
−0.816428 + 0.577448i \(0.804049\pi\)
\(600\) 0 0
\(601\) 14.4023i 0.587483i 0.955885 + 0.293741i \(0.0949005\pi\)
−0.955885 + 0.293741i \(0.905100\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 20.2932 3.33600i 0.825037 0.135628i
\(606\) 0 0
\(607\) 3.91787 0.159022 0.0795108 0.996834i \(-0.474664\pi\)
0.0795108 + 0.996834i \(0.474664\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.0729 0.447962
\(612\) 0 0
\(613\) 1.75184i 0.0707563i −0.999374 0.0353782i \(-0.988736\pi\)
0.999374 0.0353782i \(-0.0112636\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −38.0630 −1.53236 −0.766180 0.642626i \(-0.777845\pi\)
−0.766180 + 0.642626i \(0.777845\pi\)
\(618\) 0 0
\(619\) 8.55375i 0.343804i −0.985114 0.171902i \(-0.945009\pi\)
0.985114 0.171902i \(-0.0549913\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −62.2949 −2.49579
\(624\) 0 0
\(625\) −15.2132 −0.608529
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.4521i 0.695863i
\(630\) 0 0
\(631\) 10.5354i 0.419407i −0.977765 0.209703i \(-0.932750\pi\)
0.977765 0.209703i \(-0.0672498\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.23365 0.366426
\(636\) 0 0
\(637\) 29.5261i 1.16987i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 38.4273 1.51779 0.758894 0.651215i \(-0.225740\pi\)
0.758894 + 0.651215i \(0.225740\pi\)
\(642\) 0 0
\(643\) 20.8451i 0.822051i 0.911624 + 0.411026i \(0.134829\pi\)
−0.911624 + 0.411026i \(0.865171\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.3689i 1.27255i −0.771460 0.636277i \(-0.780473\pi\)
0.771460 0.636277i \(-0.219527\pi\)
\(648\) 0 0
\(649\) −2.84513 34.8467i −0.111681 1.36785i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 41.1484 1.61026 0.805130 0.593098i \(-0.202095\pi\)
0.805130 + 0.593098i \(0.202095\pi\)
\(654\) 0 0
\(655\) 1.33416 0.0521298
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.4906 −0.992973 −0.496486 0.868044i \(-0.665377\pi\)
−0.496486 + 0.868044i \(0.665377\pi\)
\(660\) 0 0
\(661\) −8.69944 −0.338369 −0.169184 0.985584i \(-0.554113\pi\)
−0.169184 + 0.985584i \(0.554113\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 22.1628 0.859438
\(666\) 0 0
\(667\) −41.1557 −1.59355
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.38160 29.1695i −0.0919408 1.12608i
\(672\) 0 0
\(673\) 45.9379i 1.77078i 0.464853 + 0.885388i \(0.346107\pi\)
−0.464853 + 0.885388i \(0.653893\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 24.1576i 0.928454i 0.885716 + 0.464227i \(0.153668\pi\)
−0.885716 + 0.464227i \(0.846332\pi\)
\(678\) 0 0
\(679\) −36.6310 −1.40577
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.84268i 0.300092i −0.988679 0.150046i \(-0.952058\pi\)
0.988679 0.150046i \(-0.0479422\pi\)
\(684\) 0 0
\(685\) −18.6994 −0.714469
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 28.7571i 1.09556i
\(690\) 0 0
\(691\) 42.2440i 1.60704i −0.595279 0.803519i \(-0.702959\pi\)
0.595279 0.803519i \(-0.297041\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.0249 0.607861
\(696\) 0 0
\(697\) 14.8451 0.562299
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27.6997i 1.04620i −0.852271 0.523101i \(-0.824775\pi\)
0.852271 0.523101i \(-0.175225\pi\)
\(702\) 0 0
\(703\) −29.8162 −1.12454
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 30.0448i 1.12995i
\(708\) 0 0
\(709\) −36.5538 −1.37281 −0.686403 0.727222i \(-0.740811\pi\)
−0.686403 + 0.727222i \(0.740811\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −73.0235 −2.73475
\(714\) 0 0
\(715\) −1.78434 21.8543i −0.0667305 0.817305i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.2366i 0.642818i 0.946940 + 0.321409i \(0.104156\pi\)
−0.946940 + 0.321409i \(0.895844\pi\)
\(720\) 0 0
\(721\) 34.6541i 1.29058i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.35628i 0.310344i
\(726\) 0 0
\(727\) 6.14569i 0.227931i 0.993485 + 0.113965i \(0.0363553\pi\)
−0.993485 + 0.113965i \(0.963645\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.00661i 0.148190i
\(732\) 0 0
\(733\) 15.6390i 0.577639i 0.957384 + 0.288820i \(0.0932628\pi\)
−0.957384 + 0.288820i \(0.906737\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.30767 + 16.0162i 0.0481687 + 0.589963i
\(738\) 0 0
\(739\) 0.285389 0.0104982 0.00524911 0.999986i \(-0.498329\pi\)
0.00524911 + 0.999986i \(0.498329\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 48.5908 1.78262 0.891312 0.453390i \(-0.149785\pi\)
0.891312 + 0.453390i \(0.149785\pi\)
\(744\) 0 0
\(745\) 24.9134i 0.912756i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.73920 −0.136627
\(750\) 0 0
\(751\) 32.8451i 1.19854i −0.800549 0.599268i \(-0.795458\pi\)
0.800549 0.599268i \(-0.204542\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −41.7476 −1.51935
\(756\) 0 0
\(757\) −8.69944 −0.316186 −0.158093 0.987424i \(-0.550535\pi\)
−0.158093 + 0.987424i \(0.550535\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 46.6138i 1.68975i 0.534965 + 0.844874i \(0.320325\pi\)
−0.534965 + 0.844874i \(0.679675\pi\)
\(762\) 0 0
\(763\) 61.2716i 2.21818i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −37.2771 −1.34600
\(768\) 0 0
\(769\) 7.32995i 0.264325i −0.991228 0.132162i \(-0.957808\pi\)
0.991228 0.132162i \(-0.0421921\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −12.8148 −0.460917 −0.230459 0.973082i \(-0.574023\pi\)
−0.230459 + 0.973082i \(0.574023\pi\)
\(774\) 0 0
\(775\) 14.8267i 0.532592i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 25.3622i 0.908697i
\(780\) 0 0
\(781\) 0.164064 + 2.00943i 0.00587067 + 0.0719031i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 31.2213 1.11434
\(786\) 0 0
\(787\) 14.8803 0.530426 0.265213 0.964190i \(-0.414558\pi\)
0.265213 + 0.964190i \(0.414558\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 53.8356 1.91417
\(792\) 0 0
\(793\) −31.2040 −1.10809
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.6681 0.838369 0.419184 0.907901i \(-0.362316\pi\)
0.419184 + 0.907901i \(0.362316\pi\)
\(798\) 0 0
\(799\) −5.54561 −0.196190
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.74806 + 45.9057i 0.132266 + 1.61998i
\(804\) 0 0
\(805\) 54.2794i 1.91310i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 32.4369i 1.14042i 0.821499 + 0.570210i \(0.193138\pi\)
−0.821499 + 0.570210i \(0.806862\pi\)
\(810\) 0 0
\(811\) 14.9359 0.524471 0.262235 0.965004i \(-0.415540\pi\)
0.262235 + 0.965004i \(0.415540\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.88678i 0.0660910i
\(816\) 0 0
\(817\) −6.84513 −0.239481
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 41.6098i 1.45219i −0.687594 0.726096i \(-0.741333\pi\)
0.687594 0.726096i \(-0.258667\pi\)
\(822\) 0 0
\(823\) 0.845125i 0.0294592i 0.999892 + 0.0147296i \(0.00468875\pi\)
−0.999892 + 0.0147296i \(0.995311\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38.4723 1.33781 0.668907 0.743346i \(-0.266763\pi\)
0.668907 + 0.743346i \(0.266763\pi\)
\(828\) 0 0
\(829\) −1.85431 −0.0644030 −0.0322015 0.999481i \(-0.510252\pi\)
−0.0322015 + 0.999481i \(0.510252\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 14.7875i 0.512356i
\(834\) 0 0
\(835\) 37.9652 1.31384
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.46692i 0.223263i −0.993750 0.111631i \(-0.964392\pi\)
0.993750 0.111631i \(-0.0356076\pi\)
\(840\) 0 0
\(841\) −1.84513 −0.0636250
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.926210 0.0318626
\(846\) 0 0
\(847\) −42.5258 + 6.99081i −1.46120 + 0.240207i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 73.0235i 2.50321i
\(852\) 0 0
\(853\) 3.79377i 0.129896i 0.997889 + 0.0649481i \(0.0206882\pi\)
−0.997889 + 0.0649481i \(0.979312\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34.6212i 1.18264i 0.806437 + 0.591319i \(0.201393\pi\)
−0.806437 + 0.591319i \(0.798607\pi\)
\(858\) 0 0
\(859\) 14.3097i 0.488242i −0.969745 0.244121i \(-0.921501\pi\)
0.969745 0.244121i \(-0.0784995\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.28386i 0.0437030i 0.999761 + 0.0218515i \(0.00695611\pi\)
−0.999761 + 0.0218515i \(0.993044\pi\)
\(864\) 0 0
\(865\) 24.5282i 0.833984i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10.4276 0.851380i 0.353731 0.0288811i
\(870\) 0 0
\(871\) 17.1333 0.580538
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 47.6452 1.61070
\(876\) 0 0
\(877\) 33.0948i 1.11753i 0.829325 + 0.558766i \(0.188725\pi\)
−0.829325 + 0.558766i \(0.811275\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −34.6881 −1.16867 −0.584336 0.811512i \(-0.698645\pi\)
−0.584336 + 0.811512i \(0.698645\pi\)
\(882\) 0 0
\(883\) 48.8819i 1.64501i 0.568761 + 0.822503i \(0.307423\pi\)
−0.568761 + 0.822503i \(0.692577\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −22.1458 −0.743584 −0.371792 0.928316i \(-0.621257\pi\)
−0.371792 + 0.928316i \(0.621257\pi\)
\(888\) 0 0
\(889\) −19.3497 −0.648969
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.47444i 0.317050i
\(894\) 0 0
\(895\) 25.6903i 0.858730i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −54.7293 −1.82532
\(900\) 0 0
\(901\) 14.4023i 0.479811i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.62598 −0.187014
\(906\) 0 0
\(907\) 19.1549i 0.636027i 0.948086 + 0.318014i \(0.103016\pi\)
−0.948086 + 0.318014i \(0.896984\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 52.0477i 1.72442i −0.506554 0.862208i \(-0.669081\pi\)
0.506554 0.862208i \(-0.330919\pi\)
\(912\) 0 0
\(913\) 21.0583 1.71935i 0.696930 0.0569022i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.79581 −0.0923258
\(918\) 0 0
\(919\) 13.4080 0.442288 0.221144 0.975241i \(-0.429021\pi\)
0.221144 + 0.975241i \(0.429021\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.14958 0.0707544
\(924\) 0 0
\(925\) −14.8267 −0.487500
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 34.5962 1.13506 0.567532 0.823351i \(-0.307898\pi\)
0.567532 + 0.823351i \(0.307898\pi\)
\(930\) 0 0
\(931\) −25.2638 −0.827987
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.893645 + 10.9452i 0.0292253 + 0.357947i
\(936\) 0 0
\(937\) 42.4342i 1.38626i −0.720810 0.693132i \(-0.756230\pi\)
0.720810 0.693132i \(-0.243770\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 14.8222i 0.483191i −0.970377 0.241596i \(-0.922329\pi\)
0.970377 0.241596i \(-0.0776708\pi\)
\(942\) 0 0
\(943\) 62.1152 2.02275
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.3220i 0.790358i −0.918604 0.395179i \(-0.870683\pi\)
0.918604 0.395179i \(-0.129317\pi\)
\(948\) 0 0
\(949\) 49.1075 1.59410
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 58.8819i 1.90737i −0.300805 0.953686i \(-0.597255\pi\)
0.300805 0.953686i \(-0.402745\pi\)
\(954\) 0 0
\(955\) 47.2899i 1.53027i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 39.1859 1.26538
\(960\) 0 0
\(961\) −66.1075 −2.13250
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.03208i 0.226371i
\(966\) 0 0
\(967\) 36.5394 1.17503 0.587514 0.809214i \(-0.300107\pi\)
0.587514 + 0.809214i \(0.300107\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.4437i 1.16953i 0.811202 + 0.584766i \(0.198814\pi\)
−0.811202 + 0.584766i \(0.801186\pi\)
\(972\) 0 0
\(973\) −33.5813 −1.07657
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 49.0658 1.56975 0.784877 0.619652i \(-0.212726\pi\)
0.784877 + 0.619652i \(0.212726\pi\)
\(978\) 0 0
\(979\) 52.5601 4.29137i 1.67983 0.137153i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.6836i 0.532124i 0.963956 + 0.266062i \(0.0857225\pi\)
−0.963956 + 0.266062i \(0.914277\pi\)
\(984\) 0 0
\(985\) 35.1043i 1.11851i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.7645i 0.533081i
\(990\) 0 0
\(991\) 2.43706i 0.0774157i 0.999251 + 0.0387078i \(0.0123242\pi\)
−0.999251 + 0.0387078i \(0.987676\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 33.3804i 1.05823i
\(996\) 0 0
\(997\) 17.4233i 0.551802i 0.961186 + 0.275901i \(0.0889763\pi\)
−0.961186 + 0.275901i \(0.911024\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3168.2.o.f.703.18 yes 24
3.2 odd 2 inner 3168.2.o.f.703.5 24
4.3 odd 2 inner 3168.2.o.f.703.17 yes 24
11.10 odd 2 inner 3168.2.o.f.703.20 yes 24
12.11 even 2 inner 3168.2.o.f.703.6 yes 24
33.32 even 2 inner 3168.2.o.f.703.7 yes 24
44.43 even 2 inner 3168.2.o.f.703.19 yes 24
132.131 odd 2 inner 3168.2.o.f.703.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3168.2.o.f.703.5 24 3.2 odd 2 inner
3168.2.o.f.703.6 yes 24 12.11 even 2 inner
3168.2.o.f.703.7 yes 24 33.32 even 2 inner
3168.2.o.f.703.8 yes 24 132.131 odd 2 inner
3168.2.o.f.703.17 yes 24 4.3 odd 2 inner
3168.2.o.f.703.18 yes 24 1.1 even 1 trivial
3168.2.o.f.703.19 yes 24 44.43 even 2 inner
3168.2.o.f.703.20 yes 24 11.10 odd 2 inner