Properties

Label 3174.2.a.d
Level $3174$
Weight $2$
Character orbit 3174.a
Self dual yes
Analytic conductor $25.345$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3174,2,Mod(1,3174)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3174, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3174.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3174 = 2 \cdot 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3174.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.3445176016\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 138)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{6} - 2 q^{7} - q^{8} + q^{9} + q^{12} + 2 q^{13} + 2 q^{14} + q^{16} - q^{18} - 2 q^{19} - 2 q^{21} - q^{24} - 5 q^{25} - 2 q^{26} + q^{27} - 2 q^{28} - 6 q^{29}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 0 −1.00000 −2.00000 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3174.2.a.d 1
3.b odd 2 1 9522.2.a.k 1
23.b odd 2 1 138.2.a.b 1
69.c even 2 1 414.2.a.c 1
92.b even 2 1 1104.2.a.b 1
115.c odd 2 1 3450.2.a.o 1
115.e even 4 2 3450.2.d.g 2
161.c even 2 1 6762.2.a.g 1
184.e odd 2 1 4416.2.a.i 1
184.h even 2 1 4416.2.a.t 1
276.h odd 2 1 3312.2.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
138.2.a.b 1 23.b odd 2 1
414.2.a.c 1 69.c even 2 1
1104.2.a.b 1 92.b even 2 1
3174.2.a.d 1 1.a even 1 1 trivial
3312.2.a.h 1 276.h odd 2 1
3450.2.a.o 1 115.c odd 2 1
3450.2.d.g 2 115.e even 4 2
4416.2.a.i 1 184.e odd 2 1
4416.2.a.t 1 184.h even 2 1
6762.2.a.g 1 161.c even 2 1
9522.2.a.k 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3174))\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 2 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 10 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T + 2 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 12 \) Copy content Toggle raw display
$59$ \( T - 12 \) Copy content Toggle raw display
$61$ \( T - 10 \) Copy content Toggle raw display
$67$ \( T + 14 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 10 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 12 \) Copy content Toggle raw display
$97$ \( T - 10 \) Copy content Toggle raw display
show more
show less