Properties

Label 3174.2.a.r
Level $3174$
Weight $2$
Character orbit 3174.a
Self dual yes
Analytic conductor $25.345$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3174,2,Mod(1,3174)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3174, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3174.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3174 = 2 \cdot 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3174.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.3445176016\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{41})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + \beta q^{5} + q^{6} + (\beta + 1) q^{7} + q^{8} + q^{9} + \beta q^{10} + ( - \beta - 1) q^{11} + q^{12} + ( - \beta + 2) q^{13} + (\beta + 1) q^{14} + \beta q^{15} + q^{16}+ \cdots + ( - \beta - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + q^{5} + 2 q^{6} + 3 q^{7} + 2 q^{8} + 2 q^{9} + q^{10} - 3 q^{11} + 2 q^{12} + 3 q^{13} + 3 q^{14} + q^{15} + 2 q^{16} + 4 q^{17} + 2 q^{18} - 8 q^{19} + q^{20} + 3 q^{21}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.70156
3.70156
1.00000 1.00000 1.00000 −2.70156 1.00000 −1.70156 1.00000 1.00000 −2.70156
1.2 1.00000 1.00000 1.00000 3.70156 1.00000 4.70156 1.00000 1.00000 3.70156
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3174.2.a.r yes 2
3.b odd 2 1 9522.2.a.r 2
23.b odd 2 1 3174.2.a.o 2
69.c even 2 1 9522.2.a.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3174.2.a.o 2 23.b odd 2 1
3174.2.a.r yes 2 1.a even 1 1 trivial
9522.2.a.r 2 3.b odd 2 1
9522.2.a.ba 2 69.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3174))\):

\( T_{5}^{2} - T_{5} - 10 \) Copy content Toggle raw display
\( T_{7}^{2} - 3T_{7} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T - 10 \) Copy content Toggle raw display
$7$ \( T^{2} - 3T - 8 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T - 8 \) Copy content Toggle raw display
$13$ \( T^{2} - 3T - 8 \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( (T + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 41 \) Copy content Toggle raw display
$31$ \( T^{2} + 5T - 4 \) Copy content Toggle raw display
$37$ \( T^{2} - 6T - 32 \) Copy content Toggle raw display
$41$ \( T^{2} + T - 92 \) Copy content Toggle raw display
$43$ \( T^{2} - 10T - 16 \) Copy content Toggle raw display
$47$ \( (T - 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 41 \) Copy content Toggle raw display
$59$ \( T^{2} - 21T + 100 \) Copy content Toggle raw display
$61$ \( T^{2} + 21T + 100 \) Copy content Toggle raw display
$67$ \( (T - 12)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 18T + 40 \) Copy content Toggle raw display
$73$ \( T^{2} - 41 \) Copy content Toggle raw display
$79$ \( T^{2} + 27T + 172 \) Copy content Toggle raw display
$83$ \( T^{2} - 19T + 80 \) Copy content Toggle raw display
$89$ \( T^{2} + 15T + 46 \) Copy content Toggle raw display
$97$ \( T^{2} - 10T - 139 \) Copy content Toggle raw display
show more
show less