Properties

Label 3192.1.fm.c.1133.1
Level 31923192
Weight 11
Character 3192.1133
Analytic conductor 1.5931.593
Analytic rank 00
Dimension 22
Projective image D6D_{6}
CM discriminant -56
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,1,Mod(293,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.293");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3192=233719 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3192.fm (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.593015520321.59301552032
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.209656254528.1

Embedding invariants

Embedding label 1133.1
Root 0.500000+0.866025i0.500000 + 0.866025i of defining polynomial
Character χ\chi == 3192.1133
Dual form 3192.1.fm.c.293.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.500000+0.866025i)q2+(0.5000000.866025i)q3+(0.500000+0.866025i)q4+(1.500000.866025i)q5+(0.5000000.866025i)q61.00000q71.00000q8+(0.500000+0.866025i)q9+(1.50000+0.866025i)q10+1.00000q12+(1.500000.866025i)q13+(0.5000000.866025i)q14+(1.500000.866025i)q15+(0.5000000.866025i)q161.00000q18+(0.5000000.866025i)q19+1.73205iq20+(0.500000+0.866025i)q21+(1.500000.866025i)q23+(0.500000+0.866025i)q24+(1.000001.73205i)q251.73205iq26+1.00000q27+(0.5000000.866025i)q281.73205iq30+(0.5000000.866025i)q32+(1.50000+0.866025i)q35+(0.5000000.866025i)q36+(0.5000000.866025i)q38+1.73205iq39+(1.50000+0.866025i)q40+(0.500000+0.866025i)q42+1.73205iq451.73205iq46+(0.500000+0.866025i)q48+1.00000q49+2.00000q50+(1.500000.866025i)q52+(0.500000+0.866025i)q54+1.00000q56+(0.500000+0.866025i)q57+(0.5000000.866025i)q59+(1.500000.866025i)q60+(0.5000000.866025i)q61+(0.5000000.866025i)q63+1.00000q643.00000q65+1.73205iq69+(1.500000.866025i)q70+(0.500000+0.866025i)q71+(0.5000000.866025i)q722.00000q75+1.00000q76+(1.50000+0.866025i)q78+(1.500000.866025i)q80+(0.5000000.866025i)q81+1.73205iq831.00000q84+(1.50000+0.866025i)q90+(1.50000+0.866025i)q91+(1.500000.866025i)q92+(1.500000.866025i)q951.00000q96+(0.500000+0.866025i)q98+O(q100)q+(0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.50000 - 0.866025i) q^{5} +(0.500000 - 0.866025i) q^{6} -1.00000 q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.50000 + 0.866025i) q^{10} +1.00000 q^{12} +(-1.50000 - 0.866025i) q^{13} +(-0.500000 - 0.866025i) q^{14} +(-1.50000 - 0.866025i) q^{15} +(-0.500000 - 0.866025i) q^{16} -1.00000 q^{18} +(-0.500000 - 0.866025i) q^{19} +1.73205i q^{20} +(0.500000 + 0.866025i) q^{21} +(-1.50000 - 0.866025i) q^{23} +(0.500000 + 0.866025i) q^{24} +(1.00000 - 1.73205i) q^{25} -1.73205i q^{26} +1.00000 q^{27} +(0.500000 - 0.866025i) q^{28} -1.73205i q^{30} +(0.500000 - 0.866025i) q^{32} +(-1.50000 + 0.866025i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(0.500000 - 0.866025i) q^{38} +1.73205i q^{39} +(-1.50000 + 0.866025i) q^{40} +(-0.500000 + 0.866025i) q^{42} +1.73205i q^{45} -1.73205i q^{46} +(-0.500000 + 0.866025i) q^{48} +1.00000 q^{49} +2.00000 q^{50} +(1.50000 - 0.866025i) q^{52} +(0.500000 + 0.866025i) q^{54} +1.00000 q^{56} +(-0.500000 + 0.866025i) q^{57} +(-0.500000 - 0.866025i) q^{59} +(1.50000 - 0.866025i) q^{60} +(0.500000 - 0.866025i) q^{61} +(0.500000 - 0.866025i) q^{63} +1.00000 q^{64} -3.00000 q^{65} +1.73205i q^{69} +(-1.50000 - 0.866025i) q^{70} +(0.500000 + 0.866025i) q^{71} +(0.500000 - 0.866025i) q^{72} -2.00000 q^{75} +1.00000 q^{76} +(-1.50000 + 0.866025i) q^{78} +(-1.50000 - 0.866025i) q^{80} +(-0.500000 - 0.866025i) q^{81} +1.73205i q^{83} -1.00000 q^{84} +(-1.50000 + 0.866025i) q^{90} +(1.50000 + 0.866025i) q^{91} +(1.50000 - 0.866025i) q^{92} +(-1.50000 - 0.866025i) q^{95} -1.00000 q^{96} +(0.500000 + 0.866025i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q3q4+3q5+q62q72q8q9+3q10+2q123q13q143q15q162q18q19+q213q23+q24+2q25++q98+O(q100) 2 q + q^{2} - q^{3} - q^{4} + 3 q^{5} + q^{6} - 2 q^{7} - 2 q^{8} - q^{9} + 3 q^{10} + 2 q^{12} - 3 q^{13} - q^{14} - 3 q^{15} - q^{16} - 2 q^{18} - q^{19} + q^{21} - 3 q^{23} + q^{24} + 2 q^{25}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3192Z)×\left(\mathbb{Z}/3192\mathbb{Z}\right)^\times.

nn 799799 913913 10091009 15971597 21292129
χ(n)\chi(n) 11 1-1 e(56)e\left(\frac{5}{6}\right) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.500000 + 0.866025i 0.500000 + 0.866025i
33 −0.500000 0.866025i −0.500000 0.866025i
44 −0.500000 + 0.866025i −0.500000 + 0.866025i
55 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
66 0.500000 0.866025i 0.500000 0.866025i
77 −1.00000 −1.00000
88 −1.00000 −1.00000
99 −0.500000 + 0.866025i −0.500000 + 0.866025i
1010 1.50000 + 0.866025i 1.50000 + 0.866025i
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 1.00000 1.00000
1313 −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
−1.00000 π\pi
1414 −0.500000 0.866025i −0.500000 0.866025i
1515 −1.50000 0.866025i −1.50000 0.866025i
1616 −0.500000 0.866025i −0.500000 0.866025i
1717 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1818 −1.00000 −1.00000
1919 −0.500000 0.866025i −0.500000 0.866025i
2020 1.73205i 1.73205i
2121 0.500000 + 0.866025i 0.500000 + 0.866025i
2222 0 0
2323 −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
−1.00000 π\pi
2424 0.500000 + 0.866025i 0.500000 + 0.866025i
2525 1.00000 1.73205i 1.00000 1.73205i
2626 1.73205i 1.73205i
2727 1.00000 1.00000
2828 0.500000 0.866025i 0.500000 0.866025i
2929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3030 1.73205i 1.73205i
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0.500000 0.866025i 0.500000 0.866025i
3333 0 0
3434 0 0
3535 −1.50000 + 0.866025i −1.50000 + 0.866025i
3636 −0.500000 0.866025i −0.500000 0.866025i
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0.500000 0.866025i 0.500000 0.866025i
3939 1.73205i 1.73205i
4040 −1.50000 + 0.866025i −1.50000 + 0.866025i
4141 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4242 −0.500000 + 0.866025i −0.500000 + 0.866025i
4343 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4444 0 0
4545 1.73205i 1.73205i
4646 1.73205i 1.73205i
4747 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
4848 −0.500000 + 0.866025i −0.500000 + 0.866025i
4949 1.00000 1.00000
5050 2.00000 2.00000
5151 0 0
5252 1.50000 0.866025i 1.50000 0.866025i
5353 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
5454 0.500000 + 0.866025i 0.500000 + 0.866025i
5555 0 0
5656 1.00000 1.00000
5757 −0.500000 + 0.866025i −0.500000 + 0.866025i
5858 0 0
5959 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
6060 1.50000 0.866025i 1.50000 0.866025i
6161 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
6262 0 0
6363 0.500000 0.866025i 0.500000 0.866025i
6464 1.00000 1.00000
6565 −3.00000 −3.00000
6666 0 0
6767 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6868 0 0
6969 1.73205i 1.73205i
7070 −1.50000 0.866025i −1.50000 0.866025i
7171 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
7272 0.500000 0.866025i 0.500000 0.866025i
7373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7474 0 0
7575 −2.00000 −2.00000
7676 1.00000 1.00000
7777 0 0
7878 −1.50000 + 0.866025i −1.50000 + 0.866025i
7979 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
8080 −1.50000 0.866025i −1.50000 0.866025i
8181 −0.500000 0.866025i −0.500000 0.866025i
8282 0 0
8383 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 −1.00000 −1.00000
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 −1.50000 + 0.866025i −1.50000 + 0.866025i
9191 1.50000 + 0.866025i 1.50000 + 0.866025i
9292 1.50000 0.866025i 1.50000 0.866025i
9393 0 0
9494 0 0
9595 −1.50000 0.866025i −1.50000 0.866025i
9696 −1.00000 −1.00000
9797 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
9898 0.500000 + 0.866025i 0.500000 + 0.866025i
9999 0 0
100100 1.00000 + 1.73205i 1.00000 + 1.73205i
101101 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 1.50000 + 0.866025i 1.50000 + 0.866025i
105105 1.50000 + 0.866025i 1.50000 + 0.866025i
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 −0.500000 + 0.866025i −0.500000 + 0.866025i
109109 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
110110 0 0
111111 0 0
112112 0.500000 + 0.866025i 0.500000 + 0.866025i
113113 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
114114 −1.00000 −1.00000
115115 −3.00000 −3.00000
116116 0 0
117117 1.50000 0.866025i 1.50000 0.866025i
118118 0.500000 0.866025i 0.500000 0.866025i
119119 0 0
120120 1.50000 + 0.866025i 1.50000 + 0.866025i
121121 −1.00000 −1.00000
122122 1.00000 1.00000
123123 0 0
124124 0 0
125125 1.73205i 1.73205i
126126 1.00000 1.00000
127127 −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
−1.00000 π\pi
128128 0.500000 + 0.866025i 0.500000 + 0.866025i
129129 0 0
130130 −1.50000 2.59808i −1.50000 2.59808i
131131 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
132132 0 0
133133 0.500000 + 0.866025i 0.500000 + 0.866025i
134134 0 0
135135 1.50000 0.866025i 1.50000 0.866025i
136136 0 0
137137 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 00
0.500000 + 0.866025i 0.333333π0.333333\pi
138138 −1.50000 + 0.866025i −1.50000 + 0.866025i
139139 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
140140 1.73205i 1.73205i
141141 0 0
142142 −0.500000 + 0.866025i −0.500000 + 0.866025i
143143 0 0
144144 1.00000 1.00000
145145 0 0
146146 0 0
147147 −0.500000 0.866025i −0.500000 0.866025i
148148 0 0
149149 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
150150 −1.00000 1.73205i −1.00000 1.73205i
151151 1.73205i 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 0.866025i 0.333333π-0.333333\pi
152152 0.500000 + 0.866025i 0.500000 + 0.866025i
153153 0 0
154154 0 0
155155 0 0
156156 −1.50000 0.866025i −1.50000 0.866025i
157157 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
158158 0 0
159159 0 0
160160 1.73205i 1.73205i
161161 1.50000 + 0.866025i 1.50000 + 0.866025i
162162 0.500000 0.866025i 0.500000 0.866025i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 −1.50000 + 0.866025i −1.50000 + 0.866025i
167167 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
168168 −0.500000 0.866025i −0.500000 0.866025i
169169 1.00000 + 1.73205i 1.00000 + 1.73205i
170170 0 0
171171 1.00000 1.00000
172172 0 0
173173 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
174174 0 0
175175 −1.00000 + 1.73205i −1.00000 + 1.73205i
176176 0 0
177177 −0.500000 + 0.866025i −0.500000 + 0.866025i
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 −1.50000 0.866025i −1.50000 0.866025i
181181 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 00
0.500000 + 0.866025i 0.333333π0.333333\pi
182182 1.73205i 1.73205i
183183 −1.00000 −1.00000
184184 1.50000 + 0.866025i 1.50000 + 0.866025i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 −1.00000 −1.00000
190190 1.73205i 1.73205i
191191 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 −0.500000 0.866025i −0.500000 0.866025i
193193 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
194194 0 0
195195 1.50000 + 2.59808i 1.50000 + 2.59808i
196196 −0.500000 + 0.866025i −0.500000 + 0.866025i
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 −1.00000 + 1.73205i −1.00000 + 1.73205i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 1.50000 0.866025i 1.50000 0.866025i
208208 1.73205i 1.73205i
209209 0 0
210210 1.73205i 1.73205i
211211 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
212212 0 0
213213 0.500000 0.866025i 0.500000 0.866025i
214214 0 0
215215 0 0
216216 −1.00000 −1.00000
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
224224 −0.500000 + 0.866025i −0.500000 + 0.866025i
225225 1.00000 + 1.73205i 1.00000 + 1.73205i
226226 −0.500000 0.866025i −0.500000 0.866025i
227227 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
228228 −0.500000 0.866025i −0.500000 0.866025i
229229 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 −1.50000 2.59808i −1.50000 2.59808i
231231 0 0
232232 0 0
233233 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
234234 1.50000 + 0.866025i 1.50000 + 0.866025i
235235 0 0
236236 1.00000 1.00000
237237 0 0
238238 0 0
239239 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 1.73205i 1.73205i
241241 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
242242 −0.500000 0.866025i −0.500000 0.866025i
243243 −0.500000 + 0.866025i −0.500000 + 0.866025i
244244 0.500000 + 0.866025i 0.500000 + 0.866025i
245245 1.50000 0.866025i 1.50000 0.866025i
246246 0 0
247247 1.73205i 1.73205i
248248 0 0
249249 1.50000 0.866025i 1.50000 0.866025i
250250 1.50000 0.866025i 1.50000 0.866025i
251251 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 00
0.500000 + 0.866025i 0.333333π0.333333\pi
252252 0.500000 + 0.866025i 0.500000 + 0.866025i
253253 0 0
254254 1.73205i 1.73205i
255255 0 0
256256 −0.500000 + 0.866025i −0.500000 + 0.866025i
257257 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 0 0
259259 0 0
260260 1.50000 2.59808i 1.50000 2.59808i
261261 0 0
262262 1.50000 + 0.866025i 1.50000 + 0.866025i
263263 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
264264 0 0
265265 0 0
266266 −0.500000 + 0.866025i −0.500000 + 0.866025i
267267 0 0
268268 0 0
269269 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
270270 1.50000 + 0.866025i 1.50000 + 0.866025i
271271 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
272272 0 0
273273 1.73205i 1.73205i
274274 1.73205i 1.73205i
275275 0 0
276276 −1.50000 0.866025i −1.50000 0.866025i
277277 0 0 1.00000 00
−1.00000 π\pi
278278 2.00000 2.00000
279279 0 0
280280 1.50000 0.866025i 1.50000 0.866025i
281281 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
282282 0 0
283283 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
284284 −1.00000 −1.00000
285285 1.73205i 1.73205i
286286 0 0
287287 0 0
288288 0.500000 + 0.866025i 0.500000 + 0.866025i
289289 0.500000 0.866025i 0.500000 0.866025i
290290 0 0
291291 0 0
292292 0 0
293293 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
294294 0.500000 0.866025i 0.500000 0.866025i
295295 −1.50000 0.866025i −1.50000 0.866025i
296296 0 0
297297 0 0
298298 0 0
299299 1.50000 + 2.59808i 1.50000 + 2.59808i
300300 1.00000 1.73205i 1.00000 1.73205i
301301 0 0
302302 1.50000 0.866025i 1.50000 0.866025i
303303 0 0
304304 −0.500000 + 0.866025i −0.500000 + 0.866025i
305305 1.73205i 1.73205i
306306 0 0
307307 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 1.73205i 1.73205i
313313 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 0.500000 0.866025i 0.500000 0.866025i
315315 1.73205i 1.73205i
316316 0 0
317317 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
318318 0 0
319319 0 0
320320 1.50000 0.866025i 1.50000 0.866025i
321321 0 0
322322 1.73205i 1.73205i
323323 0 0
324324 1.00000 1.00000
325325 −3.00000 + 1.73205i −3.00000 + 1.73205i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 −1.50000 0.866025i −1.50000 0.866025i
333333 0 0
334334 0 0
335335 0 0
336336 0.500000 0.866025i 0.500000 0.866025i
337337 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
338338 −1.00000 + 1.73205i −1.00000 + 1.73205i
339339 0.500000 + 0.866025i 0.500000 + 0.866025i
340340 0 0
341341 0 0
342342 0.500000 + 0.866025i 0.500000 + 0.866025i
343343 −1.00000 −1.00000
344344 0 0
345345 1.50000 + 2.59808i 1.50000 + 2.59808i
346346 0.500000 0.866025i 0.500000 0.866025i
347347 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
348348 0 0
349349 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
350350 −2.00000 −2.00000
351351 −1.50000 0.866025i −1.50000 0.866025i
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 −1.00000 −1.00000
355355 1.50000 + 0.866025i 1.50000 + 0.866025i
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 1.73205i 1.73205i
361361 −0.500000 + 0.866025i −0.500000 + 0.866025i
362362 1.73205i 1.73205i
363363 0.500000 + 0.866025i 0.500000 + 0.866025i
364364 −1.50000 + 0.866025i −1.50000 + 0.866025i
365365 0 0
366366 −0.500000 0.866025i −0.500000 0.866025i
367367 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 1.73205i 1.73205i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 −1.50000 + 0.866025i −1.50000 + 0.866025i
376376 0 0
377377 0 0
378378 −0.500000 0.866025i −0.500000 0.866025i
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 1.50000 0.866025i 1.50000 0.866025i
381381 1.73205i 1.73205i
382382 −1.50000 + 0.866025i −1.50000 + 0.866025i
383383 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
384384 0.500000 0.866025i 0.500000 0.866025i
385385 0 0
386386 −1.50000 0.866025i −1.50000 0.866025i
387387 0 0
388388 0 0
389389 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
390390 −1.50000 + 2.59808i −1.50000 + 2.59808i
391391 0 0
392392 −1.00000 −1.00000
393393 −1.50000 0.866025i −1.50000 0.866025i
394394 0 0
395395 0 0
396396 0 0
397397 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
398398 0 0
399399 0.500000 0.866025i 0.500000 0.866025i
400400 −2.00000 −2.00000
401401 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 −1.50000 0.866025i −1.50000 0.866025i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
410410 0 0
411411 1.73205i 1.73205i
412412 0 0
413413 0.500000 + 0.866025i 0.500000 + 0.866025i
414414 1.50000 + 0.866025i 1.50000 + 0.866025i
415415 1.50000 + 2.59808i 1.50000 + 2.59808i
416416 −1.50000 + 0.866025i −1.50000 + 0.866025i
417417 −2.00000 −2.00000
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 −1.50000 + 0.866025i −1.50000 + 0.866025i
421421 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 1.00000 1.00000
427427 −0.500000 + 0.866025i −0.500000 + 0.866025i
428428 0 0
429429 0 0
430430 0 0
431431 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
432432 −0.500000 0.866025i −0.500000 0.866025i
433433 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
434434 0 0
435435 0 0
436436 0 0
437437 1.73205i 1.73205i
438438 0 0
439439 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
440440 0 0
441441 −0.500000 + 0.866025i −0.500000 + 0.866025i
442442 0 0
443443 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −1.00000 −1.00000
449449 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
450450 −1.00000 + 1.73205i −1.00000 + 1.73205i
451451 0 0
452452 0.500000 0.866025i 0.500000 0.866025i
453453 −1.50000 + 0.866025i −1.50000 + 0.866025i
454454 0.500000 + 0.866025i 0.500000 + 0.866025i
455455 3.00000 3.00000
456456 0.500000 0.866025i 0.500000 0.866025i
457457 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
458458 0.500000 + 0.866025i 0.500000 + 0.866025i
459459 0 0
460460 1.50000 2.59808i 1.50000 2.59808i
461461 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
462462 0 0
463463 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
464464 0 0
465465 0 0
466466 1.50000 + 0.866025i 1.50000 + 0.866025i
467467 0 0 1.00000 00
−1.00000 π\pi
468468 1.73205i 1.73205i
469469 0 0
470470 0 0
471471 −0.500000 + 0.866025i −0.500000 + 0.866025i
472472 0.500000 + 0.866025i 0.500000 + 0.866025i
473473 0 0
474474 0 0
475475 −2.00000 −2.00000
476476 0 0
477477 0 0
478478 −1.50000 + 0.866025i −1.50000 + 0.866025i
479479 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
480480 −1.50000 + 0.866025i −1.50000 + 0.866025i
481481 0 0
482482 0 0
483483 1.73205i 1.73205i
484484 0.500000 0.866025i 0.500000 0.866025i
485485 0 0
486486 −1.00000 −1.00000
487487 0 0 1.00000 00
−1.00000 π\pi
488488 −0.500000 + 0.866025i −0.500000 + 0.866025i
489489 0 0
490490 1.50000 + 0.866025i 1.50000 + 0.866025i
491491 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
492492 0 0
493493 0 0
494494 −1.50000 + 0.866025i −1.50000 + 0.866025i
495495 0 0
496496 0 0
497497 −0.500000 0.866025i −0.500000 0.866025i
498498 1.50000 + 0.866025i 1.50000 + 0.866025i
499499 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
500500 1.50000 + 0.866025i 1.50000 + 0.866025i
501501 0 0
502502 1.73205i 1.73205i
503503 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
504504 −0.500000 + 0.866025i −0.500000 + 0.866025i
505505 0 0
506506 0 0
507507 1.00000 1.73205i 1.00000 1.73205i
508508 1.50000 0.866025i 1.50000 0.866025i
509509 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 −0.500000 0.866025i −0.500000 0.866025i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 −0.500000 + 0.866025i −0.500000 + 0.866025i
520520 3.00000 3.00000
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 1.73205i 1.73205i
525525 2.00000 2.00000
526526 1.50000 + 0.866025i 1.50000 + 0.866025i
527527 0 0
528528 0 0
529529 1.00000 + 1.73205i 1.00000 + 1.73205i
530530 0 0
531531 1.00000 1.00000
532532 −1.00000 −1.00000
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 1.00000 1.73205i 1.00000 1.73205i
539539 0 0
540540 1.73205i 1.73205i
541541 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
542542 0 0
543543 1.73205i 1.73205i
544544 0 0
545545 0 0
546546 1.50000 0.866025i 1.50000 0.866025i
547547 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
548548 −1.50000 + 0.866025i −1.50000 + 0.866025i
549549 0.500000 + 0.866025i 0.500000 + 0.866025i
550550 0 0
551551 0 0
552552 1.73205i 1.73205i
553553 0 0
554554 0 0
555555 0 0
556556 1.00000 + 1.73205i 1.00000 + 1.73205i
557557 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
558558 0 0
559559 0 0
560560 1.50000 + 0.866025i 1.50000 + 0.866025i
561561 0 0
562562 −2.00000 −2.00000
563563 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
564564 0 0
565565 −1.50000 + 0.866025i −1.50000 + 0.866025i
566566 0.500000 0.866025i 0.500000 0.866025i
567567 0.500000 + 0.866025i 0.500000 + 0.866025i
568568 −0.500000 0.866025i −0.500000 0.866025i
569569 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
570570 −1.50000 + 0.866025i −1.50000 + 0.866025i
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 1.50000 0.866025i 1.50000 0.866025i
574574 0 0
575575 −3.00000 + 1.73205i −3.00000 + 1.73205i
576576 −0.500000 + 0.866025i −0.500000 + 0.866025i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 1.00000 1.00000
579579 1.50000 + 0.866025i 1.50000 + 0.866025i
580580 0 0
581581 1.73205i 1.73205i
582582 0 0
583583 0 0
584584 0 0
585585 1.50000 2.59808i 1.50000 2.59808i
586586 −0.500000 0.866025i −0.500000 0.866025i
587587 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
588588 1.00000 1.00000
589589 0 0
590590 1.73205i 1.73205i
591591 0 0
592592 0 0
593593 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 −1.50000 + 2.59808i −1.50000 + 2.59808i
599599 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
600600 2.00000 2.00000
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 1.50000 + 0.866025i 1.50000 + 0.866025i
605605 −1.50000 + 0.866025i −1.50000 + 0.866025i
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 −1.00000 −1.00000
609609 0 0
610610 1.50000 0.866025i 1.50000 0.866025i
611611 0 0
612612 0 0
613613 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
614614 −1.50000 0.866025i −1.50000 0.866025i
615615 0 0
616616 0 0
617617 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 00
0.500000 + 0.866025i 0.333333π0.333333\pi
618618 0 0
619619 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
620620 0 0
621621 −1.50000 0.866025i −1.50000 0.866025i
622622 0 0
623623 0 0
624624 1.50000 0.866025i 1.50000 0.866025i
625625 −0.500000 0.866025i −0.500000 0.866025i
626626 0 0
627627 0 0
628628 1.00000 1.00000
629629 0 0
630630 1.50000 0.866025i 1.50000 0.866025i
631631 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
632632 0 0
633633 0 0
634634 0 0
635635 −3.00000 −3.00000
636636 0 0
637637 −1.50000 0.866025i −1.50000 0.866025i
638638 0 0
639639 −1.00000 −1.00000
640640 1.50000 + 0.866025i 1.50000 + 0.866025i
641641 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
642642 0 0
643643 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 −1.50000 + 0.866025i −1.50000 + 0.866025i
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0.500000 + 0.866025i 0.500000 + 0.866025i
649649 0 0
650650 −3.00000 1.73205i −3.00000 1.73205i
651651 0 0
652652 0 0
653653 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
654654 0 0
655655 1.50000 2.59808i 1.50000 2.59808i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 00
0.500000 + 0.866025i 0.333333π0.333333\pi
662662 0 0
663663 0 0
664664 1.73205i 1.73205i
665665 1.50000 + 0.866025i 1.50000 + 0.866025i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 1.00000 1.00000
673673 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
674674 1.50000 + 0.866025i 1.50000 + 0.866025i
675675 1.00000 1.73205i 1.00000 1.73205i
676676 −2.00000 −2.00000
677677 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
678678 −0.500000 + 0.866025i −0.500000 + 0.866025i
679679 0 0
680680 0 0
681681 −0.500000 0.866025i −0.500000 0.866025i
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 −0.500000 + 0.866025i −0.500000 + 0.866025i
685685 3.00000 3.00000
686686 −0.500000 0.866025i −0.500000 0.866025i
687687 −0.500000 0.866025i −0.500000 0.866025i
688688 0 0
689689 0 0
690690 −1.50000 + 2.59808i −1.50000 + 2.59808i
691691 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 1.00000 1.00000
693693 0 0
694694 0 0
695695 3.46410i 3.46410i
696696 0 0
697697 0 0
698698 −1.00000 1.73205i −1.00000 1.73205i
699699 −1.50000 0.866025i −1.50000 0.866025i
700700 −1.00000 1.73205i −1.00000 1.73205i
701701 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
702702 1.73205i 1.73205i
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 −0.500000 0.866025i −0.500000 0.866025i
709709 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
710710 1.73205i 1.73205i
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 1.50000 0.866025i 1.50000 0.866025i
718718 0 0
719719 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
720720 1.50000 0.866025i 1.50000 0.866025i
721721 0 0
722722 −1.00000 −1.00000
723723 0 0
724724 −1.50000 + 0.866025i −1.50000 + 0.866025i
725725 0 0
726726 −0.500000 + 0.866025i −0.500000 + 0.866025i
727727 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
728728 −1.50000 0.866025i −1.50000 0.866025i
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0.500000 0.866025i 0.500000 0.866025i
733733 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
734734 0 0
735735 −1.50000 0.866025i −1.50000 0.866025i
736736 −1.50000 + 0.866025i −1.50000 + 0.866025i
737737 0 0
738738 0 0
739739 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
740740 0 0
741741 1.50000 0.866025i 1.50000 0.866025i
742742 0 0
743743 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
744744 0 0
745745 0 0
746746 0 0
747747 −1.50000 0.866025i −1.50000 0.866025i
748748 0 0
749749 0 0
750750 −1.50000 0.866025i −1.50000 0.866025i
751751 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0 0
753753 1.73205i 1.73205i
754754 0 0
755755 −1.50000 2.59808i −1.50000 2.59808i
756756 0.500000 0.866025i 0.500000 0.866025i
757757 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
758758 0 0
759759 0 0
760760 1.50000 + 0.866025i 1.50000 + 0.866025i
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 −1.50000 + 0.866025i −1.50000 + 0.866025i
763763 0 0
764764 −1.50000 0.866025i −1.50000 0.866025i
765765 0 0
766766 0 0
767767 1.73205i 1.73205i
768768 1.00000 1.00000
769769 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 0 0
772772 1.73205i 1.73205i
773773 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 −3.00000 −3.00000
781781 0 0
782782 0 0
783783 0 0
784784 −0.500000 0.866025i −0.500000 0.866025i
785785 −1.50000 0.866025i −1.50000 0.866025i
786786 1.73205i 1.73205i
787787 1.73205i 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 0.866025i 0.333333π-0.333333\pi
788788 0 0
789789 −1.50000 0.866025i −1.50000 0.866025i
790790 0 0
791791 1.00000 1.00000
792792 0 0
793793 −1.50000 + 0.866025i −1.50000 + 0.866025i
794794 1.00000 1.73205i 1.00000 1.73205i
795795 0 0
796796 0 0
797797 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
798798 1.00000 1.00000
799799 0 0
800800 −1.00000 1.73205i −1.00000 1.73205i
801801 0 0
802802 0.500000 0.866025i 0.500000 0.866025i
803803 0 0
804804 0 0
805805 3.00000 3.00000
806806 0 0
807807 −1.00000 + 1.73205i −1.00000 + 1.73205i
808808 0 0
809809 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 1.73205i 1.73205i
811811 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 −1.50000 + 0.866025i −1.50000 + 0.866025i
820820 0 0
821821 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
822822 1.50000 0.866025i 1.50000 0.866025i
823823 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
824824 0 0
825825 0 0
826826 −0.500000 + 0.866025i −0.500000 + 0.866025i
827827 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
828828 1.73205i 1.73205i
829829 1.73205i 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 0.866025i 0.333333π-0.333333\pi
830830 −1.50000 + 2.59808i −1.50000 + 2.59808i
831831 0 0
832832 −1.50000 0.866025i −1.50000 0.866025i
833833 0 0
834834 −1.00000 1.73205i −1.00000 1.73205i
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
840840 −1.50000 0.866025i −1.50000 0.866025i
841841 −0.500000 0.866025i −0.500000 0.866025i
842842 0 0
843843 2.00000 2.00000
844844 0 0
845845 3.00000 + 1.73205i 3.00000 + 1.73205i
846846 0 0
847847 1.00000 1.00000
848848 0 0
849849 −0.500000 + 0.866025i −0.500000 + 0.866025i
850850 0 0
851851 0 0
852852 0.500000 + 0.866025i 0.500000 + 0.866025i
853853 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
854854 −1.00000 −1.00000
855855 1.50000 0.866025i 1.50000 0.866025i
856856 0 0
857857 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
858858 0 0
859859 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
860860 0 0
861861 0 0
862862 2.00000 2.00000
863863 2.00000 2.00000 1.00000 00
1.00000 00
864864 0.500000 0.866025i 0.500000 0.866025i
865865 −1.50000 0.866025i −1.50000 0.866025i
866866 0 0
867867 −1.00000 −1.00000
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 −1.50000 + 0.866025i −1.50000 + 0.866025i
875875 1.73205i 1.73205i
876876 0 0
877877 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
878878 0 0
879879 0.500000 + 0.866025i 0.500000 + 0.866025i
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 −1.00000 −1.00000
883883 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
884884 0 0
885885 1.73205i 1.73205i
886886 0 0
887887 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
888888 0 0
889889 1.50000 + 0.866025i 1.50000 + 0.866025i
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 −0.500000 0.866025i −0.500000 0.866025i
897897 1.50000 2.59808i 1.50000 2.59808i
898898 0.500000 + 0.866025i 0.500000 + 0.866025i
899899 0 0
900900 −2.00000 −2.00000
901901 0 0
902902 0 0
903903 0 0
904904 1.00000 1.00000
905905 3.00000 3.00000
906906 −1.50000 0.866025i −1.50000 0.866025i
907907 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
908908 −0.500000 + 0.866025i −0.500000 + 0.866025i
909909 0 0
910910 1.50000 + 2.59808i 1.50000 + 2.59808i
911911 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
912912 1.00000 1.00000
913913 0 0
914914 0.500000 + 0.866025i 0.500000 + 0.866025i
915915 −1.50000 + 0.866025i −1.50000 + 0.866025i
916916 −0.500000 + 0.866025i −0.500000 + 0.866025i
917917 −1.50000 + 0.866025i −1.50000 + 0.866025i
918918 0 0
919919 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 3.00000 3.00000
921921 1.50000 + 0.866025i 1.50000 + 0.866025i
922922 −1.50000 0.866025i −1.50000 0.866025i
923923 1.73205i 1.73205i
924924 0 0
925925 0 0
926926 0.500000 + 0.866025i 0.500000 + 0.866025i
927927 0 0
928928 0 0
929929 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
930930 0 0
931931 −0.500000 0.866025i −0.500000 0.866025i
932932 1.73205i 1.73205i
933933 0 0
934934 0 0
935935 0 0
936936 −1.50000 + 0.866025i −1.50000 + 0.866025i
937937 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
938938 0 0
939939 0 0
940940 0 0
941941 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
942942 −1.00000 −1.00000
943943 0 0
944944 −0.500000 + 0.866025i −0.500000 + 0.866025i
945945 −1.50000 + 0.866025i −1.50000 + 0.866025i
946946 0 0
947947 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
948948 0 0
949949 0 0
950950 −1.00000 1.73205i −1.00000 1.73205i
951951 0 0
952952 0 0
953953 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
954954 0 0
955955 1.50000 + 2.59808i 1.50000 + 2.59808i
956956 −1.50000 0.866025i −1.50000 0.866025i
957957 0 0
958958 0 0
959959 −1.50000 0.866025i −1.50000 0.866025i
960960 −1.50000 0.866025i −1.50000 0.866025i
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 −1.50000 + 2.59808i −1.50000 + 2.59808i
966966 1.50000 0.866025i 1.50000 0.866025i
967967 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
968968 1.00000 1.00000
969969 0 0
970970 0 0
971971 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
972972 −0.500000 0.866025i −0.500000 0.866025i
973973 −1.00000 + 1.73205i −1.00000 + 1.73205i
974974 0 0
975975 3.00000 + 1.73205i 3.00000 + 1.73205i
976976 −1.00000 −1.00000
977977 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
978978 0 0
979979 0 0
980980 1.73205i 1.73205i
981981 0 0
982982 0 0
983983 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 −1.50000 0.866025i −1.50000 0.866025i
989989 0 0
990990 0 0
991991 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0.500000 0.866025i 0.500000 0.866025i
995995 0 0
996996 1.73205i 1.73205i
997997 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3192.1.fm.c.1133.1 yes 2
3.2 odd 2 3192.1.fm.b.1133.1 yes 2
7.6 odd 2 3192.1.fm.d.1133.1 yes 2
8.5 even 2 3192.1.fm.d.1133.1 yes 2
19.8 odd 6 3192.1.fm.b.293.1 yes 2
21.20 even 2 3192.1.fm.a.1133.1 yes 2
24.5 odd 2 3192.1.fm.a.1133.1 yes 2
56.13 odd 2 CM 3192.1.fm.c.1133.1 yes 2
57.8 even 6 inner 3192.1.fm.c.293.1 yes 2
133.27 even 6 3192.1.fm.a.293.1 2
152.141 odd 6 3192.1.fm.a.293.1 2
168.125 even 2 3192.1.fm.b.1133.1 yes 2
399.293 odd 6 3192.1.fm.d.293.1 yes 2
456.293 even 6 3192.1.fm.d.293.1 yes 2
1064.293 even 6 3192.1.fm.b.293.1 yes 2
3192.293 odd 6 inner 3192.1.fm.c.293.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3192.1.fm.a.293.1 2 133.27 even 6
3192.1.fm.a.293.1 2 152.141 odd 6
3192.1.fm.a.1133.1 yes 2 21.20 even 2
3192.1.fm.a.1133.1 yes 2 24.5 odd 2
3192.1.fm.b.293.1 yes 2 19.8 odd 6
3192.1.fm.b.293.1 yes 2 1064.293 even 6
3192.1.fm.b.1133.1 yes 2 3.2 odd 2
3192.1.fm.b.1133.1 yes 2 168.125 even 2
3192.1.fm.c.293.1 yes 2 57.8 even 6 inner
3192.1.fm.c.293.1 yes 2 3192.293 odd 6 inner
3192.1.fm.c.1133.1 yes 2 1.1 even 1 trivial
3192.1.fm.c.1133.1 yes 2 56.13 odd 2 CM
3192.1.fm.d.293.1 yes 2 399.293 odd 6
3192.1.fm.d.293.1 yes 2 456.293 even 6
3192.1.fm.d.1133.1 yes 2 7.6 odd 2
3192.1.fm.d.1133.1 yes 2 8.5 even 2