Properties

Label 3192.2.a.x.1.3
Level $3192$
Weight $2$
Character 3192.1
Self dual yes
Analytic conductor $25.488$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,2,Mod(1,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3192.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.4882483252\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.9248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.662153\) of defining polynomial
Character \(\chi\) \(=\) 3192.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.69614 q^{5} -1.00000 q^{7} +1.00000 q^{9} +1.32431 q^{11} -1.69614 q^{15} +0.102658 q^{17} -1.00000 q^{19} +1.00000 q^{21} -9.16400 q^{23} -2.12311 q^{25} -1.00000 q^{27} -4.81925 q^{29} -0.675693 q^{31} -1.32431 q^{33} -1.69614 q^{35} +0.406517 q^{37} +4.04090 q^{41} -4.91779 q^{43} +1.69614 q^{45} +3.66906 q^{47} +1.00000 q^{49} -0.102658 q^{51} +5.42696 q^{53} +2.24621 q^{55} +1.00000 q^{57} -9.43318 q^{59} -0.648614 q^{61} -1.00000 q^{63} -8.92190 q^{67} +9.16400 q^{69} +5.46786 q^{71} +4.04090 q^{73} +2.12311 q^{75} -1.32431 q^{77} +8.55628 q^{79} +1.00000 q^{81} -13.4679 q^{83} +0.174122 q^{85} +4.81925 q^{87} -4.85393 q^{89} +0.675693 q^{93} -1.69614 q^{95} +2.71659 q^{97} +1.32431 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 4 q^{7} + 4 q^{9} - 4 q^{17} - 4 q^{19} + 4 q^{21} + 4 q^{23} + 8 q^{25} - 4 q^{27} + 4 q^{29} - 8 q^{31} + 4 q^{37} - 8 q^{41} - 12 q^{43} - 8 q^{47} + 4 q^{49} + 4 q^{51} + 12 q^{53} - 24 q^{55}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.69614 0.758537 0.379269 0.925287i \(-0.376176\pi\)
0.379269 + 0.925287i \(0.376176\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.32431 0.399294 0.199647 0.979868i \(-0.436021\pi\)
0.199647 + 0.979868i \(0.436021\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −1.69614 −0.437942
\(16\) 0 0
\(17\) 0.102658 0.0248982 0.0124491 0.999923i \(-0.496037\pi\)
0.0124491 + 0.999923i \(0.496037\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −9.16400 −1.91083 −0.955413 0.295272i \(-0.904590\pi\)
−0.955413 + 0.295272i \(0.904590\pi\)
\(24\) 0 0
\(25\) −2.12311 −0.424621
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −4.81925 −0.894912 −0.447456 0.894306i \(-0.647670\pi\)
−0.447456 + 0.894306i \(0.647670\pi\)
\(30\) 0 0
\(31\) −0.675693 −0.121358 −0.0606790 0.998157i \(-0.519327\pi\)
−0.0606790 + 0.998157i \(0.519327\pi\)
\(32\) 0 0
\(33\) −1.32431 −0.230532
\(34\) 0 0
\(35\) −1.69614 −0.286700
\(36\) 0 0
\(37\) 0.406517 0.0668309 0.0334155 0.999442i \(-0.489362\pi\)
0.0334155 + 0.999442i \(0.489362\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.04090 0.631082 0.315541 0.948912i \(-0.397814\pi\)
0.315541 + 0.948912i \(0.397814\pi\)
\(42\) 0 0
\(43\) −4.91779 −0.749956 −0.374978 0.927034i \(-0.622350\pi\)
−0.374978 + 0.927034i \(0.622350\pi\)
\(44\) 0 0
\(45\) 1.69614 0.252846
\(46\) 0 0
\(47\) 3.66906 0.535188 0.267594 0.963532i \(-0.413771\pi\)
0.267594 + 0.963532i \(0.413771\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.102658 −0.0143750
\(52\) 0 0
\(53\) 5.42696 0.745451 0.372725 0.927942i \(-0.378423\pi\)
0.372725 + 0.927942i \(0.378423\pi\)
\(54\) 0 0
\(55\) 2.24621 0.302879
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) −9.43318 −1.22810 −0.614048 0.789269i \(-0.710460\pi\)
−0.614048 + 0.789269i \(0.710460\pi\)
\(60\) 0 0
\(61\) −0.648614 −0.0830465 −0.0415232 0.999138i \(-0.513221\pi\)
−0.0415232 + 0.999138i \(0.513221\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −8.92190 −1.08998 −0.544992 0.838441i \(-0.683467\pi\)
−0.544992 + 0.838441i \(0.683467\pi\)
\(68\) 0 0
\(69\) 9.16400 1.10322
\(70\) 0 0
\(71\) 5.46786 0.648916 0.324458 0.945900i \(-0.394818\pi\)
0.324458 + 0.945900i \(0.394818\pi\)
\(72\) 0 0
\(73\) 4.04090 0.472951 0.236476 0.971637i \(-0.424008\pi\)
0.236476 + 0.971637i \(0.424008\pi\)
\(74\) 0 0
\(75\) 2.12311 0.245155
\(76\) 0 0
\(77\) −1.32431 −0.150919
\(78\) 0 0
\(79\) 8.55628 0.962657 0.481329 0.876540i \(-0.340154\pi\)
0.481329 + 0.876540i \(0.340154\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −13.4679 −1.47829 −0.739145 0.673546i \(-0.764770\pi\)
−0.739145 + 0.673546i \(0.764770\pi\)
\(84\) 0 0
\(85\) 0.174122 0.0188862
\(86\) 0 0
\(87\) 4.81925 0.516677
\(88\) 0 0
\(89\) −4.85393 −0.514515 −0.257258 0.966343i \(-0.582819\pi\)
−0.257258 + 0.966343i \(0.582819\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0.675693 0.0700661
\(94\) 0 0
\(95\) −1.69614 −0.174020
\(96\) 0 0
\(97\) 2.71659 0.275828 0.137914 0.990444i \(-0.455960\pi\)
0.137914 + 0.990444i \(0.455960\pi\)
\(98\) 0 0
\(99\) 1.32431 0.133098
\(100\) 0 0
\(101\) −13.7779 −1.37096 −0.685478 0.728094i \(-0.740407\pi\)
−0.685478 + 0.728094i \(0.740407\pi\)
\(102\) 0 0
\(103\) −9.05513 −0.892229 −0.446114 0.894976i \(-0.647193\pi\)
−0.446114 + 0.894976i \(0.647193\pi\)
\(104\) 0 0
\(105\) 1.69614 0.165526
\(106\) 0 0
\(107\) −3.22165 −0.311449 −0.155724 0.987801i \(-0.549771\pi\)
−0.155724 + 0.987801i \(0.549771\pi\)
\(108\) 0 0
\(109\) 12.2830 1.17650 0.588249 0.808680i \(-0.299818\pi\)
0.588249 + 0.808680i \(0.299818\pi\)
\(110\) 0 0
\(111\) −0.406517 −0.0385849
\(112\) 0 0
\(113\) −11.4679 −1.07881 −0.539403 0.842048i \(-0.681350\pi\)
−0.539403 + 0.842048i \(0.681350\pi\)
\(114\) 0 0
\(115\) −15.5434 −1.44943
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.102658 −0.00941062
\(120\) 0 0
\(121\) −9.24621 −0.840565
\(122\) 0 0
\(123\) −4.04090 −0.364355
\(124\) 0 0
\(125\) −12.0818 −1.08063
\(126\) 0 0
\(127\) −10.9178 −0.968797 −0.484399 0.874847i \(-0.660962\pi\)
−0.484399 + 0.874847i \(0.660962\pi\)
\(128\) 0 0
\(129\) 4.91779 0.432987
\(130\) 0 0
\(131\) 2.81925 0.246319 0.123159 0.992387i \(-0.460697\pi\)
0.123159 + 0.992387i \(0.460697\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) −1.69614 −0.145981
\(136\) 0 0
\(137\) 20.3280 1.73674 0.868369 0.495918i \(-0.165168\pi\)
0.868369 + 0.495918i \(0.165168\pi\)
\(138\) 0 0
\(139\) 4.82546 0.409290 0.204645 0.978836i \(-0.434396\pi\)
0.204645 + 0.978836i \(0.434396\pi\)
\(140\) 0 0
\(141\) −3.66906 −0.308991
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −8.17412 −0.678824
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) 19.8806 1.62868 0.814341 0.580387i \(-0.197099\pi\)
0.814341 + 0.580387i \(0.197099\pi\)
\(150\) 0 0
\(151\) −17.1640 −1.39679 −0.698393 0.715714i \(-0.746101\pi\)
−0.698393 + 0.715714i \(0.746101\pi\)
\(152\) 0 0
\(153\) 0.102658 0.00829938
\(154\) 0 0
\(155\) −1.14607 −0.0920546
\(156\) 0 0
\(157\) 4.24621 0.338885 0.169442 0.985540i \(-0.445803\pi\)
0.169442 + 0.985540i \(0.445803\pi\)
\(158\) 0 0
\(159\) −5.42696 −0.430386
\(160\) 0 0
\(161\) 9.16400 0.722224
\(162\) 0 0
\(163\) 3.70235 0.289991 0.144995 0.989432i \(-0.453683\pi\)
0.144995 + 0.989432i \(0.453683\pi\)
\(164\) 0 0
\(165\) −2.24621 −0.174867
\(166\) 0 0
\(167\) −20.2871 −1.56986 −0.784932 0.619582i \(-0.787302\pi\)
−0.784932 + 0.619582i \(0.787302\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) −5.39228 −0.409968 −0.204984 0.978765i \(-0.565714\pi\)
−0.204984 + 0.978765i \(0.565714\pi\)
\(174\) 0 0
\(175\) 2.12311 0.160492
\(176\) 0 0
\(177\) 9.43318 0.709041
\(178\) 0 0
\(179\) 3.63228 0.271489 0.135745 0.990744i \(-0.456657\pi\)
0.135745 + 0.990744i \(0.456657\pi\)
\(180\) 0 0
\(181\) −17.7433 −1.31885 −0.659423 0.751772i \(-0.729199\pi\)
−0.659423 + 0.751772i \(0.729199\pi\)
\(182\) 0 0
\(183\) 0.648614 0.0479469
\(184\) 0 0
\(185\) 0.689510 0.0506938
\(186\) 0 0
\(187\) 0.135950 0.00994167
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 19.9486 1.44343 0.721714 0.692192i \(-0.243355\pi\)
0.721714 + 0.692192i \(0.243355\pi\)
\(192\) 0 0
\(193\) −6.48419 −0.466743 −0.233371 0.972388i \(-0.574976\pi\)
−0.233371 + 0.972388i \(0.574976\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.48831 0.604767 0.302383 0.953186i \(-0.402218\pi\)
0.302383 + 0.953186i \(0.402218\pi\)
\(198\) 0 0
\(199\) −13.2279 −0.937698 −0.468849 0.883278i \(-0.655331\pi\)
−0.468849 + 0.883278i \(0.655331\pi\)
\(200\) 0 0
\(201\) 8.92190 0.629303
\(202\) 0 0
\(203\) 4.81925 0.338245
\(204\) 0 0
\(205\) 6.85393 0.478699
\(206\) 0 0
\(207\) −9.16400 −0.636942
\(208\) 0 0
\(209\) −1.32431 −0.0916042
\(210\) 0 0
\(211\) −13.6656 −0.940777 −0.470388 0.882459i \(-0.655886\pi\)
−0.470388 + 0.882459i \(0.655886\pi\)
\(212\) 0 0
\(213\) −5.46786 −0.374652
\(214\) 0 0
\(215\) −8.34127 −0.568870
\(216\) 0 0
\(217\) 0.675693 0.0458690
\(218\) 0 0
\(219\) −4.04090 −0.273058
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −21.5705 −1.44447 −0.722234 0.691648i \(-0.756885\pi\)
−0.722234 + 0.691648i \(0.756885\pi\)
\(224\) 0 0
\(225\) −2.12311 −0.141540
\(226\) 0 0
\(227\) 11.3381 0.752538 0.376269 0.926511i \(-0.377207\pi\)
0.376269 + 0.926511i \(0.377207\pi\)
\(228\) 0 0
\(229\) 11.9867 0.792106 0.396053 0.918228i \(-0.370380\pi\)
0.396053 + 0.918228i \(0.370380\pi\)
\(230\) 0 0
\(231\) 1.32431 0.0871330
\(232\) 0 0
\(233\) −26.3689 −1.72748 −0.863742 0.503934i \(-0.831885\pi\)
−0.863742 + 0.503934i \(0.831885\pi\)
\(234\) 0 0
\(235\) 6.22325 0.405960
\(236\) 0 0
\(237\) −8.55628 −0.555790
\(238\) 0 0
\(239\) −11.6155 −0.751346 −0.375673 0.926752i \(-0.622588\pi\)
−0.375673 + 0.926752i \(0.622588\pi\)
\(240\) 0 0
\(241\) −10.1782 −0.655638 −0.327819 0.944741i \(-0.606314\pi\)
−0.327819 + 0.944741i \(0.606314\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 1.69614 0.108362
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 13.4679 0.853491
\(250\) 0 0
\(251\) 22.8317 1.44112 0.720561 0.693391i \(-0.243884\pi\)
0.720561 + 0.693391i \(0.243884\pi\)
\(252\) 0 0
\(253\) −12.1360 −0.762981
\(254\) 0 0
\(255\) −0.174122 −0.0109039
\(256\) 0 0
\(257\) 0.730405 0.0455614 0.0227807 0.999740i \(-0.492748\pi\)
0.0227807 + 0.999740i \(0.492748\pi\)
\(258\) 0 0
\(259\) −0.406517 −0.0252597
\(260\) 0 0
\(261\) −4.81925 −0.298304
\(262\) 0 0
\(263\) 27.3408 1.68591 0.842954 0.537985i \(-0.180814\pi\)
0.842954 + 0.537985i \(0.180814\pi\)
\(264\) 0 0
\(265\) 9.20490 0.565452
\(266\) 0 0
\(267\) 4.85393 0.297056
\(268\) 0 0
\(269\) −7.84381 −0.478245 −0.239123 0.970989i \(-0.576860\pi\)
−0.239123 + 0.970989i \(0.576860\pi\)
\(270\) 0 0
\(271\) −2.70277 −0.164182 −0.0820909 0.996625i \(-0.526160\pi\)
−0.0820909 + 0.996625i \(0.526160\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.81164 −0.169548
\(276\) 0 0
\(277\) −0.958686 −0.0576019 −0.0288009 0.999585i \(-0.509169\pi\)
−0.0288009 + 0.999585i \(0.509169\pi\)
\(278\) 0 0
\(279\) −0.675693 −0.0404527
\(280\) 0 0
\(281\) 0.335052 0.0199876 0.00999378 0.999950i \(-0.496819\pi\)
0.00999378 + 0.999950i \(0.496819\pi\)
\(282\) 0 0
\(283\) −16.6977 −0.992577 −0.496289 0.868158i \(-0.665304\pi\)
−0.496289 + 0.868158i \(0.665304\pi\)
\(284\) 0 0
\(285\) 1.69614 0.100471
\(286\) 0 0
\(287\) −4.04090 −0.238527
\(288\) 0 0
\(289\) −16.9895 −0.999380
\(290\) 0 0
\(291\) −2.71659 −0.159249
\(292\) 0 0
\(293\) 9.87648 0.576990 0.288495 0.957481i \(-0.406845\pi\)
0.288495 + 0.957481i \(0.406845\pi\)
\(294\) 0 0
\(295\) −16.0000 −0.931556
\(296\) 0 0
\(297\) −1.32431 −0.0768441
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4.91779 0.283457
\(302\) 0 0
\(303\) 13.7779 0.791522
\(304\) 0 0
\(305\) −1.10014 −0.0629939
\(306\) 0 0
\(307\) −16.5154 −0.942583 −0.471291 0.881978i \(-0.656212\pi\)
−0.471291 + 0.881978i \(0.656212\pi\)
\(308\) 0 0
\(309\) 9.05513 0.515128
\(310\) 0 0
\(311\) −10.9920 −0.623298 −0.311649 0.950197i \(-0.600881\pi\)
−0.311649 + 0.950197i \(0.600881\pi\)
\(312\) 0 0
\(313\) −6.48419 −0.366508 −0.183254 0.983066i \(-0.558663\pi\)
−0.183254 + 0.983066i \(0.558663\pi\)
\(314\) 0 0
\(315\) −1.69614 −0.0955667
\(316\) 0 0
\(317\) −7.95205 −0.446632 −0.223316 0.974746i \(-0.571688\pi\)
−0.223316 + 0.974746i \(0.571688\pi\)
\(318\) 0 0
\(319\) −6.38216 −0.357332
\(320\) 0 0
\(321\) 3.22165 0.179815
\(322\) 0 0
\(323\) −0.102658 −0.00571203
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −12.2830 −0.679251
\(328\) 0 0
\(329\) −3.66906 −0.202282
\(330\) 0 0
\(331\) 24.3266 1.33711 0.668556 0.743662i \(-0.266913\pi\)
0.668556 + 0.743662i \(0.266913\pi\)
\(332\) 0 0
\(333\) 0.406517 0.0222770
\(334\) 0 0
\(335\) −15.1328 −0.826794
\(336\) 0 0
\(337\) −21.8765 −1.19169 −0.595844 0.803100i \(-0.703182\pi\)
−0.595844 + 0.803100i \(0.703182\pi\)
\(338\) 0 0
\(339\) 11.4679 0.622849
\(340\) 0 0
\(341\) −0.894825 −0.0484575
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 15.5434 0.836831
\(346\) 0 0
\(347\) −2.01382 −0.108107 −0.0540537 0.998538i \(-0.517214\pi\)
−0.0540537 + 0.998538i \(0.517214\pi\)
\(348\) 0 0
\(349\) −10.4924 −0.561646 −0.280823 0.959760i \(-0.590607\pi\)
−0.280823 + 0.959760i \(0.590607\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.58999 −0.510424 −0.255212 0.966885i \(-0.582145\pi\)
−0.255212 + 0.966885i \(0.582145\pi\)
\(354\) 0 0
\(355\) 9.27426 0.492227
\(356\) 0 0
\(357\) 0.102658 0.00543322
\(358\) 0 0
\(359\) 18.9260 0.998877 0.499439 0.866349i \(-0.333540\pi\)
0.499439 + 0.866349i \(0.333540\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 9.24621 0.485300
\(364\) 0 0
\(365\) 6.85393 0.358751
\(366\) 0 0
\(367\) 32.0483 1.67291 0.836454 0.548038i \(-0.184625\pi\)
0.836454 + 0.548038i \(0.184625\pi\)
\(368\) 0 0
\(369\) 4.04090 0.210361
\(370\) 0 0
\(371\) −5.42696 −0.281754
\(372\) 0 0
\(373\) 4.89071 0.253231 0.126616 0.991952i \(-0.459588\pi\)
0.126616 + 0.991952i \(0.459588\pi\)
\(374\) 0 0
\(375\) 12.0818 0.623901
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −7.07810 −0.363577 −0.181789 0.983338i \(-0.558189\pi\)
−0.181789 + 0.983338i \(0.558189\pi\)
\(380\) 0 0
\(381\) 10.9178 0.559335
\(382\) 0 0
\(383\) −21.9867 −1.12347 −0.561735 0.827317i \(-0.689866\pi\)
−0.561735 + 0.827317i \(0.689866\pi\)
\(384\) 0 0
\(385\) −2.24621 −0.114478
\(386\) 0 0
\(387\) −4.91779 −0.249985
\(388\) 0 0
\(389\) 10.7680 0.545960 0.272980 0.962020i \(-0.411991\pi\)
0.272980 + 0.962020i \(0.411991\pi\)
\(390\) 0 0
\(391\) −0.940755 −0.0475760
\(392\) 0 0
\(393\) −2.81925 −0.142212
\(394\) 0 0
\(395\) 14.5127 0.730211
\(396\) 0 0
\(397\) −5.86405 −0.294308 −0.147154 0.989114i \(-0.547011\pi\)
−0.147154 + 0.989114i \(0.547011\pi\)
\(398\) 0 0
\(399\) −1.00000 −0.0500626
\(400\) 0 0
\(401\) 30.4036 1.51828 0.759141 0.650926i \(-0.225619\pi\)
0.759141 + 0.650926i \(0.225619\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.69614 0.0842819
\(406\) 0 0
\(407\) 0.538353 0.0266852
\(408\) 0 0
\(409\) −8.78045 −0.434165 −0.217083 0.976153i \(-0.569654\pi\)
−0.217083 + 0.976153i \(0.569654\pi\)
\(410\) 0 0
\(411\) −20.3280 −1.00271
\(412\) 0 0
\(413\) 9.43318 0.464176
\(414\) 0 0
\(415\) −22.8434 −1.12134
\(416\) 0 0
\(417\) −4.82546 −0.236304
\(418\) 0 0
\(419\) 0.708986 0.0346362 0.0173181 0.999850i \(-0.494487\pi\)
0.0173181 + 0.999850i \(0.494487\pi\)
\(420\) 0 0
\(421\) 11.7446 0.572399 0.286199 0.958170i \(-0.407608\pi\)
0.286199 + 0.958170i \(0.407608\pi\)
\(422\) 0 0
\(423\) 3.66906 0.178396
\(424\) 0 0
\(425\) −0.217953 −0.0105723
\(426\) 0 0
\(427\) 0.648614 0.0313886
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.3985 1.03073 0.515365 0.856971i \(-0.327656\pi\)
0.515365 + 0.856971i \(0.327656\pi\)
\(432\) 0 0
\(433\) 17.8494 0.857787 0.428894 0.903355i \(-0.358904\pi\)
0.428894 + 0.903355i \(0.358904\pi\)
\(434\) 0 0
\(435\) 8.17412 0.391919
\(436\) 0 0
\(437\) 9.16400 0.438374
\(438\) 0 0
\(439\) −29.7883 −1.42172 −0.710858 0.703336i \(-0.751693\pi\)
−0.710858 + 0.703336i \(0.751693\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −13.0731 −0.621120 −0.310560 0.950554i \(-0.600517\pi\)
−0.310560 + 0.950554i \(0.600517\pi\)
\(444\) 0 0
\(445\) −8.23295 −0.390279
\(446\) 0 0
\(447\) −19.8806 −0.940320
\(448\) 0 0
\(449\) −14.9295 −0.704567 −0.352284 0.935893i \(-0.614595\pi\)
−0.352284 + 0.935893i \(0.614595\pi\)
\(450\) 0 0
\(451\) 5.35139 0.251987
\(452\) 0 0
\(453\) 17.1640 0.806435
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.33854 0.202948 0.101474 0.994838i \(-0.467644\pi\)
0.101474 + 0.994838i \(0.467644\pi\)
\(458\) 0 0
\(459\) −0.102658 −0.00479165
\(460\) 0 0
\(461\) 13.9832 0.651265 0.325632 0.945496i \(-0.394423\pi\)
0.325632 + 0.945496i \(0.394423\pi\)
\(462\) 0 0
\(463\) −29.2972 −1.36156 −0.680779 0.732489i \(-0.738359\pi\)
−0.680779 + 0.732489i \(0.738359\pi\)
\(464\) 0 0
\(465\) 1.14607 0.0531478
\(466\) 0 0
\(467\) −3.91116 −0.180987 −0.0904934 0.995897i \(-0.528844\pi\)
−0.0904934 + 0.995897i \(0.528844\pi\)
\(468\) 0 0
\(469\) 8.92190 0.411975
\(470\) 0 0
\(471\) −4.24621 −0.195655
\(472\) 0 0
\(473\) −6.51266 −0.299453
\(474\) 0 0
\(475\) 2.12311 0.0974148
\(476\) 0 0
\(477\) 5.42696 0.248484
\(478\) 0 0
\(479\) 35.0613 1.60199 0.800997 0.598669i \(-0.204303\pi\)
0.800997 + 0.598669i \(0.204303\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −9.16400 −0.416977
\(484\) 0 0
\(485\) 4.60772 0.209226
\(486\) 0 0
\(487\) −16.6922 −0.756397 −0.378199 0.925724i \(-0.623456\pi\)
−0.378199 + 0.925724i \(0.623456\pi\)
\(488\) 0 0
\(489\) −3.70235 −0.167426
\(490\) 0 0
\(491\) −6.82685 −0.308091 −0.154046 0.988064i \(-0.549230\pi\)
−0.154046 + 0.988064i \(0.549230\pi\)
\(492\) 0 0
\(493\) −0.494733 −0.0222816
\(494\) 0 0
\(495\) 2.24621 0.100960
\(496\) 0 0
\(497\) −5.46786 −0.245267
\(498\) 0 0
\(499\) 35.1410 1.57313 0.786564 0.617508i \(-0.211858\pi\)
0.786564 + 0.617508i \(0.211858\pi\)
\(500\) 0 0
\(501\) 20.2871 0.906361
\(502\) 0 0
\(503\) 32.4486 1.44681 0.723406 0.690423i \(-0.242576\pi\)
0.723406 + 0.690423i \(0.242576\pi\)
\(504\) 0 0
\(505\) −23.3693 −1.03992
\(506\) 0 0
\(507\) 13.0000 0.577350
\(508\) 0 0
\(509\) 5.05924 0.224247 0.112124 0.993694i \(-0.464235\pi\)
0.112124 + 0.993694i \(0.464235\pi\)
\(510\) 0 0
\(511\) −4.04090 −0.178759
\(512\) 0 0
\(513\) 1.00000 0.0441511
\(514\) 0 0
\(515\) −15.3588 −0.676789
\(516\) 0 0
\(517\) 4.85896 0.213697
\(518\) 0 0
\(519\) 5.39228 0.236695
\(520\) 0 0
\(521\) 2.41063 0.105612 0.0528058 0.998605i \(-0.483184\pi\)
0.0528058 + 0.998605i \(0.483184\pi\)
\(522\) 0 0
\(523\) −16.5154 −0.722167 −0.361084 0.932533i \(-0.617593\pi\)
−0.361084 + 0.932533i \(0.617593\pi\)
\(524\) 0 0
\(525\) −2.12311 −0.0926599
\(526\) 0 0
\(527\) −0.0693651 −0.00302159
\(528\) 0 0
\(529\) 60.9789 2.65126
\(530\) 0 0
\(531\) −9.43318 −0.409365
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −5.46437 −0.236245
\(536\) 0 0
\(537\) −3.63228 −0.156744
\(538\) 0 0
\(539\) 1.32431 0.0570419
\(540\) 0 0
\(541\) −2.49242 −0.107158 −0.0535788 0.998564i \(-0.517063\pi\)
−0.0535788 + 0.998564i \(0.517063\pi\)
\(542\) 0 0
\(543\) 17.7433 0.761436
\(544\) 0 0
\(545\) 20.8337 0.892417
\(546\) 0 0
\(547\) −19.8576 −0.849051 −0.424525 0.905416i \(-0.639559\pi\)
−0.424525 + 0.905416i \(0.639559\pi\)
\(548\) 0 0
\(549\) −0.648614 −0.0276822
\(550\) 0 0
\(551\) 4.81925 0.205307
\(552\) 0 0
\(553\) −8.55628 −0.363850
\(554\) 0 0
\(555\) −0.689510 −0.0292681
\(556\) 0 0
\(557\) 37.7162 1.59809 0.799043 0.601274i \(-0.205340\pi\)
0.799043 + 0.601274i \(0.205340\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −0.135950 −0.00573983
\(562\) 0 0
\(563\) 17.5025 0.737644 0.368822 0.929500i \(-0.379761\pi\)
0.368822 + 0.929500i \(0.379761\pi\)
\(564\) 0 0
\(565\) −19.4511 −0.818314
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −1.02456 −0.0429519 −0.0214759 0.999769i \(-0.506837\pi\)
−0.0214759 + 0.999769i \(0.506837\pi\)
\(570\) 0 0
\(571\) 31.2770 1.30890 0.654451 0.756105i \(-0.272900\pi\)
0.654451 + 0.756105i \(0.272900\pi\)
\(572\) 0 0
\(573\) −19.9486 −0.833363
\(574\) 0 0
\(575\) 19.4561 0.811377
\(576\) 0 0
\(577\) 10.1636 0.423116 0.211558 0.977365i \(-0.432146\pi\)
0.211558 + 0.977365i \(0.432146\pi\)
\(578\) 0 0
\(579\) 6.48419 0.269474
\(580\) 0 0
\(581\) 13.4679 0.558741
\(582\) 0 0
\(583\) 7.18697 0.297654
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27.1799 1.12184 0.560918 0.827872i \(-0.310448\pi\)
0.560918 + 0.827872i \(0.310448\pi\)
\(588\) 0 0
\(589\) 0.675693 0.0278414
\(590\) 0 0
\(591\) −8.48831 −0.349162
\(592\) 0 0
\(593\) 20.2662 0.832235 0.416117 0.909311i \(-0.363391\pi\)
0.416117 + 0.909311i \(0.363391\pi\)
\(594\) 0 0
\(595\) −0.174122 −0.00713830
\(596\) 0 0
\(597\) 13.2279 0.541380
\(598\) 0 0
\(599\) 32.3342 1.32114 0.660570 0.750764i \(-0.270315\pi\)
0.660570 + 0.750764i \(0.270315\pi\)
\(600\) 0 0
\(601\) −11.4755 −0.468094 −0.234047 0.972225i \(-0.575197\pi\)
−0.234047 + 0.972225i \(0.575197\pi\)
\(602\) 0 0
\(603\) −8.92190 −0.363328
\(604\) 0 0
\(605\) −15.6829 −0.637600
\(606\) 0 0
\(607\) −2.32473 −0.0943577 −0.0471788 0.998886i \(-0.515023\pi\)
−0.0471788 + 0.998886i \(0.515023\pi\)
\(608\) 0 0
\(609\) −4.81925 −0.195286
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 21.2334 0.857608 0.428804 0.903398i \(-0.358935\pi\)
0.428804 + 0.903398i \(0.358935\pi\)
\(614\) 0 0
\(615\) −6.85393 −0.276377
\(616\) 0 0
\(617\) −4.11026 −0.165473 −0.0827364 0.996571i \(-0.526366\pi\)
−0.0827364 + 0.996571i \(0.526366\pi\)
\(618\) 0 0
\(619\) 14.4515 0.580856 0.290428 0.956897i \(-0.406202\pi\)
0.290428 + 0.956897i \(0.406202\pi\)
\(620\) 0 0
\(621\) 9.16400 0.367739
\(622\) 0 0
\(623\) 4.85393 0.194469
\(624\) 0 0
\(625\) −9.87689 −0.395076
\(626\) 0 0
\(627\) 1.32431 0.0528877
\(628\) 0 0
\(629\) 0.0417321 0.00166397
\(630\) 0 0
\(631\) 2.67981 0.106681 0.0533407 0.998576i \(-0.483013\pi\)
0.0533407 + 0.998576i \(0.483013\pi\)
\(632\) 0 0
\(633\) 13.6656 0.543158
\(634\) 0 0
\(635\) −18.5181 −0.734869
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.46786 0.216305
\(640\) 0 0
\(641\) −20.7775 −0.820662 −0.410331 0.911937i \(-0.634587\pi\)
−0.410331 + 0.911937i \(0.634587\pi\)
\(642\) 0 0
\(643\) 1.01835 0.0401598 0.0200799 0.999798i \(-0.493608\pi\)
0.0200799 + 0.999798i \(0.493608\pi\)
\(644\) 0 0
\(645\) 8.34127 0.328437
\(646\) 0 0
\(647\) 16.1256 0.633964 0.316982 0.948432i \(-0.397331\pi\)
0.316982 + 0.948432i \(0.397331\pi\)
\(648\) 0 0
\(649\) −12.4924 −0.490370
\(650\) 0 0
\(651\) −0.675693 −0.0264825
\(652\) 0 0
\(653\) −21.4373 −0.838906 −0.419453 0.907777i \(-0.637778\pi\)
−0.419453 + 0.907777i \(0.637778\pi\)
\(654\) 0 0
\(655\) 4.78184 0.186842
\(656\) 0 0
\(657\) 4.04090 0.157650
\(658\) 0 0
\(659\) 13.1890 0.513770 0.256885 0.966442i \(-0.417304\pi\)
0.256885 + 0.966442i \(0.417304\pi\)
\(660\) 0 0
\(661\) −10.1921 −0.396425 −0.198212 0.980159i \(-0.563514\pi\)
−0.198212 + 0.980159i \(0.563514\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.69614 0.0657735
\(666\) 0 0
\(667\) 44.1636 1.71002
\(668\) 0 0
\(669\) 21.5705 0.833964
\(670\) 0 0
\(671\) −0.858964 −0.0331599
\(672\) 0 0
\(673\) 43.6868 1.68400 0.842001 0.539476i \(-0.181378\pi\)
0.842001 + 0.539476i \(0.181378\pi\)
\(674\) 0 0
\(675\) 2.12311 0.0817184
\(676\) 0 0
\(677\) −5.37986 −0.206765 −0.103382 0.994642i \(-0.532967\pi\)
−0.103382 + 0.994642i \(0.532967\pi\)
\(678\) 0 0
\(679\) −2.71659 −0.104253
\(680\) 0 0
\(681\) −11.3381 −0.434478
\(682\) 0 0
\(683\) 15.3576 0.587642 0.293821 0.955860i \(-0.405073\pi\)
0.293821 + 0.955860i \(0.405073\pi\)
\(684\) 0 0
\(685\) 34.4792 1.31738
\(686\) 0 0
\(687\) −11.9867 −0.457323
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 19.3588 0.736443 0.368221 0.929738i \(-0.379967\pi\)
0.368221 + 0.929738i \(0.379967\pi\)
\(692\) 0 0
\(693\) −1.32431 −0.0503063
\(694\) 0 0
\(695\) 8.18466 0.310462
\(696\) 0 0
\(697\) 0.414829 0.0157128
\(698\) 0 0
\(699\) 26.3689 0.997363
\(700\) 0 0
\(701\) 24.8420 0.938269 0.469135 0.883127i \(-0.344566\pi\)
0.469135 + 0.883127i \(0.344566\pi\)
\(702\) 0 0
\(703\) −0.406517 −0.0153321
\(704\) 0 0
\(705\) −6.22325 −0.234381
\(706\) 0 0
\(707\) 13.7779 0.518172
\(708\) 0 0
\(709\) 33.5053 1.25832 0.629158 0.777277i \(-0.283400\pi\)
0.629158 + 0.777277i \(0.283400\pi\)
\(710\) 0 0
\(711\) 8.55628 0.320886
\(712\) 0 0
\(713\) 6.19205 0.231894
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11.6155 0.433790
\(718\) 0 0
\(719\) −9.84591 −0.367190 −0.183595 0.983002i \(-0.558774\pi\)
−0.183595 + 0.983002i \(0.558774\pi\)
\(720\) 0 0
\(721\) 9.05513 0.337231
\(722\) 0 0
\(723\) 10.1782 0.378533
\(724\) 0 0
\(725\) 10.2318 0.379998
\(726\) 0 0
\(727\) −40.8737 −1.51592 −0.757962 0.652299i \(-0.773805\pi\)
−0.757962 + 0.652299i \(0.773805\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −0.504849 −0.0186725
\(732\) 0 0
\(733\) 6.77130 0.250104 0.125052 0.992150i \(-0.460090\pi\)
0.125052 + 0.992150i \(0.460090\pi\)
\(734\) 0 0
\(735\) −1.69614 −0.0625631
\(736\) 0 0
\(737\) −11.8153 −0.435224
\(738\) 0 0
\(739\) 0.781840 0.0287604 0.0143802 0.999897i \(-0.495422\pi\)
0.0143802 + 0.999897i \(0.495422\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 51.1422 1.87623 0.938113 0.346329i \(-0.112572\pi\)
0.938113 + 0.346329i \(0.112572\pi\)
\(744\) 0 0
\(745\) 33.7203 1.23542
\(746\) 0 0
\(747\) −13.4679 −0.492763
\(748\) 0 0
\(749\) 3.22165 0.117716
\(750\) 0 0
\(751\) 5.97703 0.218105 0.109053 0.994036i \(-0.465218\pi\)
0.109053 + 0.994036i \(0.465218\pi\)
\(752\) 0 0
\(753\) −22.8317 −0.832032
\(754\) 0 0
\(755\) −29.1126 −1.05951
\(756\) 0 0
\(757\) −37.3046 −1.35586 −0.677930 0.735127i \(-0.737123\pi\)
−0.677930 + 0.735127i \(0.737123\pi\)
\(758\) 0 0
\(759\) 12.1360 0.440507
\(760\) 0 0
\(761\) −46.5818 −1.68859 −0.844295 0.535879i \(-0.819980\pi\)
−0.844295 + 0.535879i \(0.819980\pi\)
\(762\) 0 0
\(763\) −12.2830 −0.444674
\(764\) 0 0
\(765\) 0.174122 0.00629539
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 20.3822 0.735000 0.367500 0.930024i \(-0.380214\pi\)
0.367500 + 0.930024i \(0.380214\pi\)
\(770\) 0 0
\(771\) −0.730405 −0.0263049
\(772\) 0 0
\(773\) 27.9380 1.00486 0.502430 0.864618i \(-0.332439\pi\)
0.502430 + 0.864618i \(0.332439\pi\)
\(774\) 0 0
\(775\) 1.43457 0.0515312
\(776\) 0 0
\(777\) 0.406517 0.0145837
\(778\) 0 0
\(779\) −4.04090 −0.144780
\(780\) 0 0
\(781\) 7.24113 0.259108
\(782\) 0 0
\(783\) 4.81925 0.172226
\(784\) 0 0
\(785\) 7.20217 0.257057
\(786\) 0 0
\(787\) −35.8200 −1.27685 −0.638423 0.769686i \(-0.720413\pi\)
−0.638423 + 0.769686i \(0.720413\pi\)
\(788\) 0 0
\(789\) −27.3408 −0.973360
\(790\) 0 0
\(791\) 11.4679 0.407750
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −9.20490 −0.326464
\(796\) 0 0
\(797\) −15.6385 −0.553944 −0.276972 0.960878i \(-0.589331\pi\)
−0.276972 + 0.960878i \(0.589331\pi\)
\(798\) 0 0
\(799\) 0.376657 0.0133252
\(800\) 0 0
\(801\) −4.85393 −0.171505
\(802\) 0 0
\(803\) 5.35139 0.188846
\(804\) 0 0
\(805\) 15.5434 0.547834
\(806\) 0 0
\(807\) 7.84381 0.276115
\(808\) 0 0
\(809\) −23.9256 −0.841179 −0.420590 0.907251i \(-0.638177\pi\)
−0.420590 + 0.907251i \(0.638177\pi\)
\(810\) 0 0
\(811\) −37.6868 −1.32336 −0.661681 0.749786i \(-0.730157\pi\)
−0.661681 + 0.749786i \(0.730157\pi\)
\(812\) 0 0
\(813\) 2.70277 0.0947904
\(814\) 0 0
\(815\) 6.27972 0.219969
\(816\) 0 0
\(817\) 4.91779 0.172052
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.4166 0.747446 0.373723 0.927540i \(-0.378081\pi\)
0.373723 + 0.927540i \(0.378081\pi\)
\(822\) 0 0
\(823\) −33.0272 −1.15126 −0.575628 0.817712i \(-0.695242\pi\)
−0.575628 + 0.817712i \(0.695242\pi\)
\(824\) 0 0
\(825\) 2.81164 0.0978889
\(826\) 0 0
\(827\) 7.71407 0.268245 0.134122 0.990965i \(-0.457179\pi\)
0.134122 + 0.990965i \(0.457179\pi\)
\(828\) 0 0
\(829\) 1.79741 0.0624266 0.0312133 0.999513i \(-0.490063\pi\)
0.0312133 + 0.999513i \(0.490063\pi\)
\(830\) 0 0
\(831\) 0.958686 0.0332565
\(832\) 0 0
\(833\) 0.102658 0.00355688
\(834\) 0 0
\(835\) −34.4098 −1.19080
\(836\) 0 0
\(837\) 0.675693 0.0233554
\(838\) 0 0
\(839\) −1.49012 −0.0514445 −0.0257223 0.999669i \(-0.508189\pi\)
−0.0257223 + 0.999669i \(0.508189\pi\)
\(840\) 0 0
\(841\) −5.77486 −0.199133
\(842\) 0 0
\(843\) −0.335052 −0.0115398
\(844\) 0 0
\(845\) −22.0498 −0.758537
\(846\) 0 0
\(847\) 9.24621 0.317704
\(848\) 0 0
\(849\) 16.6977 0.573065
\(850\) 0 0
\(851\) −3.72532 −0.127702
\(852\) 0 0
\(853\) −0.648614 −0.0222081 −0.0111041 0.999938i \(-0.503535\pi\)
−0.0111041 + 0.999938i \(0.503535\pi\)
\(854\) 0 0
\(855\) −1.69614 −0.0580068
\(856\) 0 0
\(857\) −16.5875 −0.566617 −0.283309 0.959029i \(-0.591432\pi\)
−0.283309 + 0.959029i \(0.591432\pi\)
\(858\) 0 0
\(859\) 26.9205 0.918516 0.459258 0.888303i \(-0.348115\pi\)
0.459258 + 0.888303i \(0.348115\pi\)
\(860\) 0 0
\(861\) 4.04090 0.137713
\(862\) 0 0
\(863\) 18.2267 0.620445 0.310223 0.950664i \(-0.399596\pi\)
0.310223 + 0.950664i \(0.399596\pi\)
\(864\) 0 0
\(865\) −9.14607 −0.310976
\(866\) 0 0
\(867\) 16.9895 0.576992
\(868\) 0 0
\(869\) 11.3311 0.384383
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 2.71659 0.0919426
\(874\) 0 0
\(875\) 12.0818 0.408439
\(876\) 0 0
\(877\) 19.0634 0.643724 0.321862 0.946787i \(-0.395691\pi\)
0.321862 + 0.946787i \(0.395691\pi\)
\(878\) 0 0
\(879\) −9.87648 −0.333125
\(880\) 0 0
\(881\) −45.8354 −1.54423 −0.772116 0.635481i \(-0.780802\pi\)
−0.772116 + 0.635481i \(0.780802\pi\)
\(882\) 0 0
\(883\) −23.0592 −0.776005 −0.388003 0.921658i \(-0.626835\pi\)
−0.388003 + 0.921658i \(0.626835\pi\)
\(884\) 0 0
\(885\) 16.0000 0.537834
\(886\) 0 0
\(887\) −26.3128 −0.883497 −0.441749 0.897139i \(-0.645642\pi\)
−0.441749 + 0.897139i \(0.645642\pi\)
\(888\) 0 0
\(889\) 10.9178 0.366171
\(890\) 0 0
\(891\) 1.32431 0.0443660
\(892\) 0 0
\(893\) −3.66906 −0.122780
\(894\) 0 0
\(895\) 6.16086 0.205935
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.25633 0.108605
\(900\) 0 0
\(901\) 0.557120 0.0185603
\(902\) 0 0
\(903\) −4.91779 −0.163654
\(904\) 0 0
\(905\) −30.0951 −1.00039
\(906\) 0 0
\(907\) 34.9904 1.16184 0.580919 0.813961i \(-0.302693\pi\)
0.580919 + 0.813961i \(0.302693\pi\)
\(908\) 0 0
\(909\) −13.7779 −0.456985
\(910\) 0 0
\(911\) 6.88583 0.228138 0.114069 0.993473i \(-0.463612\pi\)
0.114069 + 0.993473i \(0.463612\pi\)
\(912\) 0 0
\(913\) −17.8356 −0.590272
\(914\) 0 0
\(915\) 1.10014 0.0363695
\(916\) 0 0
\(917\) −2.81925 −0.0930997
\(918\) 0 0
\(919\) −41.1484 −1.35736 −0.678681 0.734433i \(-0.737448\pi\)
−0.678681 + 0.734433i \(0.737448\pi\)
\(920\) 0 0
\(921\) 16.5154 0.544201
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.863078 −0.0283778
\(926\) 0 0
\(927\) −9.05513 −0.297410
\(928\) 0 0
\(929\) −37.6052 −1.23379 −0.616893 0.787047i \(-0.711609\pi\)
−0.616893 + 0.787047i \(0.711609\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 10.9920 0.359861
\(934\) 0 0
\(935\) 0.230591 0.00754113
\(936\) 0 0
\(937\) −19.9992 −0.653344 −0.326672 0.945138i \(-0.605927\pi\)
−0.326672 + 0.945138i \(0.605927\pi\)
\(938\) 0 0
\(939\) 6.48419 0.211604
\(940\) 0 0
\(941\) −54.1718 −1.76595 −0.882975 0.469419i \(-0.844463\pi\)
−0.882975 + 0.469419i \(0.844463\pi\)
\(942\) 0 0
\(943\) −37.0308 −1.20589
\(944\) 0 0
\(945\) 1.69614 0.0551755
\(946\) 0 0
\(947\) 40.7649 1.32468 0.662340 0.749203i \(-0.269563\pi\)
0.662340 + 0.749203i \(0.269563\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 7.95205 0.257863
\(952\) 0 0
\(953\) 22.9419 0.743162 0.371581 0.928401i \(-0.378816\pi\)
0.371581 + 0.928401i \(0.378816\pi\)
\(954\) 0 0
\(955\) 33.8356 1.09489
\(956\) 0 0
\(957\) 6.38216 0.206306
\(958\) 0 0
\(959\) −20.3280 −0.656425
\(960\) 0 0
\(961\) −30.5434 −0.985272
\(962\) 0 0
\(963\) −3.22165 −0.103816
\(964\) 0 0
\(965\) −10.9981 −0.354042
\(966\) 0 0
\(967\) 17.9762 0.578076 0.289038 0.957318i \(-0.406665\pi\)
0.289038 + 0.957318i \(0.406665\pi\)
\(968\) 0 0
\(969\) 0.102658 0.00329784
\(970\) 0 0
\(971\) 13.3514 0.428466 0.214233 0.976783i \(-0.431275\pi\)
0.214233 + 0.976783i \(0.431275\pi\)
\(972\) 0 0
\(973\) −4.82546 −0.154697
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −12.8734 −0.411857 −0.205928 0.978567i \(-0.566021\pi\)
−0.205928 + 0.978567i \(0.566021\pi\)
\(978\) 0 0
\(979\) −6.42809 −0.205443
\(980\) 0 0
\(981\) 12.2830 0.392166
\(982\) 0 0
\(983\) 12.6007 0.401901 0.200951 0.979601i \(-0.435597\pi\)
0.200951 + 0.979601i \(0.435597\pi\)
\(984\) 0 0
\(985\) 14.3974 0.458738
\(986\) 0 0
\(987\) 3.66906 0.116788
\(988\) 0 0
\(989\) 45.0666 1.43304
\(990\) 0 0
\(991\) 0.00970237 0.000308206 0 0.000154103 1.00000i \(-0.499951\pi\)
0.000154103 1.00000i \(0.499951\pi\)
\(992\) 0 0
\(993\) −24.3266 −0.771982
\(994\) 0 0
\(995\) −22.4363 −0.711279
\(996\) 0 0
\(997\) 25.8153 0.817580 0.408790 0.912628i \(-0.365951\pi\)
0.408790 + 0.912628i \(0.365951\pi\)
\(998\) 0 0
\(999\) −0.406517 −0.0128616
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3192.2.a.x.1.3 4
3.2 odd 2 9576.2.a.cj.1.2 4
4.3 odd 2 6384.2.a.cb.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3192.2.a.x.1.3 4 1.1 even 1 trivial
6384.2.a.cb.1.3 4 4.3 odd 2
9576.2.a.cj.1.2 4 3.2 odd 2