Properties

Label 320.4.l.a.81.12
Level $320$
Weight $4$
Character 320.81
Analytic conductor $18.881$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [320,4,Mod(81,320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(320, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("320.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 320.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8806112018\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 81.12
Character \(\chi\) \(=\) 320.81
Dual form 320.4.l.a.241.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.332572 - 0.332572i) q^{3} +(3.53553 - 3.53553i) q^{5} -31.6472i q^{7} -26.7788i q^{9} +(-27.5498 + 27.5498i) q^{11} +(17.9171 + 17.9171i) q^{13} -2.35164 q^{15} -87.1912 q^{17} +(4.04610 + 4.04610i) q^{19} +(-10.5250 + 10.5250i) q^{21} +181.039i q^{23} -25.0000i q^{25} +(-17.8853 + 17.8853i) q^{27} +(-159.995 - 159.995i) q^{29} -99.1025 q^{31} +18.3246 q^{33} +(-111.890 - 111.890i) q^{35} +(137.739 - 137.739i) q^{37} -11.9174i q^{39} -222.109i q^{41} +(214.011 - 214.011i) q^{43} +(-94.6773 - 94.6773i) q^{45} -430.778 q^{47} -658.547 q^{49} +(28.9973 + 28.9973i) q^{51} +(-450.373 + 450.373i) q^{53} +194.807i q^{55} -2.69124i q^{57} +(147.911 - 147.911i) q^{59} +(450.412 + 450.412i) q^{61} -847.474 q^{63} +126.693 q^{65} +(-160.440 - 160.440i) q^{67} +(60.2085 - 60.2085i) q^{69} -560.046i q^{71} -232.658i q^{73} +(-8.31430 + 8.31430i) q^{75} +(871.876 + 871.876i) q^{77} +507.981 q^{79} -711.131 q^{81} +(-907.140 - 907.140i) q^{83} +(-308.267 + 308.267i) q^{85} +106.420i q^{87} -466.938i q^{89} +(567.025 - 567.025i) q^{91} +(32.9587 + 32.9587i) q^{93} +28.6103 q^{95} -285.809 q^{97} +(737.752 + 737.752i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 40 q^{11} - 120 q^{15} - 24 q^{19} + 264 q^{27} + 400 q^{29} + 16 q^{37} - 808 q^{43} - 1880 q^{47} - 2352 q^{49} - 2144 q^{51} + 752 q^{53} + 2728 q^{59} - 912 q^{61} + 2520 q^{63} + 2040 q^{67}+ \cdots + 4456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.332572 0.332572i −0.0640035 0.0640035i 0.674381 0.738384i \(-0.264411\pi\)
−0.738384 + 0.674381i \(0.764411\pi\)
\(4\) 0 0
\(5\) 3.53553 3.53553i 0.316228 0.316228i
\(6\) 0 0
\(7\) 31.6472i 1.70879i −0.519625 0.854395i \(-0.673928\pi\)
0.519625 0.854395i \(-0.326072\pi\)
\(8\) 0 0
\(9\) 26.7788i 0.991807i
\(10\) 0 0
\(11\) −27.5498 + 27.5498i −0.755145 + 0.755145i −0.975434 0.220290i \(-0.929300\pi\)
0.220290 + 0.975434i \(0.429300\pi\)
\(12\) 0 0
\(13\) 17.9171 + 17.9171i 0.382254 + 0.382254i 0.871914 0.489660i \(-0.162879\pi\)
−0.489660 + 0.871914i \(0.662879\pi\)
\(14\) 0 0
\(15\) −2.35164 −0.0404794
\(16\) 0 0
\(17\) −87.1912 −1.24394 −0.621970 0.783041i \(-0.713667\pi\)
−0.621970 + 0.783041i \(0.713667\pi\)
\(18\) 0 0
\(19\) 4.04610 + 4.04610i 0.0488547 + 0.0488547i 0.731112 0.682257i \(-0.239002\pi\)
−0.682257 + 0.731112i \(0.739002\pi\)
\(20\) 0 0
\(21\) −10.5250 + 10.5250i −0.109368 + 0.109368i
\(22\) 0 0
\(23\) 181.039i 1.64127i 0.571451 + 0.820636i \(0.306381\pi\)
−0.571451 + 0.820636i \(0.693619\pi\)
\(24\) 0 0
\(25\) 25.0000i 0.200000i
\(26\) 0 0
\(27\) −17.8853 + 17.8853i −0.127483 + 0.127483i
\(28\) 0 0
\(29\) −159.995 159.995i −1.02450 1.02450i −0.999692 0.0248046i \(-0.992104\pi\)
−0.0248046 0.999692i \(-0.507896\pi\)
\(30\) 0 0
\(31\) −99.1025 −0.574172 −0.287086 0.957905i \(-0.592687\pi\)
−0.287086 + 0.957905i \(0.592687\pi\)
\(32\) 0 0
\(33\) 18.3246 0.0966638
\(34\) 0 0
\(35\) −111.890 111.890i −0.540367 0.540367i
\(36\) 0 0
\(37\) 137.739 137.739i 0.612003 0.612003i −0.331465 0.943468i \(-0.607543\pi\)
0.943468 + 0.331465i \(0.107543\pi\)
\(38\) 0 0
\(39\) 11.9174i 0.0489312i
\(40\) 0 0
\(41\) 222.109i 0.846038i −0.906121 0.423019i \(-0.860970\pi\)
0.906121 0.423019i \(-0.139030\pi\)
\(42\) 0 0
\(43\) 214.011 214.011i 0.758985 0.758985i −0.217153 0.976138i \(-0.569677\pi\)
0.976138 + 0.217153i \(0.0696770\pi\)
\(44\) 0 0
\(45\) −94.6773 94.6773i −0.313637 0.313637i
\(46\) 0 0
\(47\) −430.778 −1.33693 −0.668463 0.743746i \(-0.733047\pi\)
−0.668463 + 0.743746i \(0.733047\pi\)
\(48\) 0 0
\(49\) −658.547 −1.91996
\(50\) 0 0
\(51\) 28.9973 + 28.9973i 0.0796165 + 0.0796165i
\(52\) 0 0
\(53\) −450.373 + 450.373i −1.16723 + 1.16723i −0.184380 + 0.982855i \(0.559028\pi\)
−0.982855 + 0.184380i \(0.940972\pi\)
\(54\) 0 0
\(55\) 194.807i 0.477595i
\(56\) 0 0
\(57\) 2.69124i 0.00625374i
\(58\) 0 0
\(59\) 147.911 147.911i 0.326379 0.326379i −0.524829 0.851208i \(-0.675871\pi\)
0.851208 + 0.524829i \(0.175871\pi\)
\(60\) 0 0
\(61\) 450.412 + 450.412i 0.945400 + 0.945400i 0.998585 0.0531846i \(-0.0169372\pi\)
−0.0531846 + 0.998585i \(0.516937\pi\)
\(62\) 0 0
\(63\) −847.474 −1.69479
\(64\) 0 0
\(65\) 126.693 0.241759
\(66\) 0 0
\(67\) −160.440 160.440i −0.292551 0.292551i 0.545536 0.838087i \(-0.316326\pi\)
−0.838087 + 0.545536i \(0.816326\pi\)
\(68\) 0 0
\(69\) 60.2085 60.2085i 0.105047 0.105047i
\(70\) 0 0
\(71\) 560.046i 0.936130i −0.883694 0.468065i \(-0.844951\pi\)
0.883694 0.468065i \(-0.155049\pi\)
\(72\) 0 0
\(73\) 232.658i 0.373021i −0.982453 0.186510i \(-0.940282\pi\)
0.982453 0.186510i \(-0.0597178\pi\)
\(74\) 0 0
\(75\) −8.31430 + 8.31430i −0.0128007 + 0.0128007i
\(76\) 0 0
\(77\) 871.876 + 871.876i 1.29038 + 1.29038i
\(78\) 0 0
\(79\) 507.981 0.723448 0.361724 0.932285i \(-0.382188\pi\)
0.361724 + 0.932285i \(0.382188\pi\)
\(80\) 0 0
\(81\) −711.131 −0.975488
\(82\) 0 0
\(83\) −907.140 907.140i −1.19966 1.19966i −0.974269 0.225388i \(-0.927635\pi\)
−0.225388 0.974269i \(-0.572365\pi\)
\(84\) 0 0
\(85\) −308.267 + 308.267i −0.393368 + 0.393368i
\(86\) 0 0
\(87\) 106.420i 0.131143i
\(88\) 0 0
\(89\) 466.938i 0.556128i −0.960563 0.278064i \(-0.910307\pi\)
0.960563 0.278064i \(-0.0896927\pi\)
\(90\) 0 0
\(91\) 567.025 567.025i 0.653191 0.653191i
\(92\) 0 0
\(93\) 32.9587 + 32.9587i 0.0367490 + 0.0367490i
\(94\) 0 0
\(95\) 28.6103 0.0308984
\(96\) 0 0
\(97\) −285.809 −0.299170 −0.149585 0.988749i \(-0.547794\pi\)
−0.149585 + 0.988749i \(0.547794\pi\)
\(98\) 0 0
\(99\) 737.752 + 737.752i 0.748958 + 0.748958i
\(100\) 0 0
\(101\) 728.301 728.301i 0.717511 0.717511i −0.250584 0.968095i \(-0.580622\pi\)
0.968095 + 0.250584i \(0.0806225\pi\)
\(102\) 0 0
\(103\) 737.304i 0.705327i 0.935750 + 0.352663i \(0.114724\pi\)
−0.935750 + 0.352663i \(0.885276\pi\)
\(104\) 0 0
\(105\) 74.4228i 0.0691707i
\(106\) 0 0
\(107\) 528.567 528.567i 0.477556 0.477556i −0.426793 0.904349i \(-0.640357\pi\)
0.904349 + 0.426793i \(0.140357\pi\)
\(108\) 0 0
\(109\) 289.467 + 289.467i 0.254366 + 0.254366i 0.822758 0.568392i \(-0.192434\pi\)
−0.568392 + 0.822758i \(0.692434\pi\)
\(110\) 0 0
\(111\) −91.6160 −0.0783406
\(112\) 0 0
\(113\) 288.748 0.240382 0.120191 0.992751i \(-0.461649\pi\)
0.120191 + 0.992751i \(0.461649\pi\)
\(114\) 0 0
\(115\) 640.070 + 640.070i 0.519016 + 0.519016i
\(116\) 0 0
\(117\) 479.797 479.797i 0.379122 0.379122i
\(118\) 0 0
\(119\) 2759.36i 2.12563i
\(120\) 0 0
\(121\) 186.988i 0.140487i
\(122\) 0 0
\(123\) −73.8672 + 73.8672i −0.0541494 + 0.0541494i
\(124\) 0 0
\(125\) −88.3883 88.3883i −0.0632456 0.0632456i
\(126\) 0 0
\(127\) 672.037 0.469556 0.234778 0.972049i \(-0.424564\pi\)
0.234778 + 0.972049i \(0.424564\pi\)
\(128\) 0 0
\(129\) −142.348 −0.0971554
\(130\) 0 0
\(131\) 793.072 + 793.072i 0.528939 + 0.528939i 0.920256 0.391317i \(-0.127980\pi\)
−0.391317 + 0.920256i \(0.627980\pi\)
\(132\) 0 0
\(133\) 128.048 128.048i 0.0834824 0.0834824i
\(134\) 0 0
\(135\) 126.468i 0.0806271i
\(136\) 0 0
\(137\) 1705.40i 1.06352i −0.846896 0.531759i \(-0.821531\pi\)
0.846896 0.531759i \(-0.178469\pi\)
\(138\) 0 0
\(139\) 1230.82 1230.82i 0.751054 0.751054i −0.223622 0.974676i \(-0.571788\pi\)
0.974676 + 0.223622i \(0.0717880\pi\)
\(140\) 0 0
\(141\) 143.265 + 143.265i 0.0855679 + 0.0855679i
\(142\) 0 0
\(143\) −987.225 −0.577314
\(144\) 0 0
\(145\) −1131.34 −0.647949
\(146\) 0 0
\(147\) 219.014 + 219.014i 0.122884 + 0.122884i
\(148\) 0 0
\(149\) −133.750 + 133.750i −0.0735385 + 0.0735385i −0.742919 0.669381i \(-0.766559\pi\)
0.669381 + 0.742919i \(0.266559\pi\)
\(150\) 0 0
\(151\) 1197.57i 0.645410i −0.946500 0.322705i \(-0.895408\pi\)
0.946500 0.322705i \(-0.104592\pi\)
\(152\) 0 0
\(153\) 2334.87i 1.23375i
\(154\) 0 0
\(155\) −350.380 + 350.380i −0.181569 + 0.181569i
\(156\) 0 0
\(157\) −225.332 225.332i −0.114544 0.114544i 0.647511 0.762056i \(-0.275810\pi\)
−0.762056 + 0.647511i \(0.775810\pi\)
\(158\) 0 0
\(159\) 299.563 0.149414
\(160\) 0 0
\(161\) 5729.38 2.80459
\(162\) 0 0
\(163\) 45.7973 + 45.7973i 0.0220069 + 0.0220069i 0.718025 0.696018i \(-0.245047\pi\)
−0.696018 + 0.718025i \(0.745047\pi\)
\(164\) 0 0
\(165\) 64.7873 64.7873i 0.0305678 0.0305678i
\(166\) 0 0
\(167\) 1967.93i 0.911872i 0.890012 + 0.455936i \(0.150696\pi\)
−0.890012 + 0.455936i \(0.849304\pi\)
\(168\) 0 0
\(169\) 1554.96i 0.707764i
\(170\) 0 0
\(171\) 108.350 108.350i 0.0484544 0.0484544i
\(172\) 0 0
\(173\) 2687.05 + 2687.05i 1.18088 + 1.18088i 0.979516 + 0.201368i \(0.0645388\pi\)
0.201368 + 0.979516i \(0.435461\pi\)
\(174\) 0 0
\(175\) −791.181 −0.341758
\(176\) 0 0
\(177\) −98.3819 −0.0417788
\(178\) 0 0
\(179\) 281.560 + 281.560i 0.117569 + 0.117569i 0.763443 0.645875i \(-0.223507\pi\)
−0.645875 + 0.763443i \(0.723507\pi\)
\(180\) 0 0
\(181\) 118.145 118.145i 0.0485175 0.0485175i −0.682432 0.730949i \(-0.739078\pi\)
0.730949 + 0.682432i \(0.239078\pi\)
\(182\) 0 0
\(183\) 299.589i 0.121018i
\(184\) 0 0
\(185\) 973.959i 0.387064i
\(186\) 0 0
\(187\) 2402.10 2402.10i 0.939354 0.939354i
\(188\) 0 0
\(189\) 566.021 + 566.021i 0.217841 + 0.217841i
\(190\) 0 0
\(191\) 2149.51 0.814309 0.407154 0.913359i \(-0.366521\pi\)
0.407154 + 0.913359i \(0.366521\pi\)
\(192\) 0 0
\(193\) −5077.23 −1.89361 −0.946806 0.321805i \(-0.895710\pi\)
−0.946806 + 0.321805i \(0.895710\pi\)
\(194\) 0 0
\(195\) −42.1345 42.1345i −0.0154734 0.0154734i
\(196\) 0 0
\(197\) −297.298 + 297.298i −0.107521 + 0.107521i −0.758821 0.651300i \(-0.774224\pi\)
0.651300 + 0.758821i \(0.274224\pi\)
\(198\) 0 0
\(199\) 3870.84i 1.37888i −0.724343 0.689440i \(-0.757857\pi\)
0.724343 0.689440i \(-0.242143\pi\)
\(200\) 0 0
\(201\) 106.716i 0.0374486i
\(202\) 0 0
\(203\) −5063.41 + 5063.41i −1.75065 + 1.75065i
\(204\) 0 0
\(205\) −785.273 785.273i −0.267541 0.267541i
\(206\) 0 0
\(207\) 4848.01 1.62783
\(208\) 0 0
\(209\) −222.939 −0.0737847
\(210\) 0 0
\(211\) 68.1214 + 68.1214i 0.0222259 + 0.0222259i 0.718132 0.695906i \(-0.244997\pi\)
−0.695906 + 0.718132i \(0.744997\pi\)
\(212\) 0 0
\(213\) −186.256 + 186.256i −0.0599156 + 0.0599156i
\(214\) 0 0
\(215\) 1513.29i 0.480024i
\(216\) 0 0
\(217\) 3136.32i 0.981139i
\(218\) 0 0
\(219\) −77.3754 + 77.3754i −0.0238746 + 0.0238746i
\(220\) 0 0
\(221\) −1562.21 1562.21i −0.475500 0.475500i
\(222\) 0 0
\(223\) −3027.13 −0.909020 −0.454510 0.890742i \(-0.650186\pi\)
−0.454510 + 0.890742i \(0.650186\pi\)
\(224\) 0 0
\(225\) −669.470 −0.198361
\(226\) 0 0
\(227\) −1657.27 1657.27i −0.484568 0.484568i 0.422019 0.906587i \(-0.361322\pi\)
−0.906587 + 0.422019i \(0.861322\pi\)
\(228\) 0 0
\(229\) 1654.38 1654.38i 0.477401 0.477401i −0.426899 0.904299i \(-0.640394\pi\)
0.904299 + 0.426899i \(0.140394\pi\)
\(230\) 0 0
\(231\) 579.923i 0.165178i
\(232\) 0 0
\(233\) 2988.64i 0.840311i 0.907452 + 0.420156i \(0.138025\pi\)
−0.907452 + 0.420156i \(0.861975\pi\)
\(234\) 0 0
\(235\) −1523.03 + 1523.03i −0.422773 + 0.422773i
\(236\) 0 0
\(237\) −168.940 168.940i −0.0463032 0.0463032i
\(238\) 0 0
\(239\) −3559.69 −0.963419 −0.481709 0.876331i \(-0.659984\pi\)
−0.481709 + 0.876331i \(0.659984\pi\)
\(240\) 0 0
\(241\) 6527.63 1.74474 0.872369 0.488849i \(-0.162583\pi\)
0.872369 + 0.488849i \(0.162583\pi\)
\(242\) 0 0
\(243\) 719.406 + 719.406i 0.189917 + 0.189917i
\(244\) 0 0
\(245\) −2328.31 + 2328.31i −0.607145 + 0.607145i
\(246\) 0 0
\(247\) 144.989i 0.0373498i
\(248\) 0 0
\(249\) 603.379i 0.153565i
\(250\) 0 0
\(251\) 1390.20 1390.20i 0.349597 0.349597i −0.510362 0.859959i \(-0.670489\pi\)
0.859959 + 0.510362i \(0.170489\pi\)
\(252\) 0 0
\(253\) −4987.60 4987.60i −1.23940 1.23940i
\(254\) 0 0
\(255\) 205.042 0.0503539
\(256\) 0 0
\(257\) −2047.61 −0.496990 −0.248495 0.968633i \(-0.579936\pi\)
−0.248495 + 0.968633i \(0.579936\pi\)
\(258\) 0 0
\(259\) −4359.05 4359.05i −1.04578 1.04578i
\(260\) 0 0
\(261\) −4284.49 + 4284.49i −1.01610 + 1.01610i
\(262\) 0 0
\(263\) 3771.96i 0.884370i −0.896924 0.442185i \(-0.854203\pi\)
0.896924 0.442185i \(-0.145797\pi\)
\(264\) 0 0
\(265\) 3184.62i 0.738224i
\(266\) 0 0
\(267\) −155.291 + 155.291i −0.0355941 + 0.0355941i
\(268\) 0 0
\(269\) −3919.81 3919.81i −0.888458 0.888458i 0.105917 0.994375i \(-0.466222\pi\)
−0.994375 + 0.105917i \(0.966222\pi\)
\(270\) 0 0
\(271\) 4414.42 0.989510 0.494755 0.869033i \(-0.335258\pi\)
0.494755 + 0.869033i \(0.335258\pi\)
\(272\) 0 0
\(273\) −377.153 −0.0836130
\(274\) 0 0
\(275\) 688.746 + 688.746i 0.151029 + 0.151029i
\(276\) 0 0
\(277\) 6129.60 6129.60i 1.32957 1.32957i 0.423834 0.905740i \(-0.360684\pi\)
0.905740 0.423834i \(-0.139316\pi\)
\(278\) 0 0
\(279\) 2653.84i 0.569468i
\(280\) 0 0
\(281\) 2156.72i 0.457862i −0.973443 0.228931i \(-0.926477\pi\)
0.973443 0.228931i \(-0.0735231\pi\)
\(282\) 0 0
\(283\) −291.414 + 291.414i −0.0612112 + 0.0612112i −0.737050 0.675839i \(-0.763782\pi\)
0.675839 + 0.737050i \(0.263782\pi\)
\(284\) 0 0
\(285\) −9.51497 9.51497i −0.00197761 0.00197761i
\(286\) 0 0
\(287\) −7029.13 −1.44570
\(288\) 0 0
\(289\) 2689.30 0.547384
\(290\) 0 0
\(291\) 95.0521 + 95.0521i 0.0191479 + 0.0191479i
\(292\) 0 0
\(293\) −5647.07 + 5647.07i −1.12596 + 1.12596i −0.135129 + 0.990828i \(0.543145\pi\)
−0.990828 + 0.135129i \(0.956855\pi\)
\(294\) 0 0
\(295\) 1045.89i 0.206420i
\(296\) 0 0
\(297\) 985.475i 0.192536i
\(298\) 0 0
\(299\) −3243.69 + 3243.69i −0.627383 + 0.627383i
\(300\) 0 0
\(301\) −6772.85 6772.85i −1.29695 1.29695i
\(302\) 0 0
\(303\) −484.425 −0.0918465
\(304\) 0 0
\(305\) 3184.90 0.597923
\(306\) 0 0
\(307\) −930.306 930.306i −0.172949 0.172949i 0.615325 0.788274i \(-0.289025\pi\)
−0.788274 + 0.615325i \(0.789025\pi\)
\(308\) 0 0
\(309\) 245.206 245.206i 0.0451434 0.0451434i
\(310\) 0 0
\(311\) 9791.82i 1.78535i −0.450704 0.892673i \(-0.648827\pi\)
0.450704 0.892673i \(-0.351173\pi\)
\(312\) 0 0
\(313\) 5708.35i 1.03085i −0.856936 0.515423i \(-0.827635\pi\)
0.856936 0.515423i \(-0.172365\pi\)
\(314\) 0 0
\(315\) −2996.27 + 2996.27i −0.535939 + 0.535939i
\(316\) 0 0
\(317\) 2401.93 + 2401.93i 0.425571 + 0.425571i 0.887116 0.461546i \(-0.152705\pi\)
−0.461546 + 0.887116i \(0.652705\pi\)
\(318\) 0 0
\(319\) 8815.70 1.54729
\(320\) 0 0
\(321\) −351.573 −0.0611305
\(322\) 0 0
\(323\) −352.784 352.784i −0.0607723 0.0607723i
\(324\) 0 0
\(325\) 447.927 447.927i 0.0764508 0.0764508i
\(326\) 0 0
\(327\) 192.537i 0.0325607i
\(328\) 0 0
\(329\) 13632.9i 2.28452i
\(330\) 0 0
\(331\) −6732.01 + 6732.01i −1.11790 + 1.11790i −0.125850 + 0.992049i \(0.540166\pi\)
−0.992049 + 0.125850i \(0.959834\pi\)
\(332\) 0 0
\(333\) −3688.48 3688.48i −0.606989 0.606989i
\(334\) 0 0
\(335\) −1134.48 −0.185025
\(336\) 0 0
\(337\) −1392.53 −0.225092 −0.112546 0.993647i \(-0.535901\pi\)
−0.112546 + 0.993647i \(0.535901\pi\)
\(338\) 0 0
\(339\) −96.0295 96.0295i −0.0153853 0.0153853i
\(340\) 0 0
\(341\) 2730.26 2730.26i 0.433583 0.433583i
\(342\) 0 0
\(343\) 9986.17i 1.57202i
\(344\) 0 0
\(345\) 425.739i 0.0664377i
\(346\) 0 0
\(347\) −3703.57 + 3703.57i −0.572962 + 0.572962i −0.932955 0.359993i \(-0.882779\pi\)
0.359993 + 0.932955i \(0.382779\pi\)
\(348\) 0 0
\(349\) 7885.04 + 7885.04i 1.20939 + 1.20939i 0.971225 + 0.238164i \(0.0765455\pi\)
0.238164 + 0.971225i \(0.423455\pi\)
\(350\) 0 0
\(351\) −640.905 −0.0974614
\(352\) 0 0
\(353\) −8895.49 −1.34124 −0.670622 0.741799i \(-0.733973\pi\)
−0.670622 + 0.741799i \(0.733973\pi\)
\(354\) 0 0
\(355\) −1980.06 1980.06i −0.296030 0.296030i
\(356\) 0 0
\(357\) 917.685 917.685i 0.136048 0.136048i
\(358\) 0 0
\(359\) 336.118i 0.0494140i 0.999695 + 0.0247070i \(0.00786528\pi\)
−0.999695 + 0.0247070i \(0.992135\pi\)
\(360\) 0 0
\(361\) 6826.26i 0.995226i
\(362\) 0 0
\(363\) −62.1870 + 62.1870i −0.00899165 + 0.00899165i
\(364\) 0 0
\(365\) −822.569 822.569i −0.117960 0.117960i
\(366\) 0 0
\(367\) 6382.36 0.907783 0.453892 0.891057i \(-0.350035\pi\)
0.453892 + 0.891057i \(0.350035\pi\)
\(368\) 0 0
\(369\) −5947.81 −0.839107
\(370\) 0 0
\(371\) 14253.0 + 14253.0i 1.99456 + 1.99456i
\(372\) 0 0
\(373\) −207.539 + 207.539i −0.0288095 + 0.0288095i −0.721365 0.692555i \(-0.756485\pi\)
0.692555 + 0.721365i \(0.256485\pi\)
\(374\) 0 0
\(375\) 58.7910i 0.00809587i
\(376\) 0 0
\(377\) 5733.30i 0.783236i
\(378\) 0 0
\(379\) 2598.87 2598.87i 0.352230 0.352230i −0.508709 0.860939i \(-0.669877\pi\)
0.860939 + 0.508709i \(0.169877\pi\)
\(380\) 0 0
\(381\) −223.501 223.501i −0.0300533 0.0300533i
\(382\) 0 0
\(383\) 1522.49 0.203121 0.101561 0.994829i \(-0.467616\pi\)
0.101561 + 0.994829i \(0.467616\pi\)
\(384\) 0 0
\(385\) 6165.09 0.816110
\(386\) 0 0
\(387\) −5730.95 5730.95i −0.752767 0.752767i
\(388\) 0 0
\(389\) 4139.02 4139.02i 0.539477 0.539477i −0.383899 0.923375i \(-0.625419\pi\)
0.923375 + 0.383899i \(0.125419\pi\)
\(390\) 0 0
\(391\) 15785.0i 2.04164i
\(392\) 0 0
\(393\) 527.507i 0.0677079i
\(394\) 0 0
\(395\) 1795.99 1795.99i 0.228774 0.228774i
\(396\) 0 0
\(397\) 790.544 + 790.544i 0.0999402 + 0.0999402i 0.755309 0.655369i \(-0.227487\pi\)
−0.655369 + 0.755309i \(0.727487\pi\)
\(398\) 0 0
\(399\) −85.1702 −0.0106863
\(400\) 0 0
\(401\) 8488.83 1.05714 0.528569 0.848891i \(-0.322729\pi\)
0.528569 + 0.848891i \(0.322729\pi\)
\(402\) 0 0
\(403\) −1775.63 1775.63i −0.219479 0.219479i
\(404\) 0 0
\(405\) −2514.23 + 2514.23i −0.308477 + 0.308477i
\(406\) 0 0
\(407\) 7589.36i 0.924301i
\(408\) 0 0
\(409\) 11390.7i 1.37710i −0.725191 0.688548i \(-0.758248\pi\)
0.725191 0.688548i \(-0.241752\pi\)
\(410\) 0 0
\(411\) −567.167 + 567.167i −0.0680689 + 0.0680689i
\(412\) 0 0
\(413\) −4680.97 4680.97i −0.557712 0.557712i
\(414\) 0 0
\(415\) −6414.45 −0.758730
\(416\) 0 0
\(417\) −818.670 −0.0961402
\(418\) 0 0
\(419\) 920.398 + 920.398i 0.107314 + 0.107314i 0.758725 0.651411i \(-0.225823\pi\)
−0.651411 + 0.758725i \(0.725823\pi\)
\(420\) 0 0
\(421\) −767.503 + 767.503i −0.0888498 + 0.0888498i −0.750135 0.661285i \(-0.770011\pi\)
0.661285 + 0.750135i \(0.270011\pi\)
\(422\) 0 0
\(423\) 11535.7i 1.32597i
\(424\) 0 0
\(425\) 2179.78i 0.248788i
\(426\) 0 0
\(427\) 14254.3 14254.3i 1.61549 1.61549i
\(428\) 0 0
\(429\) 328.323 + 328.323i 0.0369501 + 0.0369501i
\(430\) 0 0
\(431\) 2092.47 0.233853 0.116927 0.993141i \(-0.462696\pi\)
0.116927 + 0.993141i \(0.462696\pi\)
\(432\) 0 0
\(433\) 12347.8 1.37043 0.685215 0.728340i \(-0.259708\pi\)
0.685215 + 0.728340i \(0.259708\pi\)
\(434\) 0 0
\(435\) 376.251 + 376.251i 0.0414710 + 0.0414710i
\(436\) 0 0
\(437\) −732.503 + 732.503i −0.0801839 + 0.0801839i
\(438\) 0 0
\(439\) 106.069i 0.0115316i −0.999983 0.00576582i \(-0.998165\pi\)
0.999983 0.00576582i \(-0.00183533\pi\)
\(440\) 0 0
\(441\) 17635.1i 1.90423i
\(442\) 0 0
\(443\) 7806.27 7806.27i 0.837217 0.837217i −0.151275 0.988492i \(-0.548338\pi\)
0.988492 + 0.151275i \(0.0483379\pi\)
\(444\) 0 0
\(445\) −1650.88 1650.88i −0.175863 0.175863i
\(446\) 0 0
\(447\) 88.9630 0.00941344
\(448\) 0 0
\(449\) 8260.92 0.868278 0.434139 0.900846i \(-0.357053\pi\)
0.434139 + 0.900846i \(0.357053\pi\)
\(450\) 0 0
\(451\) 6119.07 + 6119.07i 0.638881 + 0.638881i
\(452\) 0 0
\(453\) −398.278 + 398.278i −0.0413085 + 0.0413085i
\(454\) 0 0
\(455\) 4009.47i 0.413114i
\(456\) 0 0
\(457\) 11303.0i 1.15696i 0.815695 + 0.578482i \(0.196355\pi\)
−0.815695 + 0.578482i \(0.803645\pi\)
\(458\) 0 0
\(459\) 1559.44 1559.44i 0.158581 0.158581i
\(460\) 0 0
\(461\) 5408.22 + 5408.22i 0.546390 + 0.546390i 0.925395 0.379005i \(-0.123734\pi\)
−0.379005 + 0.925395i \(0.623734\pi\)
\(462\) 0 0
\(463\) 10798.3 1.08388 0.541941 0.840416i \(-0.317690\pi\)
0.541941 + 0.840416i \(0.317690\pi\)
\(464\) 0 0
\(465\) 233.053 0.0232421
\(466\) 0 0
\(467\) 2406.24 + 2406.24i 0.238431 + 0.238431i 0.816200 0.577769i \(-0.196077\pi\)
−0.577769 + 0.816200i \(0.696077\pi\)
\(468\) 0 0
\(469\) −5077.49 + 5077.49i −0.499908 + 0.499908i
\(470\) 0 0
\(471\) 149.878i 0.0146625i
\(472\) 0 0
\(473\) 11791.9i 1.14629i
\(474\) 0 0
\(475\) 101.153 101.153i 0.00977094 0.00977094i
\(476\) 0 0
\(477\) 12060.4 + 12060.4i 1.15767 + 1.15767i
\(478\) 0 0
\(479\) −18643.4 −1.77836 −0.889182 0.457553i \(-0.848726\pi\)
−0.889182 + 0.457553i \(0.848726\pi\)
\(480\) 0 0
\(481\) 4935.75 0.467881
\(482\) 0 0
\(483\) −1905.43 1905.43i −0.179503 0.179503i
\(484\) 0 0
\(485\) −1010.49 + 1010.49i −0.0946059 + 0.0946059i
\(486\) 0 0
\(487\) 9243.23i 0.860063i 0.902814 + 0.430032i \(0.141498\pi\)
−0.902814 + 0.430032i \(0.858502\pi\)
\(488\) 0 0
\(489\) 30.4618i 0.00281703i
\(490\) 0 0
\(491\) −7760.67 + 7760.67i −0.713308 + 0.713308i −0.967226 0.253918i \(-0.918281\pi\)
0.253918 + 0.967226i \(0.418281\pi\)
\(492\) 0 0
\(493\) 13950.2 + 13950.2i 1.27441 + 1.27441i
\(494\) 0 0
\(495\) 5216.69 0.473683
\(496\) 0 0
\(497\) −17723.9 −1.59965
\(498\) 0 0
\(499\) −11202.3 11202.3i −1.00497 1.00497i −0.999988 0.00498630i \(-0.998413\pi\)
−0.00498630 0.999988i \(-0.501587\pi\)
\(500\) 0 0
\(501\) 654.477 654.477i 0.0583630 0.0583630i
\(502\) 0 0
\(503\) 421.544i 0.0373672i 0.999825 + 0.0186836i \(0.00594752\pi\)
−0.999825 + 0.0186836i \(0.994052\pi\)
\(504\) 0 0
\(505\) 5149.87i 0.453794i
\(506\) 0 0
\(507\) −517.135 + 517.135i −0.0452994 + 0.0452994i
\(508\) 0 0
\(509\) 9667.89 + 9667.89i 0.841889 + 0.841889i 0.989104 0.147215i \(-0.0470311\pi\)
−0.147215 + 0.989104i \(0.547031\pi\)
\(510\) 0 0
\(511\) −7362.97 −0.637414
\(512\) 0 0
\(513\) −144.732 −0.0124563
\(514\) 0 0
\(515\) 2606.76 + 2606.76i 0.223044 + 0.223044i
\(516\) 0 0
\(517\) 11867.9 11867.9i 1.00957 1.00957i
\(518\) 0 0
\(519\) 1787.28i 0.151161i
\(520\) 0 0
\(521\) 15435.0i 1.29793i −0.760819 0.648964i \(-0.775202\pi\)
0.760819 0.648964i \(-0.224798\pi\)
\(522\) 0 0
\(523\) 1871.14 1871.14i 0.156442 0.156442i −0.624546 0.780988i \(-0.714716\pi\)
0.780988 + 0.624546i \(0.214716\pi\)
\(524\) 0 0
\(525\) 263.124 + 263.124i 0.0218737 + 0.0218737i
\(526\) 0 0
\(527\) 8640.86 0.714235
\(528\) 0 0
\(529\) −20608.2 −1.69377
\(530\) 0 0
\(531\) −3960.87 3960.87i −0.323705 0.323705i
\(532\) 0 0
\(533\) 3979.54 3979.54i 0.323401 0.323401i
\(534\) 0 0
\(535\) 3737.53i 0.302033i
\(536\) 0 0
\(537\) 187.278i 0.0150496i
\(538\) 0 0
\(539\) 18142.9 18142.9i 1.44985 1.44985i
\(540\) 0 0
\(541\) −9889.56 9889.56i −0.785925 0.785925i 0.194898 0.980823i \(-0.437562\pi\)
−0.980823 + 0.194898i \(0.937562\pi\)
\(542\) 0 0
\(543\) −78.5836 −0.00621058
\(544\) 0 0
\(545\) 2046.84 0.160875
\(546\) 0 0
\(547\) −4755.24 4755.24i −0.371699 0.371699i 0.496397 0.868096i \(-0.334656\pi\)
−0.868096 + 0.496397i \(0.834656\pi\)
\(548\) 0 0
\(549\) 12061.5 12061.5i 0.937654 0.937654i
\(550\) 0 0
\(551\) 1294.72i 0.100103i
\(552\) 0 0
\(553\) 16076.2i 1.23622i
\(554\) 0 0
\(555\) −323.912 + 323.912i −0.0247735 + 0.0247735i
\(556\) 0 0
\(557\) 3512.91 + 3512.91i 0.267230 + 0.267230i 0.827983 0.560753i \(-0.189488\pi\)
−0.560753 + 0.827983i \(0.689488\pi\)
\(558\) 0 0
\(559\) 7668.89 0.580250
\(560\) 0 0
\(561\) −1597.74 −0.120244
\(562\) 0 0
\(563\) 13501.9 + 13501.9i 1.01073 + 1.01073i 0.999942 + 0.0107847i \(0.00343293\pi\)
0.0107847 + 0.999942i \(0.496567\pi\)
\(564\) 0 0
\(565\) 1020.88 1020.88i 0.0760154 0.0760154i
\(566\) 0 0
\(567\) 22505.3i 1.66690i
\(568\) 0 0
\(569\) 16173.2i 1.19159i −0.803135 0.595797i \(-0.796836\pi\)
0.803135 0.595797i \(-0.203164\pi\)
\(570\) 0 0
\(571\) 1356.08 1356.08i 0.0993877 0.0993877i −0.655665 0.755052i \(-0.727611\pi\)
0.755052 + 0.655665i \(0.227611\pi\)
\(572\) 0 0
\(573\) −714.866 714.866i −0.0521186 0.0521186i
\(574\) 0 0
\(575\) 4525.98 0.328254
\(576\) 0 0
\(577\) −20526.2 −1.48096 −0.740482 0.672076i \(-0.765403\pi\)
−0.740482 + 0.672076i \(0.765403\pi\)
\(578\) 0 0
\(579\) 1688.54 + 1688.54i 0.121198 + 0.121198i
\(580\) 0 0
\(581\) −28708.5 + 28708.5i −2.04996 + 2.04996i
\(582\) 0 0
\(583\) 24815.4i 1.76286i
\(584\) 0 0
\(585\) 3392.68i 0.239778i
\(586\) 0 0
\(587\) −3564.37 + 3564.37i −0.250626 + 0.250626i −0.821227 0.570601i \(-0.806710\pi\)
0.570601 + 0.821227i \(0.306710\pi\)
\(588\) 0 0
\(589\) −400.979 400.979i −0.0280510 0.0280510i
\(590\) 0 0
\(591\) 197.746 0.0137634
\(592\) 0 0
\(593\) 5234.00 0.362453 0.181226 0.983441i \(-0.441993\pi\)
0.181226 + 0.983441i \(0.441993\pi\)
\(594\) 0 0
\(595\) 9755.80 + 9755.80i 0.672183 + 0.672183i
\(596\) 0 0
\(597\) −1287.33 + 1287.33i −0.0882531 + 0.0882531i
\(598\) 0 0
\(599\) 26166.9i 1.78489i 0.451152 + 0.892447i \(0.351013\pi\)
−0.451152 + 0.892447i \(0.648987\pi\)
\(600\) 0 0
\(601\) 1111.03i 0.0754077i −0.999289 0.0377038i \(-0.987996\pi\)
0.999289 0.0377038i \(-0.0120043\pi\)
\(602\) 0 0
\(603\) −4296.40 + 4296.40i −0.290154 + 0.290154i
\(604\) 0 0
\(605\) −661.103 661.103i −0.0444259 0.0444259i
\(606\) 0 0
\(607\) −28038.7 −1.87488 −0.937441 0.348143i \(-0.886812\pi\)
−0.937441 + 0.348143i \(0.886812\pi\)
\(608\) 0 0
\(609\) 3367.90 0.224095
\(610\) 0 0
\(611\) −7718.28 7718.28i −0.511045 0.511045i
\(612\) 0 0
\(613\) 15640.2 15640.2i 1.03051 1.03051i 0.0309891 0.999520i \(-0.490134\pi\)
0.999520 0.0309891i \(-0.00986572\pi\)
\(614\) 0 0
\(615\) 522.320i 0.0342471i
\(616\) 0 0
\(617\) 20190.6i 1.31741i −0.752400 0.658706i \(-0.771104\pi\)
0.752400 0.658706i \(-0.228896\pi\)
\(618\) 0 0
\(619\) −17106.7 + 17106.7i −1.11079 + 1.11079i −0.117744 + 0.993044i \(0.537566\pi\)
−0.993044 + 0.117744i \(0.962434\pi\)
\(620\) 0 0
\(621\) −3237.94 3237.94i −0.209234 0.209234i
\(622\) 0 0
\(623\) −14777.3 −0.950305
\(624\) 0 0
\(625\) −625.000 −0.0400000
\(626\) 0 0
\(627\) 74.1432 + 74.1432i 0.00472248 + 0.00472248i
\(628\) 0 0
\(629\) −12009.6 + 12009.6i −0.761294 + 0.761294i
\(630\) 0 0
\(631\) 15692.0i 0.989995i 0.868894 + 0.494998i \(0.164831\pi\)
−0.868894 + 0.494998i \(0.835169\pi\)
\(632\) 0 0
\(633\) 45.3105i 0.00284508i
\(634\) 0 0
\(635\) 2376.01 2376.01i 0.148487 0.148487i
\(636\) 0 0
\(637\) −11799.2 11799.2i −0.733912 0.733912i
\(638\) 0 0
\(639\) −14997.3 −0.928460
\(640\) 0 0
\(641\) 6940.06 0.427638 0.213819 0.976873i \(-0.431410\pi\)
0.213819 + 0.976873i \(0.431410\pi\)
\(642\) 0 0
\(643\) −17028.5 17028.5i −1.04438 1.04438i −0.998968 0.0454166i \(-0.985538\pi\)
−0.0454166 0.998968i \(-0.514462\pi\)
\(644\) 0 0
\(645\) −503.276 + 503.276i −0.0307232 + 0.0307232i
\(646\) 0 0
\(647\) 7772.42i 0.472280i 0.971719 + 0.236140i \(0.0758824\pi\)
−0.971719 + 0.236140i \(0.924118\pi\)
\(648\) 0 0
\(649\) 8149.84i 0.492926i
\(650\) 0 0
\(651\) 1043.05 1043.05i 0.0627963 0.0627963i
\(652\) 0 0
\(653\) 16913.5 + 16913.5i 1.01359 + 1.01359i 0.999906 + 0.0136849i \(0.00435618\pi\)
0.0136849 + 0.999906i \(0.495644\pi\)
\(654\) 0 0
\(655\) 5607.86 0.334530
\(656\) 0 0
\(657\) −6230.29 −0.369965
\(658\) 0 0
\(659\) 21224.4 + 21224.4i 1.25461 + 1.25461i 0.953632 + 0.300975i \(0.0973122\pi\)
0.300975 + 0.953632i \(0.402688\pi\)
\(660\) 0 0
\(661\) −8991.82 + 8991.82i −0.529110 + 0.529110i −0.920307 0.391197i \(-0.872061\pi\)
0.391197 + 0.920307i \(0.372061\pi\)
\(662\) 0 0
\(663\) 1039.09i 0.0608674i
\(664\) 0 0
\(665\) 905.435i 0.0527989i
\(666\) 0 0
\(667\) 28965.4 28965.4i 1.68148 1.68148i
\(668\) 0 0
\(669\) 1006.74 + 1006.74i 0.0581805 + 0.0581805i
\(670\) 0 0
\(671\) −24817.6 −1.42783
\(672\) 0 0
\(673\) −21613.3 −1.23794 −0.618968 0.785416i \(-0.712449\pi\)
−0.618968 + 0.785416i \(0.712449\pi\)
\(674\) 0 0
\(675\) 447.133 + 447.133i 0.0254965 + 0.0254965i
\(676\) 0 0
\(677\) −10267.0 + 10267.0i −0.582855 + 0.582855i −0.935687 0.352832i \(-0.885219\pi\)
0.352832 + 0.935687i \(0.385219\pi\)
\(678\) 0 0
\(679\) 9045.06i 0.511219i
\(680\) 0 0
\(681\) 1102.32i 0.0620282i
\(682\) 0 0
\(683\) 12718.6 12718.6i 0.712537 0.712537i −0.254529 0.967065i \(-0.581920\pi\)
0.967065 + 0.254529i \(0.0819203\pi\)
\(684\) 0 0
\(685\) −6029.49 6029.49i −0.336314 0.336314i
\(686\) 0 0
\(687\) −1100.40 −0.0611106
\(688\) 0 0
\(689\) −16138.7 −0.892360
\(690\) 0 0
\(691\) −6754.05 6754.05i −0.371832 0.371832i 0.496312 0.868144i \(-0.334687\pi\)
−0.868144 + 0.496312i \(0.834687\pi\)
\(692\) 0 0
\(693\) 23347.8 23347.8i 1.27981 1.27981i
\(694\) 0 0
\(695\) 8703.19i 0.475008i
\(696\) 0 0
\(697\) 19365.9i 1.05242i
\(698\) 0 0
\(699\) 993.939 993.939i 0.0537829 0.0537829i
\(700\) 0 0
\(701\) −18644.8 18644.8i −1.00457 1.00457i −0.999989 0.00458335i \(-0.998541\pi\)
−0.00458335 0.999989i \(-0.501459\pi\)
\(702\) 0 0
\(703\) 1114.61 0.0597984
\(704\) 0 0
\(705\) 1013.03 0.0541179
\(706\) 0 0
\(707\) −23048.7 23048.7i −1.22608 1.22608i
\(708\) 0 0
\(709\) 10018.5 10018.5i 0.530683 0.530683i −0.390093 0.920776i \(-0.627557\pi\)
0.920776 + 0.390093i \(0.127557\pi\)
\(710\) 0 0
\(711\) 13603.1i 0.717521i
\(712\) 0 0
\(713\) 17941.4i 0.942372i
\(714\) 0 0
\(715\) −3490.37 + 3490.37i −0.182563 + 0.182563i
\(716\) 0 0
\(717\) 1183.85 + 1183.85i 0.0616622 + 0.0616622i
\(718\) 0 0
\(719\) 23147.6 1.20064 0.600320 0.799760i \(-0.295040\pi\)
0.600320 + 0.799760i \(0.295040\pi\)
\(720\) 0 0
\(721\) 23333.6 1.20526
\(722\) 0 0
\(723\) −2170.91 2170.91i −0.111669 0.111669i
\(724\) 0 0
\(725\) −3999.89 + 3999.89i −0.204899 + 0.204899i
\(726\) 0 0
\(727\) 14506.3i 0.740041i −0.929024 0.370020i \(-0.879351\pi\)
0.929024 0.370020i \(-0.120649\pi\)
\(728\) 0 0
\(729\) 18722.0i 0.951178i
\(730\) 0 0
\(731\) −18659.9 + 18659.9i −0.944131 + 0.944131i
\(732\) 0 0
\(733\) 6210.06 + 6210.06i 0.312924 + 0.312924i 0.846042 0.533117i \(-0.178979\pi\)
−0.533117 + 0.846042i \(0.678979\pi\)
\(734\) 0 0
\(735\) 1548.66 0.0777188
\(736\) 0 0
\(737\) 8840.22 0.441837
\(738\) 0 0
\(739\) −11943.0 11943.0i −0.594495 0.594495i 0.344347 0.938842i \(-0.388100\pi\)
−0.938842 + 0.344347i \(0.888100\pi\)
\(740\) 0 0
\(741\) 48.2191 48.2191i 0.00239052 0.00239052i
\(742\) 0 0
\(743\) 36602.4i 1.80729i −0.428286 0.903643i \(-0.640883\pi\)
0.428286 0.903643i \(-0.359117\pi\)
\(744\) 0 0
\(745\) 945.756i 0.0465098i
\(746\) 0 0
\(747\) −24292.1 + 24292.1i −1.18983 + 1.18983i
\(748\) 0 0
\(749\) −16727.7 16727.7i −0.816042 0.816042i
\(750\) 0 0
\(751\) −14798.3 −0.719040 −0.359520 0.933137i \(-0.617060\pi\)
−0.359520 + 0.933137i \(0.617060\pi\)
\(752\) 0 0
\(753\) −924.685 −0.0447509
\(754\) 0 0
\(755\) −4234.05 4234.05i −0.204096 0.204096i
\(756\) 0 0
\(757\) −4779.77 + 4779.77i −0.229490 + 0.229490i −0.812479 0.582990i \(-0.801883\pi\)
0.582990 + 0.812479i \(0.301883\pi\)
\(758\) 0 0
\(759\) 3317.47i 0.158652i
\(760\) 0 0
\(761\) 9090.72i 0.433033i 0.976279 + 0.216517i \(0.0694696\pi\)
−0.976279 + 0.216517i \(0.930530\pi\)
\(762\) 0 0
\(763\) 9160.83 9160.83i 0.434658 0.434658i
\(764\) 0 0
\(765\) 8255.03 + 8255.03i 0.390145 + 0.390145i
\(766\) 0 0
\(767\) 5300.25 0.249519
\(768\) 0 0
\(769\) −15770.0 −0.739508 −0.369754 0.929130i \(-0.620558\pi\)
−0.369754 + 0.929130i \(0.620558\pi\)
\(770\) 0 0
\(771\) 680.978 + 680.978i 0.0318091 + 0.0318091i
\(772\) 0 0
\(773\) −15675.5 + 15675.5i −0.729378 + 0.729378i −0.970496 0.241118i \(-0.922486\pi\)
0.241118 + 0.970496i \(0.422486\pi\)
\(774\) 0 0
\(775\) 2477.56i 0.114834i
\(776\) 0 0
\(777\) 2899.39i 0.133868i
\(778\) 0 0
\(779\) 898.675 898.675i 0.0413330 0.0413330i
\(780\) 0 0
\(781\) 15429.2 + 15429.2i 0.706913 + 0.706913i
\(782\) 0 0
\(783\) 5723.14 0.261211
\(784\) 0 0
\(785\) −1593.34 −0.0724442
\(786\) 0 0
\(787\) 8132.80 + 8132.80i 0.368365 + 0.368365i 0.866881 0.498516i \(-0.166121\pi\)
−0.498516 + 0.866881i \(0.666121\pi\)
\(788\) 0 0
\(789\) −1254.45 + 1254.45i −0.0566028 + 0.0566028i
\(790\) 0 0
\(791\) 9138.07i 0.410762i
\(792\) 0 0
\(793\) 16140.1i 0.722766i
\(794\) 0 0
\(795\) 1059.11 1059.11i 0.0472489 0.0472489i
\(796\) 0 0
\(797\) 2477.13 + 2477.13i 0.110093 + 0.110093i 0.760008 0.649914i \(-0.225195\pi\)
−0.649914 + 0.760008i \(0.725195\pi\)
\(798\) 0 0
\(799\) 37560.1 1.66305
\(800\) 0 0
\(801\) −12504.0 −0.551571
\(802\) 0 0
\(803\) 6409.68 + 6409.68i 0.281685 + 0.281685i
\(804\) 0 0
\(805\) 20256.4 20256.4i 0.886889 0.886889i
\(806\) 0 0
\(807\) 2607.24i 0.113729i
\(808\) 0 0
\(809\) 6243.83i 0.271349i −0.990753 0.135674i \(-0.956680\pi\)
0.990753 0.135674i \(-0.0433201\pi\)
\(810\) 0 0
\(811\) −23892.3 + 23892.3i −1.03449 + 1.03449i −0.0351095 + 0.999383i \(0.511178\pi\)
−0.999383 + 0.0351095i \(0.988822\pi\)
\(812\) 0 0
\(813\) −1468.11 1468.11i −0.0633321 0.0633321i
\(814\) 0 0
\(815\) 323.836 0.0139184
\(816\) 0 0
\(817\) 1731.82 0.0741600
\(818\) 0 0
\(819\) −15184.3 15184.3i −0.647840 0.647840i
\(820\) 0 0
\(821\) −22516.2 + 22516.2i −0.957152 + 0.957152i −0.999119 0.0419667i \(-0.986638\pi\)
0.0419667 + 0.999119i \(0.486638\pi\)
\(822\) 0 0
\(823\) 21821.0i 0.924221i 0.886822 + 0.462110i \(0.152908\pi\)
−0.886822 + 0.462110i \(0.847092\pi\)
\(824\) 0 0
\(825\) 458.115i 0.0193328i
\(826\) 0 0
\(827\) −7413.04 + 7413.04i −0.311701 + 0.311701i −0.845568 0.533867i \(-0.820738\pi\)
0.533867 + 0.845568i \(0.320738\pi\)
\(828\) 0 0
\(829\) −20805.8 20805.8i −0.871670 0.871670i 0.120984 0.992654i \(-0.461395\pi\)
−0.992654 + 0.120984i \(0.961395\pi\)
\(830\) 0 0
\(831\) −4077.07 −0.170195
\(832\) 0 0
\(833\) 57419.4 2.38831
\(834\) 0 0
\(835\) 6957.67 + 6957.67i 0.288359 + 0.288359i
\(836\) 0 0
\(837\) 1772.48 1772.48i 0.0731969 0.0731969i
\(838\) 0 0
\(839\) 22077.5i 0.908464i −0.890883 0.454232i \(-0.849914\pi\)
0.890883 0.454232i \(-0.150086\pi\)
\(840\) 0 0
\(841\) 26808.1i 1.09919i
\(842\) 0 0
\(843\) −717.265 + 717.265i −0.0293048 + 0.0293048i
\(844\) 0 0
\(845\) −5497.61 5497.61i −0.223815 0.223815i
\(846\) 0 0
\(847\) −5917.65 −0.240063
\(848\) 0 0
\(849\) 193.832 0.00783546
\(850\) 0 0
\(851\) 24936.1 + 24936.1i 1.00446 + 1.00446i
\(852\) 0 0
\(853\) −2590.84 + 2590.84i −0.103996 + 0.103996i −0.757190 0.653194i \(-0.773429\pi\)
0.653194 + 0.757190i \(0.273429\pi\)
\(854\) 0 0
\(855\) 766.148i 0.0306453i
\(856\) 0 0
\(857\) 14022.9i 0.558940i −0.960154 0.279470i \(-0.909841\pi\)
0.960154 0.279470i \(-0.0901588\pi\)
\(858\) 0 0
\(859\) 7640.32 7640.32i 0.303474 0.303474i −0.538897 0.842371i \(-0.681159\pi\)
0.842371 + 0.538897i \(0.181159\pi\)
\(860\) 0 0
\(861\) 2337.69 + 2337.69i 0.0925300 + 0.0925300i
\(862\) 0 0
\(863\) 27256.7 1.07512 0.537560 0.843225i \(-0.319346\pi\)
0.537560 + 0.843225i \(0.319346\pi\)
\(864\) 0 0
\(865\) 19000.3 0.746857
\(866\) 0 0
\(867\) −894.386 894.386i −0.0350345 0.0350345i
\(868\) 0 0
\(869\) −13994.8 + 13994.8i −0.546308 + 0.546308i
\(870\) 0 0
\(871\) 5749.24i 0.223657i
\(872\) 0 0
\(873\) 7653.62i 0.296719i
\(874\) 0 0
\(875\) −2797.25 + 2797.25i −0.108073 + 0.108073i
\(876\) 0 0
\(877\) 21685.2 + 21685.2i 0.834955 + 0.834955i 0.988190 0.153235i \(-0.0489691\pi\)
−0.153235 + 0.988190i \(0.548969\pi\)
\(878\) 0 0
\(879\) 3756.11 0.144130
\(880\) 0 0
\(881\) −28719.6 −1.09828 −0.549141 0.835730i \(-0.685045\pi\)
−0.549141 + 0.835730i \(0.685045\pi\)
\(882\) 0 0
\(883\) 20257.6 + 20257.6i 0.772051 + 0.772051i 0.978465 0.206414i \(-0.0661792\pi\)
−0.206414 + 0.978465i \(0.566179\pi\)
\(884\) 0 0
\(885\) −347.833 + 347.833i −0.0132116 + 0.0132116i
\(886\) 0 0
\(887\) 4768.95i 0.180525i −0.995918 0.0902625i \(-0.971229\pi\)
0.995918 0.0902625i \(-0.0287706\pi\)
\(888\) 0 0
\(889\) 21268.1i 0.802373i
\(890\) 0 0
\(891\) 19591.6 19591.6i 0.736635 0.736635i
\(892\) 0 0
\(893\) −1742.97 1742.97i −0.0653151 0.0653151i
\(894\) 0 0
\(895\) 1990.93 0.0743570
\(896\) 0 0
\(897\) 2157.52 0.0803094
\(898\) 0 0
\(899\) 15855.9 + 15855.9i 0.588237 + 0.588237i
\(900\) 0 0
\(901\) 39268.5 39268.5i 1.45197 1.45197i
\(902\) 0 0
\(903\) 4504.92i 0.166018i
\(904\) 0 0
\(905\) 835.413i 0.0306852i
\(906\) 0 0
\(907\) −26316.7 + 26316.7i −0.963432 + 0.963432i −0.999355 0.0359230i \(-0.988563\pi\)
0.0359230 + 0.999355i \(0.488563\pi\)
\(908\) 0 0
\(909\) −19503.0 19503.0i −0.711633 0.711633i
\(910\) 0 0
\(911\) 20400.3 0.741922 0.370961 0.928649i \(-0.379028\pi\)
0.370961 + 0.928649i \(0.379028\pi\)
\(912\) 0 0
\(913\) 49983.1 1.81183
\(914\) 0 0
\(915\) −1059.21 1059.21i −0.0382692 0.0382692i
\(916\) 0 0
\(917\) 25098.5 25098.5i 0.903845 0.903845i
\(918\) 0 0
\(919\) 9542.94i 0.342538i −0.985224 0.171269i \(-0.945213\pi\)
0.985224 0.171269i \(-0.0547867\pi\)
\(920\) 0 0
\(921\) 618.788i 0.0221387i
\(922\) 0 0
\(923\) 10034.4 10034.4i 0.357839 0.357839i
\(924\) 0 0
\(925\) −3443.47 3443.47i −0.122401 0.122401i
\(926\) 0 0
\(927\) 19744.1 0.699548
\(928\) 0 0
\(929\) 28626.1 1.01097 0.505485 0.862835i \(-0.331313\pi\)
0.505485 + 0.862835i \(0.331313\pi\)
\(930\) 0 0
\(931\) −2664.55 2664.55i −0.0937991 0.0937991i
\(932\) 0 0
\(933\) −3256.48 + 3256.48i −0.114268 + 0.114268i
\(934\) 0 0
\(935\) 16985.4i 0.594100i
\(936\) 0 0
\(937\) 45776.8i 1.59601i 0.602649 + 0.798006i \(0.294112\pi\)
−0.602649 + 0.798006i \(0.705888\pi\)
\(938\) 0 0
\(939\) −1898.44 + 1898.44i −0.0659778 + 0.0659778i
\(940\) 0 0
\(941\) −19201.2 19201.2i −0.665186 0.665186i 0.291412 0.956598i \(-0.405875\pi\)
−0.956598 + 0.291412i \(0.905875\pi\)
\(942\) 0 0
\(943\) 40210.4 1.38858
\(944\) 0 0
\(945\) 4002.37 0.137775
\(946\) 0 0
\(947\) 5241.06 + 5241.06i 0.179843 + 0.179843i 0.791287 0.611444i \(-0.209411\pi\)
−0.611444 + 0.791287i \(0.709411\pi\)
\(948\) 0 0
\(949\) 4168.54 4168.54i 0.142589 0.142589i
\(950\) 0 0
\(951\) 1597.63i 0.0544760i
\(952\) 0 0
\(953\) 3874.03i 0.131681i 0.997830 + 0.0658406i \(0.0209729\pi\)
−0.997830 + 0.0658406i \(0.979027\pi\)
\(954\) 0 0
\(955\) 7599.66 7599.66i 0.257507 0.257507i
\(956\) 0 0
\(957\) −2931.85 2931.85i −0.0990318 0.0990318i
\(958\) 0 0
\(959\) −53971.1 −1.81733
\(960\) 0 0
\(961\) −19969.7 −0.670327
\(962\) 0 0
\(963\) −14154.4 14154.4i −0.473643 0.473643i
\(964\) 0 0
\(965\) −17950.7 + 17950.7i −0.598813 + 0.598813i
\(966\) 0 0
\(967\) 4333.33i 0.144106i 0.997401 + 0.0720531i \(0.0229551\pi\)
−0.997401 + 0.0720531i \(0.977045\pi\)
\(968\) 0 0
\(969\) 234.652i 0.00777928i
\(970\) 0 0
\(971\) −9479.83 + 9479.83i −0.313308 + 0.313308i −0.846190 0.532882i \(-0.821109\pi\)
0.532882 + 0.846190i \(0.321109\pi\)
\(972\) 0 0
\(973\) −38951.9 38951.9i −1.28339 1.28339i
\(974\) 0 0
\(975\) −297.936 −0.00978623
\(976\) 0 0
\(977\) 49089.2 1.60747 0.803737 0.594985i \(-0.202842\pi\)
0.803737 + 0.594985i \(0.202842\pi\)
\(978\) 0 0
\(979\) 12864.1 + 12864.1i 0.419957 + 0.419957i
\(980\) 0 0
\(981\) 7751.58 7751.58i 0.252282 0.252282i
\(982\) 0 0
\(983\) 32020.3i 1.03895i 0.854485 + 0.519476i \(0.173873\pi\)
−0.854485 + 0.519476i \(0.826127\pi\)
\(984\) 0 0
\(985\) 2102.21i 0.0680021i
\(986\) 0 0
\(987\) 4533.93 4533.93i 0.146217 0.146217i
\(988\) 0 0
\(989\) 38744.3 + 38744.3i 1.24570 + 1.24570i
\(990\) 0 0
\(991\) 4667.61 0.149618 0.0748090 0.997198i \(-0.476165\pi\)
0.0748090 + 0.997198i \(0.476165\pi\)
\(992\) 0 0
\(993\) 4477.75 0.143099
\(994\) 0 0
\(995\) −13685.5 13685.5i −0.436040 0.436040i
\(996\) 0 0
\(997\) −20944.6 + 20944.6i −0.665317 + 0.665317i −0.956628 0.291311i \(-0.905909\pi\)
0.291311 + 0.956628i \(0.405909\pi\)
\(998\) 0 0
\(999\) 4927.00i 0.156039i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.4.l.a.81.12 48
4.3 odd 2 80.4.l.a.61.22 yes 48
8.3 odd 2 640.4.l.b.161.12 48
8.5 even 2 640.4.l.a.161.13 48
16.3 odd 4 640.4.l.b.481.12 48
16.5 even 4 inner 320.4.l.a.241.12 48
16.11 odd 4 80.4.l.a.21.22 48
16.13 even 4 640.4.l.a.481.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.4.l.a.21.22 48 16.11 odd 4
80.4.l.a.61.22 yes 48 4.3 odd 2
320.4.l.a.81.12 48 1.1 even 1 trivial
320.4.l.a.241.12 48 16.5 even 4 inner
640.4.l.a.161.13 48 8.5 even 2
640.4.l.a.481.13 48 16.13 even 4
640.4.l.b.161.12 48 8.3 odd 2
640.4.l.b.481.12 48 16.3 odd 4