Properties

Label 640.4.l.a.161.13
Level $640$
Weight $4$
Character 640.161
Analytic conductor $37.761$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,4,Mod(161,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.161");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 640.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.7612224037\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.13
Character \(\chi\) \(=\) 640.161
Dual form 640.4.l.a.481.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.332572 + 0.332572i) q^{3} +(-3.53553 + 3.53553i) q^{5} -31.6472i q^{7} -26.7788i q^{9} +(27.5498 - 27.5498i) q^{11} +(-17.9171 - 17.9171i) q^{13} -2.35164 q^{15} -87.1912 q^{17} +(-4.04610 - 4.04610i) q^{19} +(10.5250 - 10.5250i) q^{21} +181.039i q^{23} -25.0000i q^{25} +(17.8853 - 17.8853i) q^{27} +(159.995 + 159.995i) q^{29} -99.1025 q^{31} +18.3246 q^{33} +(111.890 + 111.890i) q^{35} +(-137.739 + 137.739i) q^{37} -11.9174i q^{39} -222.109i q^{41} +(-214.011 + 214.011i) q^{43} +(94.6773 + 94.6773i) q^{45} -430.778 q^{47} -658.547 q^{49} +(-28.9973 - 28.9973i) q^{51} +(450.373 - 450.373i) q^{53} +194.807i q^{55} -2.69124i q^{57} +(-147.911 + 147.911i) q^{59} +(-450.412 - 450.412i) q^{61} -847.474 q^{63} +126.693 q^{65} +(160.440 + 160.440i) q^{67} +(-60.2085 + 60.2085i) q^{69} -560.046i q^{71} -232.658i q^{73} +(8.31430 - 8.31430i) q^{75} +(-871.876 - 871.876i) q^{77} +507.981 q^{79} -711.131 q^{81} +(907.140 + 907.140i) q^{83} +(308.267 - 308.267i) q^{85} +106.420i q^{87} -466.938i q^{89} +(-567.025 + 567.025i) q^{91} +(-32.9587 - 32.9587i) q^{93} +28.6103 q^{95} -285.809 q^{97} +(-737.752 - 737.752i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 40 q^{11} - 120 q^{15} + 24 q^{19} - 264 q^{27} - 400 q^{29} - 16 q^{37} + 808 q^{43} - 1880 q^{47} - 2352 q^{49} + 2144 q^{51} - 752 q^{53} - 2728 q^{59} + 912 q^{61} + 2520 q^{63} - 2040 q^{67}+ \cdots - 4456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.332572 + 0.332572i 0.0640035 + 0.0640035i 0.738384 0.674381i \(-0.235589\pi\)
−0.674381 + 0.738384i \(0.735589\pi\)
\(4\) 0 0
\(5\) −3.53553 + 3.53553i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 31.6472i 1.70879i −0.519625 0.854395i \(-0.673928\pi\)
0.519625 0.854395i \(-0.326072\pi\)
\(8\) 0 0
\(9\) 26.7788i 0.991807i
\(10\) 0 0
\(11\) 27.5498 27.5498i 0.755145 0.755145i −0.220290 0.975434i \(-0.570700\pi\)
0.975434 + 0.220290i \(0.0707003\pi\)
\(12\) 0 0
\(13\) −17.9171 17.9171i −0.382254 0.382254i 0.489660 0.871914i \(-0.337121\pi\)
−0.871914 + 0.489660i \(0.837121\pi\)
\(14\) 0 0
\(15\) −2.35164 −0.0404794
\(16\) 0 0
\(17\) −87.1912 −1.24394 −0.621970 0.783041i \(-0.713667\pi\)
−0.621970 + 0.783041i \(0.713667\pi\)
\(18\) 0 0
\(19\) −4.04610 4.04610i −0.0488547 0.0488547i 0.682257 0.731112i \(-0.260998\pi\)
−0.731112 + 0.682257i \(0.760998\pi\)
\(20\) 0 0
\(21\) 10.5250 10.5250i 0.109368 0.109368i
\(22\) 0 0
\(23\) 181.039i 1.64127i 0.571451 + 0.820636i \(0.306381\pi\)
−0.571451 + 0.820636i \(0.693619\pi\)
\(24\) 0 0
\(25\) 25.0000i 0.200000i
\(26\) 0 0
\(27\) 17.8853 17.8853i 0.127483 0.127483i
\(28\) 0 0
\(29\) 159.995 + 159.995i 1.02450 + 1.02450i 0.999692 + 0.0248046i \(0.00789636\pi\)
0.0248046 + 0.999692i \(0.492104\pi\)
\(30\) 0 0
\(31\) −99.1025 −0.574172 −0.287086 0.957905i \(-0.592687\pi\)
−0.287086 + 0.957905i \(0.592687\pi\)
\(32\) 0 0
\(33\) 18.3246 0.0966638
\(34\) 0 0
\(35\) 111.890 + 111.890i 0.540367 + 0.540367i
\(36\) 0 0
\(37\) −137.739 + 137.739i −0.612003 + 0.612003i −0.943468 0.331465i \(-0.892457\pi\)
0.331465 + 0.943468i \(0.392457\pi\)
\(38\) 0 0
\(39\) 11.9174i 0.0489312i
\(40\) 0 0
\(41\) 222.109i 0.846038i −0.906121 0.423019i \(-0.860970\pi\)
0.906121 0.423019i \(-0.139030\pi\)
\(42\) 0 0
\(43\) −214.011 + 214.011i −0.758985 + 0.758985i −0.976138 0.217153i \(-0.930323\pi\)
0.217153 + 0.976138i \(0.430323\pi\)
\(44\) 0 0
\(45\) 94.6773 + 94.6773i 0.313637 + 0.313637i
\(46\) 0 0
\(47\) −430.778 −1.33693 −0.668463 0.743746i \(-0.733047\pi\)
−0.668463 + 0.743746i \(0.733047\pi\)
\(48\) 0 0
\(49\) −658.547 −1.91996
\(50\) 0 0
\(51\) −28.9973 28.9973i −0.0796165 0.0796165i
\(52\) 0 0
\(53\) 450.373 450.373i 1.16723 1.16723i 0.184380 0.982855i \(-0.440972\pi\)
0.982855 0.184380i \(-0.0590275\pi\)
\(54\) 0 0
\(55\) 194.807i 0.477595i
\(56\) 0 0
\(57\) 2.69124i 0.00625374i
\(58\) 0 0
\(59\) −147.911 + 147.911i −0.326379 + 0.326379i −0.851208 0.524829i \(-0.824129\pi\)
0.524829 + 0.851208i \(0.324129\pi\)
\(60\) 0 0
\(61\) −450.412 450.412i −0.945400 0.945400i 0.0531846 0.998585i \(-0.483063\pi\)
−0.998585 + 0.0531846i \(0.983063\pi\)
\(62\) 0 0
\(63\) −847.474 −1.69479
\(64\) 0 0
\(65\) 126.693 0.241759
\(66\) 0 0
\(67\) 160.440 + 160.440i 0.292551 + 0.292551i 0.838087 0.545536i \(-0.183674\pi\)
−0.545536 + 0.838087i \(0.683674\pi\)
\(68\) 0 0
\(69\) −60.2085 + 60.2085i −0.105047 + 0.105047i
\(70\) 0 0
\(71\) 560.046i 0.936130i −0.883694 0.468065i \(-0.844951\pi\)
0.883694 0.468065i \(-0.155049\pi\)
\(72\) 0 0
\(73\) 232.658i 0.373021i −0.982453 0.186510i \(-0.940282\pi\)
0.982453 0.186510i \(-0.0597178\pi\)
\(74\) 0 0
\(75\) 8.31430 8.31430i 0.0128007 0.0128007i
\(76\) 0 0
\(77\) −871.876 871.876i −1.29038 1.29038i
\(78\) 0 0
\(79\) 507.981 0.723448 0.361724 0.932285i \(-0.382188\pi\)
0.361724 + 0.932285i \(0.382188\pi\)
\(80\) 0 0
\(81\) −711.131 −0.975488
\(82\) 0 0
\(83\) 907.140 + 907.140i 1.19966 + 1.19966i 0.974269 + 0.225388i \(0.0723651\pi\)
0.225388 + 0.974269i \(0.427635\pi\)
\(84\) 0 0
\(85\) 308.267 308.267i 0.393368 0.393368i
\(86\) 0 0
\(87\) 106.420i 0.131143i
\(88\) 0 0
\(89\) 466.938i 0.556128i −0.960563 0.278064i \(-0.910307\pi\)
0.960563 0.278064i \(-0.0896927\pi\)
\(90\) 0 0
\(91\) −567.025 + 567.025i −0.653191 + 0.653191i
\(92\) 0 0
\(93\) −32.9587 32.9587i −0.0367490 0.0367490i
\(94\) 0 0
\(95\) 28.6103 0.0308984
\(96\) 0 0
\(97\) −285.809 −0.299170 −0.149585 0.988749i \(-0.547794\pi\)
−0.149585 + 0.988749i \(0.547794\pi\)
\(98\) 0 0
\(99\) −737.752 737.752i −0.748958 0.748958i
\(100\) 0 0
\(101\) −728.301 + 728.301i −0.717511 + 0.717511i −0.968095 0.250584i \(-0.919378\pi\)
0.250584 + 0.968095i \(0.419378\pi\)
\(102\) 0 0
\(103\) 737.304i 0.705327i 0.935750 + 0.352663i \(0.114724\pi\)
−0.935750 + 0.352663i \(0.885276\pi\)
\(104\) 0 0
\(105\) 74.4228i 0.0691707i
\(106\) 0 0
\(107\) −528.567 + 528.567i −0.477556 + 0.477556i −0.904349 0.426793i \(-0.859643\pi\)
0.426793 + 0.904349i \(0.359643\pi\)
\(108\) 0 0
\(109\) −289.467 289.467i −0.254366 0.254366i 0.568392 0.822758i \(-0.307566\pi\)
−0.822758 + 0.568392i \(0.807566\pi\)
\(110\) 0 0
\(111\) −91.6160 −0.0783406
\(112\) 0 0
\(113\) 288.748 0.240382 0.120191 0.992751i \(-0.461649\pi\)
0.120191 + 0.992751i \(0.461649\pi\)
\(114\) 0 0
\(115\) −640.070 640.070i −0.519016 0.519016i
\(116\) 0 0
\(117\) −479.797 + 479.797i −0.379122 + 0.379122i
\(118\) 0 0
\(119\) 2759.36i 2.12563i
\(120\) 0 0
\(121\) 186.988i 0.140487i
\(122\) 0 0
\(123\) 73.8672 73.8672i 0.0541494 0.0541494i
\(124\) 0 0
\(125\) 88.3883 + 88.3883i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 672.037 0.469556 0.234778 0.972049i \(-0.424564\pi\)
0.234778 + 0.972049i \(0.424564\pi\)
\(128\) 0 0
\(129\) −142.348 −0.0971554
\(130\) 0 0
\(131\) −793.072 793.072i −0.528939 0.528939i 0.391317 0.920256i \(-0.372020\pi\)
−0.920256 + 0.391317i \(0.872020\pi\)
\(132\) 0 0
\(133\) −128.048 + 128.048i −0.0834824 + 0.0834824i
\(134\) 0 0
\(135\) 126.468i 0.0806271i
\(136\) 0 0
\(137\) 1705.40i 1.06352i −0.846896 0.531759i \(-0.821531\pi\)
0.846896 0.531759i \(-0.178469\pi\)
\(138\) 0 0
\(139\) −1230.82 + 1230.82i −0.751054 + 0.751054i −0.974676 0.223622i \(-0.928212\pi\)
0.223622 + 0.974676i \(0.428212\pi\)
\(140\) 0 0
\(141\) −143.265 143.265i −0.0855679 0.0855679i
\(142\) 0 0
\(143\) −987.225 −0.577314
\(144\) 0 0
\(145\) −1131.34 −0.647949
\(146\) 0 0
\(147\) −219.014 219.014i −0.122884 0.122884i
\(148\) 0 0
\(149\) 133.750 133.750i 0.0735385 0.0735385i −0.669381 0.742919i \(-0.733441\pi\)
0.742919 + 0.669381i \(0.233441\pi\)
\(150\) 0 0
\(151\) 1197.57i 0.645410i −0.946500 0.322705i \(-0.895408\pi\)
0.946500 0.322705i \(-0.104592\pi\)
\(152\) 0 0
\(153\) 2334.87i 1.23375i
\(154\) 0 0
\(155\) 350.380 350.380i 0.181569 0.181569i
\(156\) 0 0
\(157\) 225.332 + 225.332i 0.114544 + 0.114544i 0.762056 0.647511i \(-0.224190\pi\)
−0.647511 + 0.762056i \(0.724190\pi\)
\(158\) 0 0
\(159\) 299.563 0.149414
\(160\) 0 0
\(161\) 5729.38 2.80459
\(162\) 0 0
\(163\) −45.7973 45.7973i −0.0220069 0.0220069i 0.696018 0.718025i \(-0.254953\pi\)
−0.718025 + 0.696018i \(0.754953\pi\)
\(164\) 0 0
\(165\) −64.7873 + 64.7873i −0.0305678 + 0.0305678i
\(166\) 0 0
\(167\) 1967.93i 0.911872i 0.890012 + 0.455936i \(0.150696\pi\)
−0.890012 + 0.455936i \(0.849304\pi\)
\(168\) 0 0
\(169\) 1554.96i 0.707764i
\(170\) 0 0
\(171\) −108.350 + 108.350i −0.0484544 + 0.0484544i
\(172\) 0 0
\(173\) −2687.05 2687.05i −1.18088 1.18088i −0.979516 0.201368i \(-0.935461\pi\)
−0.201368 0.979516i \(-0.564539\pi\)
\(174\) 0 0
\(175\) −791.181 −0.341758
\(176\) 0 0
\(177\) −98.3819 −0.0417788
\(178\) 0 0
\(179\) −281.560 281.560i −0.117569 0.117569i 0.645875 0.763443i \(-0.276493\pi\)
−0.763443 + 0.645875i \(0.776493\pi\)
\(180\) 0 0
\(181\) −118.145 + 118.145i −0.0485175 + 0.0485175i −0.730949 0.682432i \(-0.760922\pi\)
0.682432 + 0.730949i \(0.260922\pi\)
\(182\) 0 0
\(183\) 299.589i 0.121018i
\(184\) 0 0
\(185\) 973.959i 0.387064i
\(186\) 0 0
\(187\) −2402.10 + 2402.10i −0.939354 + 0.939354i
\(188\) 0 0
\(189\) −566.021 566.021i −0.217841 0.217841i
\(190\) 0 0
\(191\) 2149.51 0.814309 0.407154 0.913359i \(-0.366521\pi\)
0.407154 + 0.913359i \(0.366521\pi\)
\(192\) 0 0
\(193\) −5077.23 −1.89361 −0.946806 0.321805i \(-0.895710\pi\)
−0.946806 + 0.321805i \(0.895710\pi\)
\(194\) 0 0
\(195\) 42.1345 + 42.1345i 0.0154734 + 0.0154734i
\(196\) 0 0
\(197\) 297.298 297.298i 0.107521 0.107521i −0.651300 0.758821i \(-0.725776\pi\)
0.758821 + 0.651300i \(0.225776\pi\)
\(198\) 0 0
\(199\) 3870.84i 1.37888i −0.724343 0.689440i \(-0.757857\pi\)
0.724343 0.689440i \(-0.242143\pi\)
\(200\) 0 0
\(201\) 106.716i 0.0374486i
\(202\) 0 0
\(203\) 5063.41 5063.41i 1.75065 1.75065i
\(204\) 0 0
\(205\) 785.273 + 785.273i 0.267541 + 0.267541i
\(206\) 0 0
\(207\) 4848.01 1.62783
\(208\) 0 0
\(209\) −222.939 −0.0737847
\(210\) 0 0
\(211\) −68.1214 68.1214i −0.0222259 0.0222259i 0.695906 0.718132i \(-0.255003\pi\)
−0.718132 + 0.695906i \(0.755003\pi\)
\(212\) 0 0
\(213\) 186.256 186.256i 0.0599156 0.0599156i
\(214\) 0 0
\(215\) 1513.29i 0.480024i
\(216\) 0 0
\(217\) 3136.32i 0.981139i
\(218\) 0 0
\(219\) 77.3754 77.3754i 0.0238746 0.0238746i
\(220\) 0 0
\(221\) 1562.21 + 1562.21i 0.475500 + 0.475500i
\(222\) 0 0
\(223\) −3027.13 −0.909020 −0.454510 0.890742i \(-0.650186\pi\)
−0.454510 + 0.890742i \(0.650186\pi\)
\(224\) 0 0
\(225\) −669.470 −0.198361
\(226\) 0 0
\(227\) 1657.27 + 1657.27i 0.484568 + 0.484568i 0.906587 0.422019i \(-0.138678\pi\)
−0.422019 + 0.906587i \(0.638678\pi\)
\(228\) 0 0
\(229\) −1654.38 + 1654.38i −0.477401 + 0.477401i −0.904299 0.426899i \(-0.859606\pi\)
0.426899 + 0.904299i \(0.359606\pi\)
\(230\) 0 0
\(231\) 579.923i 0.165178i
\(232\) 0 0
\(233\) 2988.64i 0.840311i 0.907452 + 0.420156i \(0.138025\pi\)
−0.907452 + 0.420156i \(0.861975\pi\)
\(234\) 0 0
\(235\) 1523.03 1523.03i 0.422773 0.422773i
\(236\) 0 0
\(237\) 168.940 + 168.940i 0.0463032 + 0.0463032i
\(238\) 0 0
\(239\) −3559.69 −0.963419 −0.481709 0.876331i \(-0.659984\pi\)
−0.481709 + 0.876331i \(0.659984\pi\)
\(240\) 0 0
\(241\) 6527.63 1.74474 0.872369 0.488849i \(-0.162583\pi\)
0.872369 + 0.488849i \(0.162583\pi\)
\(242\) 0 0
\(243\) −719.406 719.406i −0.189917 0.189917i
\(244\) 0 0
\(245\) 2328.31 2328.31i 0.607145 0.607145i
\(246\) 0 0
\(247\) 144.989i 0.0373498i
\(248\) 0 0
\(249\) 603.379i 0.153565i
\(250\) 0 0
\(251\) −1390.20 + 1390.20i −0.349597 + 0.349597i −0.859959 0.510362i \(-0.829511\pi\)
0.510362 + 0.859959i \(0.329511\pi\)
\(252\) 0 0
\(253\) 4987.60 + 4987.60i 1.23940 + 1.23940i
\(254\) 0 0
\(255\) 205.042 0.0503539
\(256\) 0 0
\(257\) −2047.61 −0.496990 −0.248495 0.968633i \(-0.579936\pi\)
−0.248495 + 0.968633i \(0.579936\pi\)
\(258\) 0 0
\(259\) 4359.05 + 4359.05i 1.04578 + 1.04578i
\(260\) 0 0
\(261\) 4284.49 4284.49i 1.01610 1.01610i
\(262\) 0 0
\(263\) 3771.96i 0.884370i −0.896924 0.442185i \(-0.854203\pi\)
0.896924 0.442185i \(-0.145797\pi\)
\(264\) 0 0
\(265\) 3184.62i 0.738224i
\(266\) 0 0
\(267\) 155.291 155.291i 0.0355941 0.0355941i
\(268\) 0 0
\(269\) 3919.81 + 3919.81i 0.888458 + 0.888458i 0.994375 0.105917i \(-0.0337777\pi\)
−0.105917 + 0.994375i \(0.533778\pi\)
\(270\) 0 0
\(271\) 4414.42 0.989510 0.494755 0.869033i \(-0.335258\pi\)
0.494755 + 0.869033i \(0.335258\pi\)
\(272\) 0 0
\(273\) −377.153 −0.0836130
\(274\) 0 0
\(275\) −688.746 688.746i −0.151029 0.151029i
\(276\) 0 0
\(277\) −6129.60 + 6129.60i −1.32957 + 1.32957i −0.423834 + 0.905740i \(0.639316\pi\)
−0.905740 + 0.423834i \(0.860684\pi\)
\(278\) 0 0
\(279\) 2653.84i 0.569468i
\(280\) 0 0
\(281\) 2156.72i 0.457862i −0.973443 0.228931i \(-0.926477\pi\)
0.973443 0.228931i \(-0.0735231\pi\)
\(282\) 0 0
\(283\) 291.414 291.414i 0.0612112 0.0612112i −0.675839 0.737050i \(-0.736218\pi\)
0.737050 + 0.675839i \(0.236218\pi\)
\(284\) 0 0
\(285\) 9.51497 + 9.51497i 0.00197761 + 0.00197761i
\(286\) 0 0
\(287\) −7029.13 −1.44570
\(288\) 0 0
\(289\) 2689.30 0.547384
\(290\) 0 0
\(291\) −95.0521 95.0521i −0.0191479 0.0191479i
\(292\) 0 0
\(293\) 5647.07 5647.07i 1.12596 1.12596i 0.135129 0.990828i \(-0.456855\pi\)
0.990828 0.135129i \(-0.0431449\pi\)
\(294\) 0 0
\(295\) 1045.89i 0.206420i
\(296\) 0 0
\(297\) 985.475i 0.192536i
\(298\) 0 0
\(299\) 3243.69 3243.69i 0.627383 0.627383i
\(300\) 0 0
\(301\) 6772.85 + 6772.85i 1.29695 + 1.29695i
\(302\) 0 0
\(303\) −484.425 −0.0918465
\(304\) 0 0
\(305\) 3184.90 0.597923
\(306\) 0 0
\(307\) 930.306 + 930.306i 0.172949 + 0.172949i 0.788274 0.615325i \(-0.210975\pi\)
−0.615325 + 0.788274i \(0.710975\pi\)
\(308\) 0 0
\(309\) −245.206 + 245.206i −0.0451434 + 0.0451434i
\(310\) 0 0
\(311\) 9791.82i 1.78535i −0.450704 0.892673i \(-0.648827\pi\)
0.450704 0.892673i \(-0.351173\pi\)
\(312\) 0 0
\(313\) 5708.35i 1.03085i −0.856936 0.515423i \(-0.827635\pi\)
0.856936 0.515423i \(-0.172365\pi\)
\(314\) 0 0
\(315\) 2996.27 2996.27i 0.535939 0.535939i
\(316\) 0 0
\(317\) −2401.93 2401.93i −0.425571 0.425571i 0.461546 0.887116i \(-0.347295\pi\)
−0.887116 + 0.461546i \(0.847295\pi\)
\(318\) 0 0
\(319\) 8815.70 1.54729
\(320\) 0 0
\(321\) −351.573 −0.0611305
\(322\) 0 0
\(323\) 352.784 + 352.784i 0.0607723 + 0.0607723i
\(324\) 0 0
\(325\) −447.927 + 447.927i −0.0764508 + 0.0764508i
\(326\) 0 0
\(327\) 192.537i 0.0325607i
\(328\) 0 0
\(329\) 13632.9i 2.28452i
\(330\) 0 0
\(331\) 6732.01 6732.01i 1.11790 1.11790i 0.125850 0.992049i \(-0.459834\pi\)
0.992049 0.125850i \(-0.0401658\pi\)
\(332\) 0 0
\(333\) 3688.48 + 3688.48i 0.606989 + 0.606989i
\(334\) 0 0
\(335\) −1134.48 −0.185025
\(336\) 0 0
\(337\) −1392.53 −0.225092 −0.112546 0.993647i \(-0.535901\pi\)
−0.112546 + 0.993647i \(0.535901\pi\)
\(338\) 0 0
\(339\) 96.0295 + 96.0295i 0.0153853 + 0.0153853i
\(340\) 0 0
\(341\) −2730.26 + 2730.26i −0.433583 + 0.433583i
\(342\) 0 0
\(343\) 9986.17i 1.57202i
\(344\) 0 0
\(345\) 425.739i 0.0664377i
\(346\) 0 0
\(347\) 3703.57 3703.57i 0.572962 0.572962i −0.359993 0.932955i \(-0.617221\pi\)
0.932955 + 0.359993i \(0.117221\pi\)
\(348\) 0 0
\(349\) −7885.04 7885.04i −1.20939 1.20939i −0.971225 0.238164i \(-0.923455\pi\)
−0.238164 0.971225i \(-0.576545\pi\)
\(350\) 0 0
\(351\) −640.905 −0.0974614
\(352\) 0 0
\(353\) −8895.49 −1.34124 −0.670622 0.741799i \(-0.733973\pi\)
−0.670622 + 0.741799i \(0.733973\pi\)
\(354\) 0 0
\(355\) 1980.06 + 1980.06i 0.296030 + 0.296030i
\(356\) 0 0
\(357\) −917.685 + 917.685i −0.136048 + 0.136048i
\(358\) 0 0
\(359\) 336.118i 0.0494140i 0.999695 + 0.0247070i \(0.00786528\pi\)
−0.999695 + 0.0247070i \(0.992135\pi\)
\(360\) 0 0
\(361\) 6826.26i 0.995226i
\(362\) 0 0
\(363\) 62.1870 62.1870i 0.00899165 0.00899165i
\(364\) 0 0
\(365\) 822.569 + 822.569i 0.117960 + 0.117960i
\(366\) 0 0
\(367\) 6382.36 0.907783 0.453892 0.891057i \(-0.350035\pi\)
0.453892 + 0.891057i \(0.350035\pi\)
\(368\) 0 0
\(369\) −5947.81 −0.839107
\(370\) 0 0
\(371\) −14253.0 14253.0i −1.99456 1.99456i
\(372\) 0 0
\(373\) 207.539 207.539i 0.0288095 0.0288095i −0.692555 0.721365i \(-0.743515\pi\)
0.721365 + 0.692555i \(0.243515\pi\)
\(374\) 0 0
\(375\) 58.7910i 0.00809587i
\(376\) 0 0
\(377\) 5733.30i 0.783236i
\(378\) 0 0
\(379\) −2598.87 + 2598.87i −0.352230 + 0.352230i −0.860939 0.508709i \(-0.830123\pi\)
0.508709 + 0.860939i \(0.330123\pi\)
\(380\) 0 0
\(381\) 223.501 + 223.501i 0.0300533 + 0.0300533i
\(382\) 0 0
\(383\) 1522.49 0.203121 0.101561 0.994829i \(-0.467616\pi\)
0.101561 + 0.994829i \(0.467616\pi\)
\(384\) 0 0
\(385\) 6165.09 0.816110
\(386\) 0 0
\(387\) 5730.95 + 5730.95i 0.752767 + 0.752767i
\(388\) 0 0
\(389\) −4139.02 + 4139.02i −0.539477 + 0.539477i −0.923375 0.383899i \(-0.874581\pi\)
0.383899 + 0.923375i \(0.374581\pi\)
\(390\) 0 0
\(391\) 15785.0i 2.04164i
\(392\) 0 0
\(393\) 527.507i 0.0677079i
\(394\) 0 0
\(395\) −1795.99 + 1795.99i −0.228774 + 0.228774i
\(396\) 0 0
\(397\) −790.544 790.544i −0.0999402 0.0999402i 0.655369 0.755309i \(-0.272513\pi\)
−0.755309 + 0.655369i \(0.772513\pi\)
\(398\) 0 0
\(399\) −85.1702 −0.0106863
\(400\) 0 0
\(401\) 8488.83 1.05714 0.528569 0.848891i \(-0.322729\pi\)
0.528569 + 0.848891i \(0.322729\pi\)
\(402\) 0 0
\(403\) 1775.63 + 1775.63i 0.219479 + 0.219479i
\(404\) 0 0
\(405\) 2514.23 2514.23i 0.308477 0.308477i
\(406\) 0 0
\(407\) 7589.36i 0.924301i
\(408\) 0 0
\(409\) 11390.7i 1.37710i −0.725191 0.688548i \(-0.758248\pi\)
0.725191 0.688548i \(-0.241752\pi\)
\(410\) 0 0
\(411\) 567.167 567.167i 0.0680689 0.0680689i
\(412\) 0 0
\(413\) 4680.97 + 4680.97i 0.557712 + 0.557712i
\(414\) 0 0
\(415\) −6414.45 −0.758730
\(416\) 0 0
\(417\) −818.670 −0.0961402
\(418\) 0 0
\(419\) −920.398 920.398i −0.107314 0.107314i 0.651411 0.758725i \(-0.274177\pi\)
−0.758725 + 0.651411i \(0.774177\pi\)
\(420\) 0 0
\(421\) 767.503 767.503i 0.0888498 0.0888498i −0.661285 0.750135i \(-0.729989\pi\)
0.750135 + 0.661285i \(0.229989\pi\)
\(422\) 0 0
\(423\) 11535.7i 1.32597i
\(424\) 0 0
\(425\) 2179.78i 0.248788i
\(426\) 0 0
\(427\) −14254.3 + 14254.3i −1.61549 + 1.61549i
\(428\) 0 0
\(429\) −328.323 328.323i −0.0369501 0.0369501i
\(430\) 0 0
\(431\) 2092.47 0.233853 0.116927 0.993141i \(-0.462696\pi\)
0.116927 + 0.993141i \(0.462696\pi\)
\(432\) 0 0
\(433\) 12347.8 1.37043 0.685215 0.728340i \(-0.259708\pi\)
0.685215 + 0.728340i \(0.259708\pi\)
\(434\) 0 0
\(435\) −376.251 376.251i −0.0414710 0.0414710i
\(436\) 0 0
\(437\) 732.503 732.503i 0.0801839 0.0801839i
\(438\) 0 0
\(439\) 106.069i 0.0115316i −0.999983 0.00576582i \(-0.998165\pi\)
0.999983 0.00576582i \(-0.00183533\pi\)
\(440\) 0 0
\(441\) 17635.1i 1.90423i
\(442\) 0 0
\(443\) −7806.27 + 7806.27i −0.837217 + 0.837217i −0.988492 0.151275i \(-0.951662\pi\)
0.151275 + 0.988492i \(0.451662\pi\)
\(444\) 0 0
\(445\) 1650.88 + 1650.88i 0.175863 + 0.175863i
\(446\) 0 0
\(447\) 88.9630 0.00941344
\(448\) 0 0
\(449\) 8260.92 0.868278 0.434139 0.900846i \(-0.357053\pi\)
0.434139 + 0.900846i \(0.357053\pi\)
\(450\) 0 0
\(451\) −6119.07 6119.07i −0.638881 0.638881i
\(452\) 0 0
\(453\) 398.278 398.278i 0.0413085 0.0413085i
\(454\) 0 0
\(455\) 4009.47i 0.413114i
\(456\) 0 0
\(457\) 11303.0i 1.15696i 0.815695 + 0.578482i \(0.196355\pi\)
−0.815695 + 0.578482i \(0.803645\pi\)
\(458\) 0 0
\(459\) −1559.44 + 1559.44i −0.158581 + 0.158581i
\(460\) 0 0
\(461\) −5408.22 5408.22i −0.546390 0.546390i 0.379005 0.925395i \(-0.376266\pi\)
−0.925395 + 0.379005i \(0.876266\pi\)
\(462\) 0 0
\(463\) 10798.3 1.08388 0.541941 0.840416i \(-0.317690\pi\)
0.541941 + 0.840416i \(0.317690\pi\)
\(464\) 0 0
\(465\) 233.053 0.0232421
\(466\) 0 0
\(467\) −2406.24 2406.24i −0.238431 0.238431i 0.577769 0.816200i \(-0.303923\pi\)
−0.816200 + 0.577769i \(0.803923\pi\)
\(468\) 0 0
\(469\) 5077.49 5077.49i 0.499908 0.499908i
\(470\) 0 0
\(471\) 149.878i 0.0146625i
\(472\) 0 0
\(473\) 11791.9i 1.14629i
\(474\) 0 0
\(475\) −101.153 + 101.153i −0.00977094 + 0.00977094i
\(476\) 0 0
\(477\) −12060.4 12060.4i −1.15767 1.15767i
\(478\) 0 0
\(479\) −18643.4 −1.77836 −0.889182 0.457553i \(-0.848726\pi\)
−0.889182 + 0.457553i \(0.848726\pi\)
\(480\) 0 0
\(481\) 4935.75 0.467881
\(482\) 0 0
\(483\) 1905.43 + 1905.43i 0.179503 + 0.179503i
\(484\) 0 0
\(485\) 1010.49 1010.49i 0.0946059 0.0946059i
\(486\) 0 0
\(487\) 9243.23i 0.860063i 0.902814 + 0.430032i \(0.141498\pi\)
−0.902814 + 0.430032i \(0.858502\pi\)
\(488\) 0 0
\(489\) 30.4618i 0.00281703i
\(490\) 0 0
\(491\) 7760.67 7760.67i 0.713308 0.713308i −0.253918 0.967226i \(-0.581719\pi\)
0.967226 + 0.253918i \(0.0817193\pi\)
\(492\) 0 0
\(493\) −13950.2 13950.2i −1.27441 1.27441i
\(494\) 0 0
\(495\) 5216.69 0.473683
\(496\) 0 0
\(497\) −17723.9 −1.59965
\(498\) 0 0
\(499\) 11202.3 + 11202.3i 1.00497 + 1.00497i 0.999988 + 0.00498630i \(0.00158720\pi\)
0.00498630 + 0.999988i \(0.498413\pi\)
\(500\) 0 0
\(501\) −654.477 + 654.477i −0.0583630 + 0.0583630i
\(502\) 0 0
\(503\) 421.544i 0.0373672i 0.999825 + 0.0186836i \(0.00594752\pi\)
−0.999825 + 0.0186836i \(0.994052\pi\)
\(504\) 0 0
\(505\) 5149.87i 0.453794i
\(506\) 0 0
\(507\) 517.135 517.135i 0.0452994 0.0452994i
\(508\) 0 0
\(509\) −9667.89 9667.89i −0.841889 0.841889i 0.147215 0.989104i \(-0.452969\pi\)
−0.989104 + 0.147215i \(0.952969\pi\)
\(510\) 0 0
\(511\) −7362.97 −0.637414
\(512\) 0 0
\(513\) −144.732 −0.0124563
\(514\) 0 0
\(515\) −2606.76 2606.76i −0.223044 0.223044i
\(516\) 0 0
\(517\) −11867.9 + 11867.9i −1.00957 + 1.00957i
\(518\) 0 0
\(519\) 1787.28i 0.151161i
\(520\) 0 0
\(521\) 15435.0i 1.29793i −0.760819 0.648964i \(-0.775202\pi\)
0.760819 0.648964i \(-0.224798\pi\)
\(522\) 0 0
\(523\) −1871.14 + 1871.14i −0.156442 + 0.156442i −0.780988 0.624546i \(-0.785284\pi\)
0.624546 + 0.780988i \(0.285284\pi\)
\(524\) 0 0
\(525\) −263.124 263.124i −0.0218737 0.0218737i
\(526\) 0 0
\(527\) 8640.86 0.714235
\(528\) 0 0
\(529\) −20608.2 −1.69377
\(530\) 0 0
\(531\) 3960.87 + 3960.87i 0.323705 + 0.323705i
\(532\) 0 0
\(533\) −3979.54 + 3979.54i −0.323401 + 0.323401i
\(534\) 0 0
\(535\) 3737.53i 0.302033i
\(536\) 0 0
\(537\) 187.278i 0.0150496i
\(538\) 0 0
\(539\) −18142.9 + 18142.9i −1.44985 + 1.44985i
\(540\) 0 0
\(541\) 9889.56 + 9889.56i 0.785925 + 0.785925i 0.980823 0.194898i \(-0.0624377\pi\)
−0.194898 + 0.980823i \(0.562438\pi\)
\(542\) 0 0
\(543\) −78.5836 −0.00621058
\(544\) 0 0
\(545\) 2046.84 0.160875
\(546\) 0 0
\(547\) 4755.24 + 4755.24i 0.371699 + 0.371699i 0.868096 0.496397i \(-0.165344\pi\)
−0.496397 + 0.868096i \(0.665344\pi\)
\(548\) 0 0
\(549\) −12061.5 + 12061.5i −0.937654 + 0.937654i
\(550\) 0 0
\(551\) 1294.72i 0.100103i
\(552\) 0 0
\(553\) 16076.2i 1.23622i
\(554\) 0 0
\(555\) 323.912 323.912i 0.0247735 0.0247735i
\(556\) 0 0
\(557\) −3512.91 3512.91i −0.267230 0.267230i 0.560753 0.827983i \(-0.310512\pi\)
−0.827983 + 0.560753i \(0.810512\pi\)
\(558\) 0 0
\(559\) 7668.89 0.580250
\(560\) 0 0
\(561\) −1597.74 −0.120244
\(562\) 0 0
\(563\) −13501.9 13501.9i −1.01073 1.01073i −0.999942 0.0107847i \(-0.996567\pi\)
−0.0107847 0.999942i \(-0.503433\pi\)
\(564\) 0 0
\(565\) −1020.88 + 1020.88i −0.0760154 + 0.0760154i
\(566\) 0 0
\(567\) 22505.3i 1.66690i
\(568\) 0 0
\(569\) 16173.2i 1.19159i −0.803135 0.595797i \(-0.796836\pi\)
0.803135 0.595797i \(-0.203164\pi\)
\(570\) 0 0
\(571\) −1356.08 + 1356.08i −0.0993877 + 0.0993877i −0.755052 0.655665i \(-0.772389\pi\)
0.655665 + 0.755052i \(0.272389\pi\)
\(572\) 0 0
\(573\) 714.866 + 714.866i 0.0521186 + 0.0521186i
\(574\) 0 0
\(575\) 4525.98 0.328254
\(576\) 0 0
\(577\) −20526.2 −1.48096 −0.740482 0.672076i \(-0.765403\pi\)
−0.740482 + 0.672076i \(0.765403\pi\)
\(578\) 0 0
\(579\) −1688.54 1688.54i −0.121198 0.121198i
\(580\) 0 0
\(581\) 28708.5 28708.5i 2.04996 2.04996i
\(582\) 0 0
\(583\) 24815.4i 1.76286i
\(584\) 0 0
\(585\) 3392.68i 0.239778i
\(586\) 0 0
\(587\) 3564.37 3564.37i 0.250626 0.250626i −0.570601 0.821227i \(-0.693290\pi\)
0.821227 + 0.570601i \(0.193290\pi\)
\(588\) 0 0
\(589\) 400.979 + 400.979i 0.0280510 + 0.0280510i
\(590\) 0 0
\(591\) 197.746 0.0137634
\(592\) 0 0
\(593\) 5234.00 0.362453 0.181226 0.983441i \(-0.441993\pi\)
0.181226 + 0.983441i \(0.441993\pi\)
\(594\) 0 0
\(595\) −9755.80 9755.80i −0.672183 0.672183i
\(596\) 0 0
\(597\) 1287.33 1287.33i 0.0882531 0.0882531i
\(598\) 0 0
\(599\) 26166.9i 1.78489i 0.451152 + 0.892447i \(0.351013\pi\)
−0.451152 + 0.892447i \(0.648987\pi\)
\(600\) 0 0
\(601\) 1111.03i 0.0754077i −0.999289 0.0377038i \(-0.987996\pi\)
0.999289 0.0377038i \(-0.0120043\pi\)
\(602\) 0 0
\(603\) 4296.40 4296.40i 0.290154 0.290154i
\(604\) 0 0
\(605\) 661.103 + 661.103i 0.0444259 + 0.0444259i
\(606\) 0 0
\(607\) −28038.7 −1.87488 −0.937441 0.348143i \(-0.886812\pi\)
−0.937441 + 0.348143i \(0.886812\pi\)
\(608\) 0 0
\(609\) 3367.90 0.224095
\(610\) 0 0
\(611\) 7718.28 + 7718.28i 0.511045 + 0.511045i
\(612\) 0 0
\(613\) −15640.2 + 15640.2i −1.03051 + 1.03051i −0.0309891 + 0.999520i \(0.509866\pi\)
−0.999520 + 0.0309891i \(0.990134\pi\)
\(614\) 0 0
\(615\) 522.320i 0.0342471i
\(616\) 0 0
\(617\) 20190.6i 1.31741i −0.752400 0.658706i \(-0.771104\pi\)
0.752400 0.658706i \(-0.228896\pi\)
\(618\) 0 0
\(619\) 17106.7 17106.7i 1.11079 1.11079i 0.117744 0.993044i \(-0.462434\pi\)
0.993044 0.117744i \(-0.0375664\pi\)
\(620\) 0 0
\(621\) 3237.94 + 3237.94i 0.209234 + 0.209234i
\(622\) 0 0
\(623\) −14777.3 −0.950305
\(624\) 0 0
\(625\) −625.000 −0.0400000
\(626\) 0 0
\(627\) −74.1432 74.1432i −0.00472248 0.00472248i
\(628\) 0 0
\(629\) 12009.6 12009.6i 0.761294 0.761294i
\(630\) 0 0
\(631\) 15692.0i 0.989995i 0.868894 + 0.494998i \(0.164831\pi\)
−0.868894 + 0.494998i \(0.835169\pi\)
\(632\) 0 0
\(633\) 45.3105i 0.00284508i
\(634\) 0 0
\(635\) −2376.01 + 2376.01i −0.148487 + 0.148487i
\(636\) 0 0
\(637\) 11799.2 + 11799.2i 0.733912 + 0.733912i
\(638\) 0 0
\(639\) −14997.3 −0.928460
\(640\) 0 0
\(641\) 6940.06 0.427638 0.213819 0.976873i \(-0.431410\pi\)
0.213819 + 0.976873i \(0.431410\pi\)
\(642\) 0 0
\(643\) 17028.5 + 17028.5i 1.04438 + 1.04438i 0.998968 + 0.0454166i \(0.0144615\pi\)
0.0454166 + 0.998968i \(0.485538\pi\)
\(644\) 0 0
\(645\) 503.276 503.276i 0.0307232 0.0307232i
\(646\) 0 0
\(647\) 7772.42i 0.472280i 0.971719 + 0.236140i \(0.0758824\pi\)
−0.971719 + 0.236140i \(0.924118\pi\)
\(648\) 0 0
\(649\) 8149.84i 0.492926i
\(650\) 0 0
\(651\) −1043.05 + 1043.05i −0.0627963 + 0.0627963i
\(652\) 0 0
\(653\) −16913.5 16913.5i −1.01359 1.01359i −0.999906 0.0136849i \(-0.995644\pi\)
−0.0136849 0.999906i \(-0.504356\pi\)
\(654\) 0 0
\(655\) 5607.86 0.334530
\(656\) 0 0
\(657\) −6230.29 −0.369965
\(658\) 0 0
\(659\) −21224.4 21224.4i −1.25461 1.25461i −0.953632 0.300975i \(-0.902688\pi\)
−0.300975 0.953632i \(-0.597312\pi\)
\(660\) 0 0
\(661\) 8991.82 8991.82i 0.529110 0.529110i −0.391197 0.920307i \(-0.627939\pi\)
0.920307 + 0.391197i \(0.127939\pi\)
\(662\) 0 0
\(663\) 1039.09i 0.0608674i
\(664\) 0 0
\(665\) 905.435i 0.0527989i
\(666\) 0 0
\(667\) −28965.4 + 28965.4i −1.68148 + 1.68148i
\(668\) 0 0
\(669\) −1006.74 1006.74i −0.0581805 0.0581805i
\(670\) 0 0
\(671\) −24817.6 −1.42783
\(672\) 0 0
\(673\) −21613.3 −1.23794 −0.618968 0.785416i \(-0.712449\pi\)
−0.618968 + 0.785416i \(0.712449\pi\)
\(674\) 0 0
\(675\) −447.133 447.133i −0.0254965 0.0254965i
\(676\) 0 0
\(677\) 10267.0 10267.0i 0.582855 0.582855i −0.352832 0.935687i \(-0.614781\pi\)
0.935687 + 0.352832i \(0.114781\pi\)
\(678\) 0 0
\(679\) 9045.06i 0.511219i
\(680\) 0 0
\(681\) 1102.32i 0.0620282i
\(682\) 0 0
\(683\) −12718.6 + 12718.6i −0.712537 + 0.712537i −0.967065 0.254529i \(-0.918080\pi\)
0.254529 + 0.967065i \(0.418080\pi\)
\(684\) 0 0
\(685\) 6029.49 + 6029.49i 0.336314 + 0.336314i
\(686\) 0 0
\(687\) −1100.40 −0.0611106
\(688\) 0 0
\(689\) −16138.7 −0.892360
\(690\) 0 0
\(691\) 6754.05 + 6754.05i 0.371832 + 0.371832i 0.868144 0.496312i \(-0.165313\pi\)
−0.496312 + 0.868144i \(0.665313\pi\)
\(692\) 0 0
\(693\) −23347.8 + 23347.8i −1.27981 + 1.27981i
\(694\) 0 0
\(695\) 8703.19i 0.475008i
\(696\) 0 0
\(697\) 19365.9i 1.05242i
\(698\) 0 0
\(699\) −993.939 + 993.939i −0.0537829 + 0.0537829i
\(700\) 0 0
\(701\) 18644.8 + 18644.8i 1.00457 + 1.00457i 0.999989 + 0.00458335i \(0.00145893\pi\)
0.00458335 + 0.999989i \(0.498541\pi\)
\(702\) 0 0
\(703\) 1114.61 0.0597984
\(704\) 0 0
\(705\) 1013.03 0.0541179
\(706\) 0 0
\(707\) 23048.7 + 23048.7i 1.22608 + 1.22608i
\(708\) 0 0
\(709\) −10018.5 + 10018.5i −0.530683 + 0.530683i −0.920776 0.390093i \(-0.872443\pi\)
0.390093 + 0.920776i \(0.372443\pi\)
\(710\) 0 0
\(711\) 13603.1i 0.717521i
\(712\) 0 0
\(713\) 17941.4i 0.942372i
\(714\) 0 0
\(715\) 3490.37 3490.37i 0.182563 0.182563i
\(716\) 0 0
\(717\) −1183.85 1183.85i −0.0616622 0.0616622i
\(718\) 0 0
\(719\) 23147.6 1.20064 0.600320 0.799760i \(-0.295040\pi\)
0.600320 + 0.799760i \(0.295040\pi\)
\(720\) 0 0
\(721\) 23333.6 1.20526
\(722\) 0 0
\(723\) 2170.91 + 2170.91i 0.111669 + 0.111669i
\(724\) 0 0
\(725\) 3999.89 3999.89i 0.204899 0.204899i
\(726\) 0 0
\(727\) 14506.3i 0.740041i −0.929024 0.370020i \(-0.879351\pi\)
0.929024 0.370020i \(-0.120649\pi\)
\(728\) 0 0
\(729\) 18722.0i 0.951178i
\(730\) 0 0
\(731\) 18659.9 18659.9i 0.944131 0.944131i
\(732\) 0 0
\(733\) −6210.06 6210.06i −0.312924 0.312924i 0.533117 0.846042i \(-0.321021\pi\)
−0.846042 + 0.533117i \(0.821021\pi\)
\(734\) 0 0
\(735\) 1548.66 0.0777188
\(736\) 0 0
\(737\) 8840.22 0.441837
\(738\) 0 0
\(739\) 11943.0 + 11943.0i 0.594495 + 0.594495i 0.938842 0.344347i \(-0.111900\pi\)
−0.344347 + 0.938842i \(0.611900\pi\)
\(740\) 0 0
\(741\) −48.2191 + 48.2191i −0.00239052 + 0.00239052i
\(742\) 0 0
\(743\) 36602.4i 1.80729i −0.428286 0.903643i \(-0.640883\pi\)
0.428286 0.903643i \(-0.359117\pi\)
\(744\) 0 0
\(745\) 945.756i 0.0465098i
\(746\) 0 0
\(747\) 24292.1 24292.1i 1.18983 1.18983i
\(748\) 0 0
\(749\) 16727.7 + 16727.7i 0.816042 + 0.816042i
\(750\) 0 0
\(751\) −14798.3 −0.719040 −0.359520 0.933137i \(-0.617060\pi\)
−0.359520 + 0.933137i \(0.617060\pi\)
\(752\) 0 0
\(753\) −924.685 −0.0447509
\(754\) 0 0
\(755\) 4234.05 + 4234.05i 0.204096 + 0.204096i
\(756\) 0 0
\(757\) 4779.77 4779.77i 0.229490 0.229490i −0.582990 0.812479i \(-0.698117\pi\)
0.812479 + 0.582990i \(0.198117\pi\)
\(758\) 0 0
\(759\) 3317.47i 0.158652i
\(760\) 0 0
\(761\) 9090.72i 0.433033i 0.976279 + 0.216517i \(0.0694696\pi\)
−0.976279 + 0.216517i \(0.930530\pi\)
\(762\) 0 0
\(763\) −9160.83 + 9160.83i −0.434658 + 0.434658i
\(764\) 0 0
\(765\) −8255.03 8255.03i −0.390145 0.390145i
\(766\) 0 0
\(767\) 5300.25 0.249519
\(768\) 0 0
\(769\) −15770.0 −0.739508 −0.369754 0.929130i \(-0.620558\pi\)
−0.369754 + 0.929130i \(0.620558\pi\)
\(770\) 0 0
\(771\) −680.978 680.978i −0.0318091 0.0318091i
\(772\) 0 0
\(773\) 15675.5 15675.5i 0.729378 0.729378i −0.241118 0.970496i \(-0.577514\pi\)
0.970496 + 0.241118i \(0.0775140\pi\)
\(774\) 0 0
\(775\) 2477.56i 0.114834i
\(776\) 0 0
\(777\) 2899.39i 0.133868i
\(778\) 0 0
\(779\) −898.675 + 898.675i −0.0413330 + 0.0413330i
\(780\) 0 0
\(781\) −15429.2 15429.2i −0.706913 0.706913i
\(782\) 0 0
\(783\) 5723.14 0.261211
\(784\) 0 0
\(785\) −1593.34 −0.0724442
\(786\) 0 0
\(787\) −8132.80 8132.80i −0.368365 0.368365i 0.498516 0.866881i \(-0.333879\pi\)
−0.866881 + 0.498516i \(0.833879\pi\)
\(788\) 0 0
\(789\) 1254.45 1254.45i 0.0566028 0.0566028i
\(790\) 0 0
\(791\) 9138.07i 0.410762i
\(792\) 0 0
\(793\) 16140.1i 0.722766i
\(794\) 0 0
\(795\) −1059.11 + 1059.11i −0.0472489 + 0.0472489i
\(796\) 0 0
\(797\) −2477.13 2477.13i −0.110093 0.110093i 0.649914 0.760008i \(-0.274805\pi\)
−0.760008 + 0.649914i \(0.774805\pi\)
\(798\) 0 0
\(799\) 37560.1 1.66305
\(800\) 0 0
\(801\) −12504.0 −0.551571
\(802\) 0 0
\(803\) −6409.68 6409.68i −0.281685 0.281685i
\(804\) 0 0
\(805\) −20256.4 + 20256.4i −0.886889 + 0.886889i
\(806\) 0 0
\(807\) 2607.24i 0.113729i
\(808\) 0 0
\(809\) 6243.83i 0.271349i −0.990753 0.135674i \(-0.956680\pi\)
0.990753 0.135674i \(-0.0433201\pi\)
\(810\) 0 0
\(811\) 23892.3 23892.3i 1.03449 1.03449i 0.0351095 0.999383i \(-0.488822\pi\)
0.999383 0.0351095i \(-0.0111780\pi\)
\(812\) 0 0
\(813\) 1468.11 + 1468.11i 0.0633321 + 0.0633321i
\(814\) 0 0
\(815\) 323.836 0.0139184
\(816\) 0 0
\(817\) 1731.82 0.0741600
\(818\) 0 0
\(819\) 15184.3 + 15184.3i 0.647840 + 0.647840i
\(820\) 0 0
\(821\) 22516.2 22516.2i 0.957152 0.957152i −0.0419667 0.999119i \(-0.513362\pi\)
0.999119 + 0.0419667i \(0.0133623\pi\)
\(822\) 0 0
\(823\) 21821.0i 0.924221i 0.886822 + 0.462110i \(0.152908\pi\)
−0.886822 + 0.462110i \(0.847092\pi\)
\(824\) 0 0
\(825\) 458.115i 0.0193328i
\(826\) 0 0
\(827\) 7413.04 7413.04i 0.311701 0.311701i −0.533867 0.845568i \(-0.679262\pi\)
0.845568 + 0.533867i \(0.179262\pi\)
\(828\) 0 0
\(829\) 20805.8 + 20805.8i 0.871670 + 0.871670i 0.992654 0.120984i \(-0.0386051\pi\)
−0.120984 + 0.992654i \(0.538605\pi\)
\(830\) 0 0
\(831\) −4077.07 −0.170195
\(832\) 0 0
\(833\) 57419.4 2.38831
\(834\) 0 0
\(835\) −6957.67 6957.67i −0.288359 0.288359i
\(836\) 0 0
\(837\) −1772.48 + 1772.48i −0.0731969 + 0.0731969i
\(838\) 0 0
\(839\) 22077.5i 0.908464i −0.890883 0.454232i \(-0.849914\pi\)
0.890883 0.454232i \(-0.150086\pi\)
\(840\) 0 0
\(841\) 26808.1i 1.09919i
\(842\) 0 0
\(843\) 717.265 717.265i 0.0293048 0.0293048i
\(844\) 0 0
\(845\) 5497.61 + 5497.61i 0.223815 + 0.223815i
\(846\) 0 0
\(847\) −5917.65 −0.240063
\(848\) 0 0
\(849\) 193.832 0.00783546
\(850\) 0 0
\(851\) −24936.1 24936.1i −1.00446 1.00446i
\(852\) 0 0
\(853\) 2590.84 2590.84i 0.103996 0.103996i −0.653194 0.757190i \(-0.726571\pi\)
0.757190 + 0.653194i \(0.226571\pi\)
\(854\) 0 0
\(855\) 766.148i 0.0306453i
\(856\) 0 0
\(857\) 14022.9i 0.558940i −0.960154 0.279470i \(-0.909841\pi\)
0.960154 0.279470i \(-0.0901588\pi\)
\(858\) 0 0
\(859\) −7640.32 + 7640.32i −0.303474 + 0.303474i −0.842371 0.538897i \(-0.818841\pi\)
0.538897 + 0.842371i \(0.318841\pi\)
\(860\) 0 0
\(861\) −2337.69 2337.69i −0.0925300 0.0925300i
\(862\) 0 0
\(863\) 27256.7 1.07512 0.537560 0.843225i \(-0.319346\pi\)
0.537560 + 0.843225i \(0.319346\pi\)
\(864\) 0 0
\(865\) 19000.3 0.746857
\(866\) 0 0
\(867\) 894.386 + 894.386i 0.0350345 + 0.0350345i
\(868\) 0 0
\(869\) 13994.8 13994.8i 0.546308 0.546308i
\(870\) 0 0
\(871\) 5749.24i 0.223657i
\(872\) 0 0
\(873\) 7653.62i 0.296719i
\(874\) 0 0
\(875\) 2797.25 2797.25i 0.108073 0.108073i
\(876\) 0 0
\(877\) −21685.2 21685.2i −0.834955 0.834955i 0.153235 0.988190i \(-0.451031\pi\)
−0.988190 + 0.153235i \(0.951031\pi\)
\(878\) 0 0
\(879\) 3756.11 0.144130
\(880\) 0 0
\(881\) −28719.6 −1.09828 −0.549141 0.835730i \(-0.685045\pi\)
−0.549141 + 0.835730i \(0.685045\pi\)
\(882\) 0 0
\(883\) −20257.6 20257.6i −0.772051 0.772051i 0.206414 0.978465i \(-0.433821\pi\)
−0.978465 + 0.206414i \(0.933821\pi\)
\(884\) 0 0
\(885\) 347.833 347.833i 0.0132116 0.0132116i
\(886\) 0 0
\(887\) 4768.95i 0.180525i −0.995918 0.0902625i \(-0.971229\pi\)
0.995918 0.0902625i \(-0.0287706\pi\)
\(888\) 0 0
\(889\) 21268.1i 0.802373i
\(890\) 0 0
\(891\) −19591.6 + 19591.6i −0.736635 + 0.736635i
\(892\) 0 0
\(893\) 1742.97 + 1742.97i 0.0653151 + 0.0653151i
\(894\) 0 0
\(895\) 1990.93 0.0743570
\(896\) 0 0
\(897\) 2157.52 0.0803094
\(898\) 0 0
\(899\) −15855.9 15855.9i −0.588237 0.588237i
\(900\) 0 0
\(901\) −39268.5 + 39268.5i −1.45197 + 1.45197i
\(902\) 0 0
\(903\) 4504.92i 0.166018i
\(904\) 0 0
\(905\) 835.413i 0.0306852i
\(906\) 0 0
\(907\) 26316.7 26316.7i 0.963432 0.963432i −0.0359230 0.999355i \(-0.511437\pi\)
0.999355 + 0.0359230i \(0.0114371\pi\)
\(908\) 0 0
\(909\) 19503.0 + 19503.0i 0.711633 + 0.711633i
\(910\) 0 0
\(911\) 20400.3 0.741922 0.370961 0.928649i \(-0.379028\pi\)
0.370961 + 0.928649i \(0.379028\pi\)
\(912\) 0 0
\(913\) 49983.1 1.81183
\(914\) 0 0
\(915\) 1059.21 + 1059.21i 0.0382692 + 0.0382692i
\(916\) 0 0
\(917\) −25098.5 + 25098.5i −0.903845 + 0.903845i
\(918\) 0 0
\(919\) 9542.94i 0.342538i −0.985224 0.171269i \(-0.945213\pi\)
0.985224 0.171269i \(-0.0547867\pi\)
\(920\) 0 0
\(921\) 618.788i 0.0221387i
\(922\) 0 0
\(923\) −10034.4 + 10034.4i −0.357839 + 0.357839i
\(924\) 0 0
\(925\) 3443.47 + 3443.47i 0.122401 + 0.122401i
\(926\) 0 0
\(927\) 19744.1 0.699548
\(928\) 0 0
\(929\) 28626.1 1.01097 0.505485 0.862835i \(-0.331313\pi\)
0.505485 + 0.862835i \(0.331313\pi\)
\(930\) 0 0
\(931\) 2664.55 + 2664.55i 0.0937991 + 0.0937991i
\(932\) 0 0
\(933\) 3256.48 3256.48i 0.114268 0.114268i
\(934\) 0 0
\(935\) 16985.4i 0.594100i
\(936\) 0 0
\(937\) 45776.8i 1.59601i 0.602649 + 0.798006i \(0.294112\pi\)
−0.602649 + 0.798006i \(0.705888\pi\)
\(938\) 0 0
\(939\) 1898.44 1898.44i 0.0659778 0.0659778i
\(940\) 0 0
\(941\) 19201.2 + 19201.2i 0.665186 + 0.665186i 0.956598 0.291412i \(-0.0941249\pi\)
−0.291412 + 0.956598i \(0.594125\pi\)
\(942\) 0 0
\(943\) 40210.4 1.38858
\(944\) 0 0
\(945\) 4002.37 0.137775
\(946\) 0 0
\(947\) −5241.06 5241.06i −0.179843 0.179843i 0.611444 0.791287i \(-0.290589\pi\)
−0.791287 + 0.611444i \(0.790589\pi\)
\(948\) 0 0
\(949\) −4168.54 + 4168.54i −0.142589 + 0.142589i
\(950\) 0 0
\(951\) 1597.63i 0.0544760i
\(952\) 0 0
\(953\) 3874.03i 0.131681i 0.997830 + 0.0658406i \(0.0209729\pi\)
−0.997830 + 0.0658406i \(0.979027\pi\)
\(954\) 0 0
\(955\) −7599.66 + 7599.66i −0.257507 + 0.257507i
\(956\) 0 0
\(957\) 2931.85 + 2931.85i 0.0990318 + 0.0990318i
\(958\) 0 0
\(959\) −53971.1 −1.81733
\(960\) 0 0
\(961\) −19969.7 −0.670327
\(962\) 0 0
\(963\) 14154.4 + 14154.4i 0.473643 + 0.473643i
\(964\) 0 0
\(965\) 17950.7 17950.7i 0.598813 0.598813i
\(966\) 0 0
\(967\) 4333.33i 0.144106i 0.997401 + 0.0720531i \(0.0229551\pi\)
−0.997401 + 0.0720531i \(0.977045\pi\)
\(968\) 0 0
\(969\) 234.652i 0.00777928i
\(970\) 0 0
\(971\) 9479.83 9479.83i 0.313308 0.313308i −0.532882 0.846190i \(-0.678891\pi\)
0.846190 + 0.532882i \(0.178891\pi\)
\(972\) 0 0
\(973\) 38951.9 + 38951.9i 1.28339 + 1.28339i
\(974\) 0 0
\(975\) −297.936 −0.00978623
\(976\) 0 0
\(977\) 49089.2 1.60747 0.803737 0.594985i \(-0.202842\pi\)
0.803737 + 0.594985i \(0.202842\pi\)
\(978\) 0 0
\(979\) −12864.1 12864.1i −0.419957 0.419957i
\(980\) 0 0
\(981\) −7751.58 + 7751.58i −0.252282 + 0.252282i
\(982\) 0 0
\(983\) 32020.3i 1.03895i 0.854485 + 0.519476i \(0.173873\pi\)
−0.854485 + 0.519476i \(0.826127\pi\)
\(984\) 0 0
\(985\) 2102.21i 0.0680021i
\(986\) 0 0
\(987\) −4533.93 + 4533.93i −0.146217 + 0.146217i
\(988\) 0 0
\(989\) −38744.3 38744.3i −1.24570 1.24570i
\(990\) 0 0
\(991\) 4667.61 0.149618 0.0748090 0.997198i \(-0.476165\pi\)
0.0748090 + 0.997198i \(0.476165\pi\)
\(992\) 0 0
\(993\) 4477.75 0.143099
\(994\) 0 0
\(995\) 13685.5 + 13685.5i 0.436040 + 0.436040i
\(996\) 0 0
\(997\) 20944.6 20944.6i 0.665317 0.665317i −0.291311 0.956628i \(-0.594091\pi\)
0.956628 + 0.291311i \(0.0940915\pi\)
\(998\) 0 0
\(999\) 4927.00i 0.156039i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.4.l.a.161.13 48
4.3 odd 2 640.4.l.b.161.12 48
8.3 odd 2 80.4.l.a.61.22 yes 48
8.5 even 2 320.4.l.a.81.12 48
16.3 odd 4 80.4.l.a.21.22 48
16.5 even 4 inner 640.4.l.a.481.13 48
16.11 odd 4 640.4.l.b.481.12 48
16.13 even 4 320.4.l.a.241.12 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.4.l.a.21.22 48 16.3 odd 4
80.4.l.a.61.22 yes 48 8.3 odd 2
320.4.l.a.81.12 48 8.5 even 2
320.4.l.a.241.12 48 16.13 even 4
640.4.l.a.161.13 48 1.1 even 1 trivial
640.4.l.a.481.13 48 16.5 even 4 inner
640.4.l.b.161.12 48 4.3 odd 2
640.4.l.b.481.12 48 16.11 odd 4