Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [640,4,Mod(161,640)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(640, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("640.161");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 640 = 2^{7} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 640.l (of order \(4\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(37.7612224037\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 80) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
161.1 | 0 | −6.54282 | − | 6.54282i | 0 | 3.53553 | − | 3.53553i | 0 | − | 11.7588i | 0 | 58.6170i | 0 | |||||||||||||
161.2 | 0 | −6.39295 | − | 6.39295i | 0 | 3.53553 | − | 3.53553i | 0 | 30.7844i | 0 | 54.7397i | 0 | ||||||||||||||
161.3 | 0 | −5.98518 | − | 5.98518i | 0 | −3.53553 | + | 3.53553i | 0 | − | 30.6332i | 0 | 44.6447i | 0 | |||||||||||||
161.4 | 0 | −4.91823 | − | 4.91823i | 0 | −3.53553 | + | 3.53553i | 0 | 29.5330i | 0 | 21.3780i | 0 | ||||||||||||||
161.5 | 0 | −4.76629 | − | 4.76629i | 0 | 3.53553 | − | 3.53553i | 0 | − | 25.1089i | 0 | 18.4350i | 0 | |||||||||||||
161.6 | 0 | −4.63181 | − | 4.63181i | 0 | −3.53553 | + | 3.53553i | 0 | 8.38903i | 0 | 15.9074i | 0 | ||||||||||||||
161.7 | 0 | −2.72881 | − | 2.72881i | 0 | −3.53553 | + | 3.53553i | 0 | − | 9.20767i | 0 | − | 12.1072i | 0 | ||||||||||||
161.8 | 0 | −2.65806 | − | 2.65806i | 0 | 3.53553 | − | 3.53553i | 0 | − | 21.5840i | 0 | − | 12.8694i | 0 | ||||||||||||
161.9 | 0 | −2.10736 | − | 2.10736i | 0 | −3.53553 | + | 3.53553i | 0 | − | 1.52539i | 0 | − | 18.1181i | 0 | ||||||||||||
161.10 | 0 | −1.80275 | − | 1.80275i | 0 | 3.53553 | − | 3.53553i | 0 | 5.36354i | 0 | − | 20.5002i | 0 | |||||||||||||
161.11 | 0 | −1.79271 | − | 1.79271i | 0 | 3.53553 | − | 3.53553i | 0 | − | 14.5354i | 0 | − | 20.5724i | 0 | ||||||||||||
161.12 | 0 | 0.0794032 | + | 0.0794032i | 0 | 3.53553 | − | 3.53553i | 0 | 17.2069i | 0 | − | 26.9874i | 0 | |||||||||||||
161.13 | 0 | 0.332572 | + | 0.332572i | 0 | −3.53553 | + | 3.53553i | 0 | − | 31.6472i | 0 | − | 26.7788i | 0 | ||||||||||||
161.14 | 0 | 0.777426 | + | 0.777426i | 0 | 3.53553 | − | 3.53553i | 0 | 32.6046i | 0 | − | 25.7912i | 0 | |||||||||||||
161.15 | 0 | 1.30312 | + | 1.30312i | 0 | −3.53553 | + | 3.53553i | 0 | 17.9744i | 0 | − | 23.6037i | 0 | |||||||||||||
161.16 | 0 | 1.69929 | + | 1.69929i | 0 | −3.53553 | + | 3.53553i | 0 | 12.7537i | 0 | − | 21.2249i | 0 | |||||||||||||
161.17 | 0 | 3.85223 | + | 3.85223i | 0 | 3.53553 | − | 3.53553i | 0 | − | 22.7583i | 0 | 2.67940i | 0 | |||||||||||||
161.18 | 0 | 3.98819 | + | 3.98819i | 0 | −3.53553 | + | 3.53553i | 0 | − | 23.3105i | 0 | 4.81140i | 0 | |||||||||||||
161.19 | 0 | 4.03507 | + | 4.03507i | 0 | 3.53553 | − | 3.53553i | 0 | 2.50273i | 0 | 5.56352i | 0 | ||||||||||||||
161.20 | 0 | 4.03778 | + | 4.03778i | 0 | 3.53553 | − | 3.53553i | 0 | − | 8.24125i | 0 | 5.60734i | 0 | |||||||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 640.4.l.a | 48 | |
4.b | odd | 2 | 1 | 640.4.l.b | 48 | ||
8.b | even | 2 | 1 | 320.4.l.a | 48 | ||
8.d | odd | 2 | 1 | 80.4.l.a | ✓ | 48 | |
16.e | even | 4 | 1 | 320.4.l.a | 48 | ||
16.e | even | 4 | 1 | inner | 640.4.l.a | 48 | |
16.f | odd | 4 | 1 | 80.4.l.a | ✓ | 48 | |
16.f | odd | 4 | 1 | 640.4.l.b | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
80.4.l.a | ✓ | 48 | 8.d | odd | 2 | 1 | |
80.4.l.a | ✓ | 48 | 16.f | odd | 4 | 1 | |
320.4.l.a | 48 | 8.b | even | 2 | 1 | ||
320.4.l.a | 48 | 16.e | even | 4 | 1 | ||
640.4.l.a | 48 | 1.a | even | 1 | 1 | trivial | |
640.4.l.a | 48 | 16.e | even | 4 | 1 | inner | |
640.4.l.b | 48 | 4.b | odd | 2 | 1 | ||
640.4.l.b | 48 | 16.f | odd | 4 | 1 |