Properties

Label 324.3.d.b
Level $324$
Weight $3$
Character orbit 324.d
Analytic conductor $8.828$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,3,Mod(163,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.163");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 1) q^{2} + (2 \beta - 2) q^{4} + 4 q^{5} + 2 \beta q^{7} + 8 q^{8} + ( - 4 \beta - 4) q^{10} + 7 \beta q^{11} - 22 q^{13} + ( - 2 \beta + 6) q^{14} + ( - 8 \beta - 8) q^{16} - 11 q^{17}+ \cdots + ( - 37 \beta - 37) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} + 8 q^{5} + 16 q^{8} - 8 q^{10} - 44 q^{13} + 12 q^{14} - 16 q^{16} - 22 q^{17} - 16 q^{20} + 42 q^{22} - 18 q^{25} + 44 q^{26} - 24 q^{28} + 68 q^{29} - 32 q^{32} + 22 q^{34} - 32 q^{37}+ \cdots - 74 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.00000 1.73205i 0 −2.00000 + 3.46410i 4.00000 0 3.46410i 8.00000 0 −4.00000 6.92820i
163.2 −1.00000 + 1.73205i 0 −2.00000 3.46410i 4.00000 0 3.46410i 8.00000 0 −4.00000 + 6.92820i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 324.3.d.b 2
3.b odd 2 1 324.3.d.c 2
4.b odd 2 1 inner 324.3.d.b 2
9.c even 3 1 36.3.f.a 2
9.c even 3 1 36.3.f.b yes 2
9.d odd 6 1 108.3.f.a 2
9.d odd 6 1 108.3.f.b 2
12.b even 2 1 324.3.d.c 2
36.f odd 6 1 36.3.f.a 2
36.f odd 6 1 36.3.f.b yes 2
36.h even 6 1 108.3.f.a 2
36.h even 6 1 108.3.f.b 2
72.j odd 6 1 1728.3.o.a 2
72.j odd 6 1 1728.3.o.b 2
72.l even 6 1 1728.3.o.a 2
72.l even 6 1 1728.3.o.b 2
72.n even 6 1 576.3.o.a 2
72.n even 6 1 576.3.o.b 2
72.p odd 6 1 576.3.o.a 2
72.p odd 6 1 576.3.o.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.3.f.a 2 9.c even 3 1
36.3.f.a 2 36.f odd 6 1
36.3.f.b yes 2 9.c even 3 1
36.3.f.b yes 2 36.f odd 6 1
108.3.f.a 2 9.d odd 6 1
108.3.f.a 2 36.h even 6 1
108.3.f.b 2 9.d odd 6 1
108.3.f.b 2 36.h even 6 1
324.3.d.b 2 1.a even 1 1 trivial
324.3.d.b 2 4.b odd 2 1 inner
324.3.d.c 2 3.b odd 2 1
324.3.d.c 2 12.b even 2 1
576.3.o.a 2 72.n even 6 1
576.3.o.a 2 72.p odd 6 1
576.3.o.b 2 72.n even 6 1
576.3.o.b 2 72.p odd 6 1
1728.3.o.a 2 72.j odd 6 1
1728.3.o.a 2 72.l even 6 1
1728.3.o.b 2 72.j odd 6 1
1728.3.o.b 2 72.l even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 4 \) acting on \(S_{3}^{\mathrm{new}}(324, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 4)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 12 \) Copy content Toggle raw display
$11$ \( T^{2} + 147 \) Copy content Toggle raw display
$13$ \( (T + 22)^{2} \) Copy content Toggle raw display
$17$ \( (T + 11)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 243 \) Copy content Toggle raw display
$23$ \( T^{2} + 588 \) Copy content Toggle raw display
$29$ \( (T - 34)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 48 \) Copy content Toggle raw display
$37$ \( (T + 16)^{2} \) Copy content Toggle raw display
$41$ \( (T - 13)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 2523 \) Copy content Toggle raw display
$47$ \( T^{2} + 12 \) Copy content Toggle raw display
$53$ \( (T - 52)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 2883 \) Copy content Toggle raw display
$61$ \( (T + 16)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 13467 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 25)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 768 \) Copy content Toggle raw display
$83$ \( T^{2} + 1200 \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( (T + 43)^{2} \) Copy content Toggle raw display
show more
show less