Properties

Label 108.3.f.b
Level $108$
Weight $3$
Character orbit 108.f
Analytic conductor $2.943$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [108,3,Mod(19,108)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(108, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("108.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 108.f (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 2) q^{2} - 4 \zeta_{6} q^{4} + ( - 4 \zeta_{6} + 4) q^{5} + ( - 2 \zeta_{6} + 4) q^{7} - 8 q^{8} - 8 \zeta_{6} q^{10} + (7 \zeta_{6} - 14) q^{11} + ( - 22 \zeta_{6} + 22) q^{13} + ( - 8 \zeta_{6} + 4) q^{14} + \cdots + 74 \zeta_{6} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} + 4 q^{5} + 6 q^{7} - 16 q^{8} - 8 q^{10} - 21 q^{11} + 22 q^{13} - 16 q^{16} + 22 q^{17} - 32 q^{20} + 42 q^{23} + 9 q^{25} - 44 q^{26} - 24 q^{28} + 34 q^{29} - 12 q^{31} + 32 q^{32}+ \cdots + 74 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(-1 + \zeta_{6}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i 2.00000 + 3.46410i 0 3.00000 + 1.73205i −8.00000 0 −4.00000 + 6.92820i
91.1 1.00000 1.73205i 0 −2.00000 3.46410i 2.00000 3.46410i 0 3.00000 1.73205i −8.00000 0 −4.00000 6.92820i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
36.f odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 108.3.f.b 2
3.b odd 2 1 36.3.f.a 2
4.b odd 2 1 108.3.f.a 2
8.b even 2 1 1728.3.o.b 2
8.d odd 2 1 1728.3.o.a 2
9.c even 3 1 108.3.f.a 2
9.c even 3 1 324.3.d.c 2
9.d odd 6 1 36.3.f.b yes 2
9.d odd 6 1 324.3.d.b 2
12.b even 2 1 36.3.f.b yes 2
24.f even 2 1 576.3.o.b 2
24.h odd 2 1 576.3.o.a 2
36.f odd 6 1 inner 108.3.f.b 2
36.f odd 6 1 324.3.d.c 2
36.h even 6 1 36.3.f.a 2
36.h even 6 1 324.3.d.b 2
72.j odd 6 1 576.3.o.b 2
72.l even 6 1 576.3.o.a 2
72.n even 6 1 1728.3.o.a 2
72.p odd 6 1 1728.3.o.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.3.f.a 2 3.b odd 2 1
36.3.f.a 2 36.h even 6 1
36.3.f.b yes 2 9.d odd 6 1
36.3.f.b yes 2 12.b even 2 1
108.3.f.a 2 4.b odd 2 1
108.3.f.a 2 9.c even 3 1
108.3.f.b 2 1.a even 1 1 trivial
108.3.f.b 2 36.f odd 6 1 inner
324.3.d.b 2 9.d odd 6 1
324.3.d.b 2 36.h even 6 1
324.3.d.c 2 9.c even 3 1
324.3.d.c 2 36.f odd 6 1
576.3.o.a 2 24.h odd 2 1
576.3.o.a 2 72.l even 6 1
576.3.o.b 2 24.f even 2 1
576.3.o.b 2 72.j odd 6 1
1728.3.o.a 2 8.d odd 2 1
1728.3.o.a 2 72.n even 6 1
1728.3.o.b 2 8.b even 2 1
1728.3.o.b 2 72.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(108, [\chi])\):

\( T_{5}^{2} - 4T_{5} + 16 \) Copy content Toggle raw display
\( T_{7}^{2} - 6T_{7} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$7$ \( T^{2} - 6T + 12 \) Copy content Toggle raw display
$11$ \( T^{2} + 21T + 147 \) Copy content Toggle raw display
$13$ \( T^{2} - 22T + 484 \) Copy content Toggle raw display
$17$ \( (T - 11)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 243 \) Copy content Toggle raw display
$23$ \( T^{2} - 42T + 588 \) Copy content Toggle raw display
$29$ \( T^{2} - 34T + 1156 \) Copy content Toggle raw display
$31$ \( T^{2} + 12T + 48 \) Copy content Toggle raw display
$37$ \( (T + 16)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$43$ \( T^{2} - 87T + 2523 \) Copy content Toggle raw display
$47$ \( T^{2} - 6T + 12 \) Copy content Toggle raw display
$53$ \( (T + 52)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 93T + 2883 \) Copy content Toggle raw display
$61$ \( T^{2} - 16T + 256 \) Copy content Toggle raw display
$67$ \( T^{2} + 201T + 13467 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 25)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 48T + 768 \) Copy content Toggle raw display
$83$ \( T^{2} - 60T + 1200 \) Copy content Toggle raw display
$89$ \( (T - 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 43T + 1849 \) Copy content Toggle raw display
show more
show less