Properties

Label 324.3.f.q.271.1
Level $324$
Weight $3$
Character 324.271
Analytic conductor $8.828$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,3,Mod(55,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.55");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.f (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.119023932416481.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 3 x^{10} + 11 x^{9} - 5 x^{8} - 14 x^{7} + 29 x^{6} - 28 x^{5} - 20 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.1
Root \(-1.40311 - 0.176844i\) of defining polynomial
Character \(\chi\) \(=\) 324.271
Dual form 324.3.f.q.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.82144 + 0.826041i) q^{2} +(2.63531 - 3.00917i) q^{4} +(-3.61903 + 6.26834i) q^{5} +(5.95847 - 3.44013i) q^{7} +(-2.31438 + 7.65792i) q^{8} +(1.41395 - 14.4069i) q^{10} +(15.5474 - 8.97632i) q^{11} +(-3.83763 + 6.64697i) q^{13} +(-8.01134 + 11.1879i) q^{14} +(-2.11024 - 15.8602i) q^{16} -1.43720 q^{17} +13.8943i q^{19} +(9.32524 + 27.4093i) q^{20} +(-20.9040 + 29.1927i) q^{22} +(-14.3608 - 8.29122i) q^{23} +(-13.6947 - 23.7199i) q^{25} +(1.49936 - 15.2771i) q^{26} +(5.35051 - 26.9959i) q^{28} +(18.7509 + 32.4776i) q^{29} +(46.7583 + 26.9959i) q^{31} +(16.9449 + 27.1454i) q^{32} +(2.61778 - 1.18719i) q^{34} +49.7996i q^{35} +44.4415 q^{37} +(-11.4773 - 25.3078i) q^{38} +(-39.6266 - 42.2215i) q^{40} +(-28.4956 + 49.3558i) q^{41} +(-58.5593 + 33.8092i) q^{43} +(13.9611 - 70.4404i) q^{44} +(33.0063 + 3.23938i) q^{46} +(-8.17054 + 4.71726i) q^{47} +(-0.831061 + 1.43944i) q^{49} +(44.5378 + 31.8921i) q^{50} +(9.88852 + 29.0649i) q^{52} -7.82662 q^{53} +129.942i q^{55} +(12.5540 + 53.5912i) q^{56} +(-60.9816 - 43.6670i) q^{58} +(-19.4098 - 11.2062i) q^{59} +(33.5907 + 58.1808i) q^{61} +(-107.467 - 10.5473i) q^{62} +(-53.2873 - 35.4466i) q^{64} +(-27.7770 - 48.1111i) q^{65} +(59.9324 + 34.6020i) q^{67} +(-3.78748 + 4.32479i) q^{68} +(-41.1365 - 90.7072i) q^{70} +7.14792i q^{71} -80.4410 q^{73} +(-80.9476 + 36.7104i) q^{74} +(41.8105 + 36.6159i) q^{76} +(61.7594 - 106.970i) q^{77} +(40.5680 - 23.4219i) q^{79} +(107.054 + 44.1709i) q^{80} +(11.1332 - 113.437i) q^{82} +(123.148 - 71.0994i) q^{83} +(5.20128 - 9.00887i) q^{85} +(78.7347 - 109.954i) q^{86} +(32.7573 + 139.836i) q^{88} +42.1078 q^{89} +52.8077i q^{91} +(-62.7950 + 21.3642i) q^{92} +(10.9855 - 15.3414i) q^{94} +(-87.0944 - 50.2840i) q^{95} +(-31.4478 - 54.4691i) q^{97} +(0.324695 - 3.30835i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} + 3 q^{4} - 2 q^{5} + 14 q^{8} + 18 q^{10} - 6 q^{13} + 15 q^{16} - 20 q^{17} + 67 q^{20} - 48 q^{22} - 146 q^{26} - 96 q^{28} + 22 q^{29} - 31 q^{32} - 81 q^{34} + 108 q^{37} - 168 q^{38}+ \cdots - 814 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.82144 + 0.826041i −0.910722 + 0.413020i
\(3\) 0 0
\(4\) 2.63531 3.00917i 0.658828 0.752293i
\(5\) −3.61903 + 6.26834i −0.723805 + 1.25367i 0.235659 + 0.971836i \(0.424275\pi\)
−0.959464 + 0.281832i \(0.909058\pi\)
\(6\) 0 0
\(7\) 5.95847 3.44013i 0.851211 0.491447i −0.00984858 0.999952i \(-0.503135\pi\)
0.861059 + 0.508505i \(0.169802\pi\)
\(8\) −2.31438 + 7.65792i −0.289297 + 0.957239i
\(9\) 0 0
\(10\) 1.41395 14.4069i 0.141395 1.44069i
\(11\) 15.5474 8.97632i 1.41340 0.816029i 0.417697 0.908586i \(-0.362837\pi\)
0.995707 + 0.0925568i \(0.0295040\pi\)
\(12\) 0 0
\(13\) −3.83763 + 6.64697i −0.295202 + 0.511305i −0.975032 0.222065i \(-0.928720\pi\)
0.679830 + 0.733370i \(0.262054\pi\)
\(14\) −8.01134 + 11.1879i −0.572239 + 0.799138i
\(15\) 0 0
\(16\) −2.11024 15.8602i −0.131890 0.991264i
\(17\) −1.43720 −0.0845413 −0.0422707 0.999106i \(-0.513459\pi\)
−0.0422707 + 0.999106i \(0.513459\pi\)
\(18\) 0 0
\(19\) 13.8943i 0.731281i 0.930756 + 0.365641i \(0.119150\pi\)
−0.930756 + 0.365641i \(0.880850\pi\)
\(20\) 9.32524 + 27.4093i 0.466262 + 1.37047i
\(21\) 0 0
\(22\) −20.9040 + 29.1927i −0.950182 + 1.32694i
\(23\) −14.3608 8.29122i −0.624384 0.360488i 0.154190 0.988041i \(-0.450723\pi\)
−0.778574 + 0.627553i \(0.784057\pi\)
\(24\) 0 0
\(25\) −13.6947 23.7199i −0.547788 0.948797i
\(26\) 1.49936 15.2771i 0.0576676 0.587581i
\(27\) 0 0
\(28\) 5.35051 26.9959i 0.191090 0.964139i
\(29\) 18.7509 + 32.4776i 0.646584 + 1.11992i 0.983933 + 0.178537i \(0.0571364\pi\)
−0.337349 + 0.941380i \(0.609530\pi\)
\(30\) 0 0
\(31\) 46.7583 + 26.9959i 1.50833 + 0.870835i 0.999953 + 0.00970102i \(0.00308798\pi\)
0.508378 + 0.861134i \(0.330245\pi\)
\(32\) 16.9449 + 27.1454i 0.529528 + 0.848293i
\(33\) 0 0
\(34\) 2.61778 1.18719i 0.0769936 0.0349173i
\(35\) 49.7996i 1.42285i
\(36\) 0 0
\(37\) 44.4415 1.20112 0.600560 0.799580i \(-0.294944\pi\)
0.600560 + 0.799580i \(0.294944\pi\)
\(38\) −11.4773 25.3078i −0.302034 0.665994i
\(39\) 0 0
\(40\) −39.6266 42.2215i −0.990665 1.05554i
\(41\) −28.4956 + 49.3558i −0.695014 + 1.20380i 0.275162 + 0.961398i \(0.411268\pi\)
−0.970176 + 0.242401i \(0.922065\pi\)
\(42\) 0 0
\(43\) −58.5593 + 33.8092i −1.36184 + 0.786261i −0.989869 0.141982i \(-0.954653\pi\)
−0.371975 + 0.928243i \(0.621319\pi\)
\(44\) 13.9611 70.4404i 0.317298 1.60092i
\(45\) 0 0
\(46\) 33.0063 + 3.23938i 0.717529 + 0.0704212i
\(47\) −8.17054 + 4.71726i −0.173841 + 0.100367i −0.584396 0.811469i \(-0.698668\pi\)
0.410555 + 0.911836i \(0.365335\pi\)
\(48\) 0 0
\(49\) −0.831061 + 1.43944i −0.0169604 + 0.0293763i
\(50\) 44.5378 + 31.8921i 0.890755 + 0.637843i
\(51\) 0 0
\(52\) 9.88852 + 29.0649i 0.190164 + 0.558941i
\(53\) −7.82662 −0.147672 −0.0738360 0.997270i \(-0.523524\pi\)
−0.0738360 + 0.997270i \(0.523524\pi\)
\(54\) 0 0
\(55\) 129.942i 2.36259i
\(56\) 12.5540 + 53.5912i 0.224179 + 0.956986i
\(57\) 0 0
\(58\) −60.9816 43.6670i −1.05141 0.752880i
\(59\) −19.4098 11.2062i −0.328979 0.189936i 0.326409 0.945229i \(-0.394161\pi\)
−0.655388 + 0.755293i \(0.727495\pi\)
\(60\) 0 0
\(61\) 33.5907 + 58.1808i 0.550667 + 0.953783i 0.998227 + 0.0595292i \(0.0189599\pi\)
−0.447559 + 0.894254i \(0.647707\pi\)
\(62\) −107.467 10.5473i −1.73334 0.170117i
\(63\) 0 0
\(64\) −53.2873 35.4466i −0.832614 0.553853i
\(65\) −27.7770 48.1111i −0.427338 0.740171i
\(66\) 0 0
\(67\) 59.9324 + 34.6020i 0.894514 + 0.516448i 0.875416 0.483370i \(-0.160587\pi\)
0.0190978 + 0.999818i \(0.493921\pi\)
\(68\) −3.78748 + 4.32479i −0.0556982 + 0.0635999i
\(69\) 0 0
\(70\) −41.1365 90.7072i −0.587665 1.29582i
\(71\) 7.14792i 0.100675i 0.998732 + 0.0503375i \(0.0160297\pi\)
−0.998732 + 0.0503375i \(0.983970\pi\)
\(72\) 0 0
\(73\) −80.4410 −1.10193 −0.550965 0.834528i \(-0.685740\pi\)
−0.550965 + 0.834528i \(0.685740\pi\)
\(74\) −80.9476 + 36.7104i −1.09389 + 0.496087i
\(75\) 0 0
\(76\) 41.8105 + 36.6159i 0.550138 + 0.481789i
\(77\) 61.7594 106.970i 0.802070 1.38923i
\(78\) 0 0
\(79\) 40.5680 23.4219i 0.513519 0.296480i −0.220760 0.975328i \(-0.570854\pi\)
0.734279 + 0.678848i \(0.237520\pi\)
\(80\) 107.054 + 44.1709i 1.33818 + 0.552136i
\(81\) 0 0
\(82\) 11.1332 113.437i 0.135771 1.38338i
\(83\) 123.148 71.0994i 1.48371 0.856619i 0.483879 0.875135i \(-0.339228\pi\)
0.999829 + 0.0185165i \(0.00589432\pi\)
\(84\) 0 0
\(85\) 5.20128 9.00887i 0.0611915 0.105987i
\(86\) 78.7347 109.954i 0.915519 1.27853i
\(87\) 0 0
\(88\) 32.7573 + 139.836i 0.372242 + 1.58904i
\(89\) 42.1078 0.473122 0.236561 0.971617i \(-0.423980\pi\)
0.236561 + 0.971617i \(0.423980\pi\)
\(90\) 0 0
\(91\) 52.8077i 0.580304i
\(92\) −62.7950 + 21.3642i −0.682554 + 0.232220i
\(93\) 0 0
\(94\) 10.9855 15.3414i 0.116867 0.163207i
\(95\) −87.0944 50.2840i −0.916783 0.529305i
\(96\) 0 0
\(97\) −31.4478 54.4691i −0.324204 0.561538i 0.657147 0.753762i \(-0.271763\pi\)
−0.981351 + 0.192225i \(0.938430\pi\)
\(98\) 0.324695 3.30835i 0.00331321 0.0337586i
\(99\) 0 0
\(100\) −107.467 21.2997i −1.07467 0.212997i
\(101\) −23.8072 41.2352i −0.235715 0.408270i 0.723766 0.690046i \(-0.242410\pi\)
−0.959480 + 0.281776i \(0.909076\pi\)
\(102\) 0 0
\(103\) −46.5264 26.8621i −0.451713 0.260797i 0.256840 0.966454i \(-0.417319\pi\)
−0.708553 + 0.705657i \(0.750652\pi\)
\(104\) −42.0202 44.7718i −0.404040 0.430498i
\(105\) 0 0
\(106\) 14.2557 6.46511i 0.134488 0.0609916i
\(107\) 26.4708i 0.247390i −0.992320 0.123695i \(-0.960525\pi\)
0.992320 0.123695i \(-0.0394745\pi\)
\(108\) 0 0
\(109\) 83.0647 0.762061 0.381031 0.924562i \(-0.375569\pi\)
0.381031 + 0.924562i \(0.375569\pi\)
\(110\) −107.338 236.682i −0.975796 2.15166i
\(111\) 0 0
\(112\) −67.1350 87.2433i −0.599420 0.778958i
\(113\) 7.76382 13.4473i 0.0687064 0.119003i −0.829626 0.558320i \(-0.811446\pi\)
0.898332 + 0.439317i \(0.144780\pi\)
\(114\) 0 0
\(115\) 103.944 60.0123i 0.903864 0.521846i
\(116\) 147.145 + 29.1638i 1.26849 + 0.251412i
\(117\) 0 0
\(118\) 44.6106 + 4.37827i 0.378056 + 0.0371039i
\(119\) −8.56354 + 4.94416i −0.0719625 + 0.0415476i
\(120\) 0 0
\(121\) 100.649 174.329i 0.831808 1.44073i
\(122\) −109.243 78.2257i −0.895436 0.641195i
\(123\) 0 0
\(124\) 204.458 69.5610i 1.64885 0.560976i
\(125\) 17.2947 0.138358
\(126\) 0 0
\(127\) 157.463i 1.23987i −0.784654 0.619934i \(-0.787159\pi\)
0.784654 0.619934i \(-0.212841\pi\)
\(128\) 126.340 + 20.5465i 0.987033 + 0.160519i
\(129\) 0 0
\(130\) 90.3359 + 64.6868i 0.694891 + 0.497590i
\(131\) 40.7545 + 23.5296i 0.311103 + 0.179615i 0.647420 0.762133i \(-0.275848\pi\)
−0.336317 + 0.941749i \(0.609181\pi\)
\(132\) 0 0
\(133\) 47.7983 + 82.7891i 0.359386 + 0.622474i
\(134\) −137.746 13.5190i −1.02796 0.100888i
\(135\) 0 0
\(136\) 3.32623 11.0060i 0.0244576 0.0809263i
\(137\) −58.7486 101.756i −0.428822 0.742742i 0.567947 0.823065i \(-0.307738\pi\)
−0.996769 + 0.0803237i \(0.974405\pi\)
\(138\) 0 0
\(139\) 34.3777 + 19.8480i 0.247322 + 0.142791i 0.618537 0.785756i \(-0.287726\pi\)
−0.371216 + 0.928547i \(0.621059\pi\)
\(140\) 149.856 + 131.238i 1.07040 + 0.937412i
\(141\) 0 0
\(142\) −5.90447 13.0195i −0.0415808 0.0916869i
\(143\) 137.791i 0.963575i
\(144\) 0 0
\(145\) −271.441 −1.87200
\(146\) 146.519 66.4475i 1.00355 0.455120i
\(147\) 0 0
\(148\) 117.117 133.732i 0.791332 0.903595i
\(149\) 57.4136 99.4432i 0.385326 0.667404i −0.606488 0.795092i \(-0.707422\pi\)
0.991814 + 0.127688i \(0.0407557\pi\)
\(150\) 0 0
\(151\) −138.670 + 80.0610i −0.918343 + 0.530206i −0.883106 0.469173i \(-0.844552\pi\)
−0.0352370 + 0.999379i \(0.511219\pi\)
\(152\) −106.402 32.1567i −0.700011 0.211557i
\(153\) 0 0
\(154\) −24.1293 + 245.856i −0.156684 + 1.59647i
\(155\) −338.439 + 195.398i −2.18348 + 1.26063i
\(156\) 0 0
\(157\) −112.668 + 195.148i −0.717634 + 1.24298i 0.244301 + 0.969699i \(0.421441\pi\)
−0.961935 + 0.273279i \(0.911892\pi\)
\(158\) −54.5448 + 76.1725i −0.345220 + 0.482105i
\(159\) 0 0
\(160\) −231.480 + 7.97645i −1.44675 + 0.0498528i
\(161\) −114.091 −0.708643
\(162\) 0 0
\(163\) 147.165i 0.902850i −0.892309 0.451425i \(-0.850916\pi\)
0.892309 0.451425i \(-0.149084\pi\)
\(164\) 73.4253 + 215.816i 0.447715 + 1.31595i
\(165\) 0 0
\(166\) −165.576 + 231.228i −0.997443 + 1.39294i
\(167\) 91.7504 + 52.9721i 0.549403 + 0.317198i 0.748881 0.662704i \(-0.230591\pi\)
−0.199478 + 0.979902i \(0.563925\pi\)
\(168\) 0 0
\(169\) 55.0452 + 95.3411i 0.325711 + 0.564149i
\(170\) −2.03213 + 20.7056i −0.0119537 + 0.121798i
\(171\) 0 0
\(172\) −52.5843 + 265.313i −0.305723 + 1.54252i
\(173\) 93.2118 + 161.448i 0.538797 + 0.933223i 0.998969 + 0.0453938i \(0.0144543\pi\)
−0.460172 + 0.887830i \(0.652212\pi\)
\(174\) 0 0
\(175\) −163.199 94.2231i −0.932566 0.538417i
\(176\) −175.175 227.644i −0.995315 1.29343i
\(177\) 0 0
\(178\) −76.6970 + 34.7828i −0.430882 + 0.195409i
\(179\) 191.597i 1.07037i −0.844734 0.535187i \(-0.820241\pi\)
0.844734 0.535187i \(-0.179759\pi\)
\(180\) 0 0
\(181\) 204.960 1.13237 0.566187 0.824277i \(-0.308418\pi\)
0.566187 + 0.824277i \(0.308418\pi\)
\(182\) −43.6213 96.1863i −0.239678 0.528496i
\(183\) 0 0
\(184\) 96.7298 90.7849i 0.525706 0.493396i
\(185\) −160.835 + 278.574i −0.869377 + 1.50581i
\(186\) 0 0
\(187\) −22.3448 + 12.9008i −0.119491 + 0.0689882i
\(188\) −7.33688 + 37.0180i −0.0390259 + 0.196904i
\(189\) 0 0
\(190\) 200.174 + 19.6459i 1.05355 + 0.103400i
\(191\) 77.7825 44.9078i 0.407238 0.235119i −0.282364 0.959307i \(-0.591119\pi\)
0.689602 + 0.724188i \(0.257785\pi\)
\(192\) 0 0
\(193\) −83.7981 + 145.143i −0.434187 + 0.752034i −0.997229 0.0743944i \(-0.976298\pi\)
0.563042 + 0.826428i \(0.309631\pi\)
\(194\) 102.274 + 73.2353i 0.527186 + 0.377502i
\(195\) 0 0
\(196\) 2.14142 + 6.29418i 0.0109256 + 0.0321132i
\(197\) 185.277 0.940492 0.470246 0.882535i \(-0.344165\pi\)
0.470246 + 0.882535i \(0.344165\pi\)
\(198\) 0 0
\(199\) 137.625i 0.691585i −0.938311 0.345793i \(-0.887610\pi\)
0.938311 0.345793i \(-0.112390\pi\)
\(200\) 213.340 49.9761i 1.06670 0.249880i
\(201\) 0 0
\(202\) 77.4254 + 55.4419i 0.383294 + 0.274465i
\(203\) 223.454 + 129.011i 1.10076 + 0.635523i
\(204\) 0 0
\(205\) −206.252 357.240i −1.00611 1.74263i
\(206\) 106.934 + 10.4950i 0.519099 + 0.0509465i
\(207\) 0 0
\(208\) 113.521 + 46.8389i 0.545773 + 0.225187i
\(209\) 124.720 + 216.022i 0.596747 + 1.03360i
\(210\) 0 0
\(211\) −264.357 152.627i −1.25288 0.723350i −0.281198 0.959650i \(-0.590732\pi\)
−0.971680 + 0.236300i \(0.924065\pi\)
\(212\) −20.6256 + 23.5517i −0.0972906 + 0.111093i
\(213\) 0 0
\(214\) 21.8659 + 48.2150i 0.102177 + 0.225304i
\(215\) 489.426i 2.27640i
\(216\) 0 0
\(217\) 371.477 1.71188
\(218\) −151.298 + 68.6148i −0.694026 + 0.314747i
\(219\) 0 0
\(220\) 391.019 + 342.439i 1.77736 + 1.55654i
\(221\) 5.51545 9.55304i 0.0249568 0.0432264i
\(222\) 0 0
\(223\) 14.9150 8.61118i 0.0668834 0.0386152i −0.466185 0.884687i \(-0.654372\pi\)
0.533069 + 0.846072i \(0.321039\pi\)
\(224\) 194.349 + 103.452i 0.867630 + 0.461841i
\(225\) 0 0
\(226\) −3.03332 + 30.9068i −0.0134218 + 0.136756i
\(227\) 35.4937 20.4923i 0.156360 0.0902744i −0.419779 0.907627i \(-0.637892\pi\)
0.576138 + 0.817352i \(0.304559\pi\)
\(228\) 0 0
\(229\) 66.7264 115.573i 0.291381 0.504687i −0.682755 0.730647i \(-0.739218\pi\)
0.974137 + 0.225960i \(0.0725518\pi\)
\(230\) −139.756 + 195.171i −0.607636 + 0.848571i
\(231\) 0 0
\(232\) −292.107 + 68.4278i −1.25908 + 0.294947i
\(233\) −368.345 −1.58088 −0.790441 0.612539i \(-0.790148\pi\)
−0.790441 + 0.612539i \(0.790148\pi\)
\(234\) 0 0
\(235\) 68.2876i 0.290586i
\(236\) −84.8723 + 28.8754i −0.359628 + 0.122353i
\(237\) 0 0
\(238\) 11.5139 16.0793i 0.0483778 0.0675602i
\(239\) 249.901 + 144.280i 1.04561 + 0.603683i 0.921417 0.388576i \(-0.127033\pi\)
0.124192 + 0.992258i \(0.460366\pi\)
\(240\) 0 0
\(241\) 51.4937 + 89.1897i 0.213667 + 0.370082i 0.952859 0.303412i \(-0.0981260\pi\)
−0.739193 + 0.673494i \(0.764793\pi\)
\(242\) −39.3234 + 400.670i −0.162493 + 1.65566i
\(243\) 0 0
\(244\) 263.598 + 52.2444i 1.08032 + 0.214116i
\(245\) −6.01526 10.4187i −0.0245521 0.0425255i
\(246\) 0 0
\(247\) −92.3552 53.3213i −0.373908 0.215876i
\(248\) −314.948 + 295.592i −1.26995 + 1.19190i
\(249\) 0 0
\(250\) −31.5014 + 14.2861i −0.126005 + 0.0571446i
\(251\) 69.9866i 0.278831i 0.990234 + 0.139416i \(0.0445224\pi\)
−0.990234 + 0.139416i \(0.955478\pi\)
\(252\) 0 0
\(253\) −297.699 −1.17668
\(254\) 130.071 + 286.810i 0.512091 + 1.12917i
\(255\) 0 0
\(256\) −247.094 + 66.9379i −0.965210 + 0.261476i
\(257\) −48.5410 + 84.0754i −0.188875 + 0.327142i −0.944876 0.327430i \(-0.893818\pi\)
0.756000 + 0.654571i \(0.227151\pi\)
\(258\) 0 0
\(259\) 264.803 152.884i 1.02241 0.590287i
\(260\) −217.976 43.2022i −0.838368 0.166162i
\(261\) 0 0
\(262\) −93.6684 9.19301i −0.357513 0.0350878i
\(263\) −7.27870 + 4.20236i −0.0276757 + 0.0159785i −0.513774 0.857926i \(-0.671753\pi\)
0.486098 + 0.873904i \(0.338420\pi\)
\(264\) 0 0
\(265\) 28.3247 49.0599i 0.106886 0.185132i
\(266\) −155.449 111.312i −0.584395 0.418467i
\(267\) 0 0
\(268\) 262.064 89.1599i 0.977852 0.332686i
\(269\) 281.198 1.04535 0.522673 0.852533i \(-0.324935\pi\)
0.522673 + 0.852533i \(0.324935\pi\)
\(270\) 0 0
\(271\) 369.456i 1.36331i −0.731675 0.681654i \(-0.761261\pi\)
0.731675 0.681654i \(-0.238739\pi\)
\(272\) 3.03285 + 22.7944i 0.0111502 + 0.0838028i
\(273\) 0 0
\(274\) 191.062 + 136.813i 0.697305 + 0.499319i
\(275\) −425.836 245.856i −1.54849 0.894023i
\(276\) 0 0
\(277\) −66.4546 115.103i −0.239908 0.415533i 0.720779 0.693164i \(-0.243784\pi\)
−0.960688 + 0.277631i \(0.910451\pi\)
\(278\) −79.0123 7.75459i −0.284217 0.0278942i
\(279\) 0 0
\(280\) −381.361 115.255i −1.36200 0.411625i
\(281\) −18.6577 32.3160i −0.0663974 0.115004i 0.830916 0.556398i \(-0.187817\pi\)
−0.897313 + 0.441395i \(0.854484\pi\)
\(282\) 0 0
\(283\) −135.246 78.0842i −0.477900 0.275916i 0.241641 0.970366i \(-0.422314\pi\)
−0.719541 + 0.694450i \(0.755648\pi\)
\(284\) 21.5093 + 18.8370i 0.0757371 + 0.0663275i
\(285\) 0 0
\(286\) −113.821 250.979i −0.397976 0.877548i
\(287\) 392.113i 1.36625i
\(288\) 0 0
\(289\) −286.934 −0.992853
\(290\) 494.414 224.221i 1.70487 0.773176i
\(291\) 0 0
\(292\) −211.987 + 242.061i −0.725983 + 0.828975i
\(293\) −12.9881 + 22.4961i −0.0443280 + 0.0767784i −0.887338 0.461119i \(-0.847448\pi\)
0.843010 + 0.537898i \(0.180781\pi\)
\(294\) 0 0
\(295\) 140.489 81.1113i 0.476233 0.274954i
\(296\) −102.854 + 340.329i −0.347481 + 1.14976i
\(297\) 0 0
\(298\) −22.4314 + 228.556i −0.0752733 + 0.766967i
\(299\) 110.223 63.6373i 0.368639 0.212834i
\(300\) 0 0
\(301\) −232.616 + 402.903i −0.772811 + 1.33855i
\(302\) 186.446 260.374i 0.617369 0.862164i
\(303\) 0 0
\(304\) 220.367 29.3204i 0.724893 0.0964488i
\(305\) −486.262 −1.59430
\(306\) 0 0
\(307\) 111.670i 0.363745i −0.983322 0.181872i \(-0.941784\pi\)
0.983322 0.181872i \(-0.0582158\pi\)
\(308\) −159.137 467.745i −0.516679 1.51865i
\(309\) 0 0
\(310\) 455.041 635.470i 1.46787 2.04990i
\(311\) 280.368 + 161.871i 0.901506 + 0.520485i 0.877689 0.479232i \(-0.159085\pi\)
0.0238176 + 0.999716i \(0.492418\pi\)
\(312\) 0 0
\(313\) 183.090 + 317.122i 0.584953 + 1.01317i 0.994881 + 0.101050i \(0.0322203\pi\)
−0.409928 + 0.912118i \(0.634446\pi\)
\(314\) 44.0195 448.519i 0.140189 1.42840i
\(315\) 0 0
\(316\) 36.4287 183.800i 0.115281 0.581646i
\(317\) −32.5014 56.2941i −0.102528 0.177584i 0.810197 0.586157i \(-0.199360\pi\)
−0.912726 + 0.408573i \(0.866027\pi\)
\(318\) 0 0
\(319\) 583.059 + 336.629i 1.82777 + 1.05526i
\(320\) 415.039 205.741i 1.29700 0.642940i
\(321\) 0 0
\(322\) 207.811 94.2442i 0.645376 0.292684i
\(323\) 19.9690i 0.0618235i
\(324\) 0 0
\(325\) 210.221 0.646833
\(326\) 121.564 + 268.052i 0.372895 + 0.822245i
\(327\) 0 0
\(328\) −312.013 332.444i −0.951258 1.01355i
\(329\) −32.4560 + 56.2154i −0.0986504 + 0.170867i
\(330\) 0 0
\(331\) −380.566 + 219.720i −1.14975 + 0.663807i −0.948826 0.315800i \(-0.897727\pi\)
−0.200922 + 0.979607i \(0.564394\pi\)
\(332\) 110.583 557.942i 0.333080 1.68055i
\(333\) 0 0
\(334\) −210.875 20.6962i −0.631363 0.0619645i
\(335\) −433.794 + 250.451i −1.29491 + 0.747616i
\(336\) 0 0
\(337\) 187.409 324.602i 0.556109 0.963210i −0.441707 0.897159i \(-0.645627\pi\)
0.997816 0.0660503i \(-0.0210398\pi\)
\(338\) −179.017 128.189i −0.529637 0.379257i
\(339\) 0 0
\(340\) −13.4023 39.3927i −0.0394184 0.115861i
\(341\) 969.295 2.84251
\(342\) 0 0
\(343\) 348.568i 1.01623i
\(344\) −123.380 526.689i −0.358663 1.53107i
\(345\) 0 0
\(346\) −303.142 217.071i −0.876134 0.627373i
\(347\) −284.948 164.515i −0.821177 0.474107i 0.0296454 0.999560i \(-0.490562\pi\)
−0.850822 + 0.525454i \(0.823896\pi\)
\(348\) 0 0
\(349\) −186.253 322.599i −0.533676 0.924354i −0.999226 0.0393323i \(-0.987477\pi\)
0.465550 0.885021i \(-0.345856\pi\)
\(350\) 375.090 + 36.8129i 1.07169 + 0.105180i
\(351\) 0 0
\(352\) 507.115 + 269.938i 1.44067 + 0.766871i
\(353\) −108.879 188.584i −0.308440 0.534233i 0.669582 0.742738i \(-0.266473\pi\)
−0.978021 + 0.208505i \(0.933140\pi\)
\(354\) 0 0
\(355\) −44.8056 25.8685i −0.126213 0.0728691i
\(356\) 110.967 126.710i 0.311706 0.355926i
\(357\) 0 0
\(358\) 158.267 + 348.983i 0.442086 + 0.974812i
\(359\) 145.576i 0.405505i 0.979230 + 0.202753i \(0.0649887\pi\)
−0.979230 + 0.202753i \(0.935011\pi\)
\(360\) 0 0
\(361\) 167.947 0.465228
\(362\) −373.323 + 169.305i −1.03128 + 0.467694i
\(363\) 0 0
\(364\) 158.908 + 139.165i 0.436559 + 0.382321i
\(365\) 291.118 504.231i 0.797583 1.38146i
\(366\) 0 0
\(367\) 46.3123 26.7384i 0.126192 0.0728568i −0.435575 0.900152i \(-0.643455\pi\)
0.561767 + 0.827295i \(0.310122\pi\)
\(368\) −101.196 + 245.262i −0.274989 + 0.666474i
\(369\) 0 0
\(370\) 62.8380 640.263i 0.169833 1.73044i
\(371\) −46.6347 + 26.9246i −0.125700 + 0.0725729i
\(372\) 0 0
\(373\) 170.752 295.751i 0.457781 0.792899i −0.541063 0.840982i \(-0.681978\pi\)
0.998843 + 0.0480829i \(0.0153112\pi\)
\(374\) 30.0433 41.9558i 0.0803296 0.112181i
\(375\) 0 0
\(376\) −17.2147 73.4868i −0.0457838 0.195444i
\(377\) −287.837 −0.763492
\(378\) 0 0
\(379\) 220.189i 0.580972i 0.956879 + 0.290486i \(0.0938170\pi\)
−0.956879 + 0.290486i \(0.906183\pi\)
\(380\) −380.834 + 129.568i −1.00220 + 0.340969i
\(381\) 0 0
\(382\) −104.581 + 146.048i −0.273772 + 0.382326i
\(383\) −581.167 335.537i −1.51741 0.876075i −0.999791 0.0204616i \(-0.993486\pi\)
−0.517616 0.855613i \(-0.673180\pi\)
\(384\) 0 0
\(385\) 447.018 + 774.257i 1.16108 + 2.01106i
\(386\) 32.7399 333.590i 0.0848183 0.864222i
\(387\) 0 0
\(388\) −246.782 48.9115i −0.636036 0.126061i
\(389\) −242.462 419.957i −0.623296 1.07958i −0.988868 0.148797i \(-0.952460\pi\)
0.365572 0.930783i \(-0.380873\pi\)
\(390\) 0 0
\(391\) 20.6394 + 11.9162i 0.0527862 + 0.0304761i
\(392\) −9.09972 9.69560i −0.0232136 0.0247337i
\(393\) 0 0
\(394\) −337.472 + 153.046i −0.856527 + 0.388442i
\(395\) 339.058i 0.858376i
\(396\) 0 0
\(397\) −279.373 −0.703711 −0.351855 0.936054i \(-0.614449\pi\)
−0.351855 + 0.936054i \(0.614449\pi\)
\(398\) 113.684 + 250.677i 0.285639 + 0.629842i
\(399\) 0 0
\(400\) −347.304 + 267.256i −0.868261 + 0.668140i
\(401\) 291.099 504.199i 0.725934 1.25735i −0.232655 0.972559i \(-0.574741\pi\)
0.958589 0.284795i \(-0.0919255\pi\)
\(402\) 0 0
\(403\) −358.882 + 207.200i −0.890525 + 0.514145i
\(404\) −186.823 37.0279i −0.462434 0.0916531i
\(405\) 0 0
\(406\) −513.577 50.4046i −1.26497 0.124149i
\(407\) 690.951 398.921i 1.69767 0.980150i
\(408\) 0 0
\(409\) 218.330 378.160i 0.533815 0.924595i −0.465404 0.885098i \(-0.654091\pi\)
0.999220 0.0394972i \(-0.0125756\pi\)
\(410\) 670.771 + 480.319i 1.63603 + 1.17151i
\(411\) 0 0
\(412\) −203.444 + 69.2162i −0.493797 + 0.168000i
\(413\) −154.203 −0.373374
\(414\) 0 0
\(415\) 1029.24i 2.48010i
\(416\) −245.463 + 8.45825i −0.590054 + 0.0203323i
\(417\) 0 0
\(418\) −405.613 290.447i −0.970367 0.694850i
\(419\) 656.682 + 379.135i 1.56726 + 0.904858i 0.996487 + 0.0837495i \(0.0266896\pi\)
0.570773 + 0.821108i \(0.306644\pi\)
\(420\) 0 0
\(421\) −261.674 453.232i −0.621553 1.07656i −0.989197 0.146595i \(-0.953169\pi\)
0.367644 0.929967i \(-0.380165\pi\)
\(422\) 607.588 + 59.6312i 1.43978 + 0.141306i
\(423\) 0 0
\(424\) 18.1137 59.9356i 0.0427211 0.141358i
\(425\) 19.6821 + 34.0904i 0.0463108 + 0.0802126i
\(426\) 0 0
\(427\) 400.299 + 231.112i 0.937467 + 0.541247i
\(428\) −79.6551 69.7588i −0.186110 0.162988i
\(429\) 0 0
\(430\) 404.286 + 891.462i 0.940199 + 2.07317i
\(431\) 729.146i 1.69176i −0.533377 0.845878i \(-0.679077\pi\)
0.533377 0.845878i \(-0.320923\pi\)
\(432\) 0 0
\(433\) −491.219 −1.13445 −0.567227 0.823561i \(-0.691984\pi\)
−0.567227 + 0.823561i \(0.691984\pi\)
\(434\) −676.625 + 306.855i −1.55904 + 0.707040i
\(435\) 0 0
\(436\) 218.901 249.956i 0.502068 0.573293i
\(437\) 115.201 199.534i 0.263618 0.456600i
\(438\) 0 0
\(439\) 163.413 94.3467i 0.372240 0.214913i −0.302197 0.953246i \(-0.597720\pi\)
0.674436 + 0.738333i \(0.264387\pi\)
\(440\) −995.087 300.735i −2.26156 0.683489i
\(441\) 0 0
\(442\) −2.15488 + 21.9563i −0.00487530 + 0.0496749i
\(443\) 357.848 206.604i 0.807784 0.466375i −0.0384015 0.999262i \(-0.512227\pi\)
0.846186 + 0.532888i \(0.178893\pi\)
\(444\) 0 0
\(445\) −152.389 + 263.946i −0.342448 + 0.593137i
\(446\) −20.0537 + 28.0052i −0.0449633 + 0.0627919i
\(447\) 0 0
\(448\) −439.452 27.8925i −0.980919 0.0622600i
\(449\) −638.253 −1.42150 −0.710749 0.703446i \(-0.751644\pi\)
−0.710749 + 0.703446i \(0.751644\pi\)
\(450\) 0 0
\(451\) 1023.14i 2.26861i
\(452\) −20.0052 58.8006i −0.0442594 0.130090i
\(453\) 0 0
\(454\) −47.7223 + 66.6448i −0.105115 + 0.146795i
\(455\) −331.017 191.112i −0.727509 0.420027i
\(456\) 0 0
\(457\) 115.344 + 199.781i 0.252393 + 0.437157i 0.964184 0.265234i \(-0.0854492\pi\)
−0.711791 + 0.702391i \(0.752116\pi\)
\(458\) −26.0699 + 265.629i −0.0569213 + 0.579976i
\(459\) 0 0
\(460\) 93.3386 470.938i 0.202910 1.02378i
\(461\) 200.094 + 346.573i 0.434044 + 0.751786i 0.997217 0.0745529i \(-0.0237530\pi\)
−0.563173 + 0.826339i \(0.690420\pi\)
\(462\) 0 0
\(463\) −256.912 148.328i −0.554886 0.320363i 0.196205 0.980563i \(-0.437138\pi\)
−0.751090 + 0.660200i \(0.770472\pi\)
\(464\) 475.533 365.930i 1.02486 0.788642i
\(465\) 0 0
\(466\) 670.920 304.268i 1.43974 0.652936i
\(467\) 127.057i 0.272070i 0.990704 + 0.136035i \(0.0434359\pi\)
−0.990704 + 0.136035i \(0.956564\pi\)
\(468\) 0 0
\(469\) 476.141 1.01523
\(470\) 56.4084 + 124.382i 0.120018 + 0.264643i
\(471\) 0 0
\(472\) 130.738 122.703i 0.276987 0.259964i
\(473\) −606.965 + 1051.29i −1.28322 + 2.22261i
\(474\) 0 0
\(475\) 329.573 190.279i 0.693837 0.400587i
\(476\) −7.68977 + 38.7986i −0.0161550 + 0.0815096i
\(477\) 0 0
\(478\) −574.361 56.3701i −1.20159 0.117929i
\(479\) −10.6651 + 6.15749i −0.0222653 + 0.0128549i −0.511091 0.859526i \(-0.670759\pi\)
0.488826 + 0.872381i \(0.337425\pi\)
\(480\) 0 0
\(481\) −170.550 + 295.401i −0.354573 + 0.614139i
\(482\) −167.467 119.918i −0.347442 0.248793i
\(483\) 0 0
\(484\) −259.344 762.281i −0.535836 1.57496i
\(485\) 455.241 0.938642
\(486\) 0 0
\(487\) 181.054i 0.371773i −0.982571 0.185887i \(-0.940484\pi\)
0.982571 0.185887i \(-0.0595157\pi\)
\(488\) −523.285 + 122.582i −1.07231 + 0.251194i
\(489\) 0 0
\(490\) 19.5628 + 14.0083i 0.0399240 + 0.0285884i
\(491\) −430.484 248.540i −0.876749 0.506191i −0.00716404 0.999974i \(-0.502280\pi\)
−0.869585 + 0.493783i \(0.835614\pi\)
\(492\) 0 0
\(493\) −26.9489 46.6769i −0.0546631 0.0946792i
\(494\) 212.265 + 20.8326i 0.429687 + 0.0421712i
\(495\) 0 0
\(496\) 329.490 798.565i 0.664294 1.61001i
\(497\) 24.5898 + 42.5907i 0.0494764 + 0.0856956i
\(498\) 0 0
\(499\) 660.403 + 381.284i 1.32345 + 0.764096i 0.984278 0.176628i \(-0.0565189\pi\)
0.339175 + 0.940723i \(0.389852\pi\)
\(500\) 45.5770 52.0428i 0.0911540 0.104086i
\(501\) 0 0
\(502\) −57.8118 127.477i −0.115163 0.253938i
\(503\) 994.596i 1.97733i 0.150146 + 0.988664i \(0.452026\pi\)
−0.150146 + 0.988664i \(0.547974\pi\)
\(504\) 0 0
\(505\) 344.635 0.682446
\(506\) 542.242 245.911i 1.07162 0.485991i
\(507\) 0 0
\(508\) −473.834 414.965i −0.932744 0.816860i
\(509\) −26.8655 + 46.5325i −0.0527810 + 0.0914194i −0.891209 0.453593i \(-0.850142\pi\)
0.838428 + 0.545013i \(0.183475\pi\)
\(510\) 0 0
\(511\) −479.305 + 276.727i −0.937975 + 0.541540i
\(512\) 394.774 326.033i 0.771043 0.636783i
\(513\) 0 0
\(514\) 18.9649 193.235i 0.0368967 0.375944i
\(515\) 336.761 194.429i 0.653905 0.377532i
\(516\) 0 0
\(517\) −84.6874 + 146.683i −0.163805 + 0.283719i
\(518\) −356.036 + 497.208i −0.687327 + 0.959861i
\(519\) 0 0
\(520\) 432.717 101.366i 0.832148 0.194935i
\(521\) 616.206 1.18274 0.591369 0.806401i \(-0.298588\pi\)
0.591369 + 0.806401i \(0.298588\pi\)
\(522\) 0 0
\(523\) 683.938i 1.30772i −0.756615 0.653860i \(-0.773148\pi\)
0.756615 0.653860i \(-0.226852\pi\)
\(524\) 178.206 60.6294i 0.340087 0.115705i
\(525\) 0 0
\(526\) 9.78642 13.6669i 0.0186054 0.0259826i
\(527\) −67.2011 38.7986i −0.127516 0.0736216i
\(528\) 0 0
\(529\) −127.011 219.990i −0.240097 0.415860i
\(530\) −11.0665 + 112.757i −0.0208801 + 0.212749i
\(531\) 0 0
\(532\) 375.090 + 74.3418i 0.705057 + 0.139740i
\(533\) −218.711 378.818i −0.410339 0.710728i
\(534\) 0 0
\(535\) 165.928 + 95.7984i 0.310145 + 0.179062i
\(536\) −403.686 + 378.876i −0.753145 + 0.706857i
\(537\) 0 0
\(538\) −512.187 + 232.281i −0.952020 + 0.431749i
\(539\) 29.8395i 0.0553608i
\(540\) 0 0
\(541\) 518.000 0.957486 0.478743 0.877955i \(-0.341093\pi\)
0.478743 + 0.877955i \(0.341093\pi\)
\(542\) 305.186 + 672.944i 0.563073 + 1.24159i
\(543\) 0 0
\(544\) −24.3532 39.0134i −0.0447670 0.0717158i
\(545\) −300.613 + 520.677i −0.551584 + 0.955371i
\(546\) 0 0
\(547\) 254.839 147.131i 0.465885 0.268979i −0.248631 0.968598i \(-0.579981\pi\)
0.714515 + 0.699620i \(0.246647\pi\)
\(548\) −461.021 91.3732i −0.841280 0.166739i
\(549\) 0 0
\(550\) 978.723 + 96.0559i 1.77950 + 0.174647i
\(551\) −451.254 + 260.532i −0.818974 + 0.472835i
\(552\) 0 0
\(553\) 161.149 279.118i 0.291408 0.504734i
\(554\) 216.123 + 154.759i 0.390113 + 0.279348i
\(555\) 0 0
\(556\) 150.322 51.1428i 0.270363 0.0919834i
\(557\) 395.706 0.710424 0.355212 0.934786i \(-0.384409\pi\)
0.355212 + 0.934786i \(0.384409\pi\)
\(558\) 0 0
\(559\) 518.989i 0.928424i
\(560\) 789.834 105.089i 1.41042 0.187660i
\(561\) 0 0
\(562\) 60.6783 + 43.4499i 0.107968 + 0.0773129i
\(563\) 224.519 + 129.626i 0.398791 + 0.230242i 0.685962 0.727637i \(-0.259382\pi\)
−0.287171 + 0.957879i \(0.592715\pi\)
\(564\) 0 0
\(565\) 56.1950 + 97.3325i 0.0994601 + 0.172270i
\(566\) 310.843 + 30.5074i 0.549193 + 0.0539001i
\(567\) 0 0
\(568\) −54.7382 16.5430i −0.0963700 0.0291250i
\(569\) 123.594 + 214.071i 0.217213 + 0.376224i 0.953955 0.299950i \(-0.0969701\pi\)
−0.736742 + 0.676174i \(0.763637\pi\)
\(570\) 0 0
\(571\) 520.747 + 300.654i 0.911992 + 0.526539i 0.881072 0.472983i \(-0.156823\pi\)
0.0309205 + 0.999522i \(0.490156\pi\)
\(572\) 414.637 + 363.123i 0.724891 + 0.634830i
\(573\) 0 0
\(574\) −323.902 714.212i −0.564288 1.24427i
\(575\) 454.184i 0.789885i
\(576\) 0 0
\(577\) −754.648 −1.30788 −0.653941 0.756545i \(-0.726886\pi\)
−0.653941 + 0.756545i \(0.726886\pi\)
\(578\) 522.635 237.020i 0.904213 0.410068i
\(579\) 0 0
\(580\) −715.331 + 816.812i −1.23333 + 1.40830i
\(581\) 489.182 847.287i 0.841965 1.45833i
\(582\) 0 0
\(583\) −121.684 + 70.2543i −0.208720 + 0.120505i
\(584\) 186.171 616.010i 0.318785 1.05481i
\(585\) 0 0
\(586\) 5.07445 51.7040i 0.00865946 0.0882321i
\(587\) −211.142 + 121.903i −0.359696 + 0.207671i −0.668948 0.743310i \(-0.733255\pi\)
0.309251 + 0.950980i \(0.399922\pi\)
\(588\) 0 0
\(589\) −375.090 + 649.675i −0.636825 + 1.10301i
\(590\) −188.891 + 263.789i −0.320155 + 0.447100i
\(591\) 0 0
\(592\) −93.7823 704.852i −0.158416 1.19063i
\(593\) −1091.73 −1.84103 −0.920516 0.390704i \(-0.872232\pi\)
−0.920516 + 0.390704i \(0.872232\pi\)
\(594\) 0 0
\(595\) 71.5722i 0.120289i
\(596\) −147.939 434.831i −0.248220 0.729583i
\(597\) 0 0
\(598\) −148.198 + 206.960i −0.247823 + 0.346088i
\(599\) −814.688 470.361i −1.36008 0.785243i −0.370447 0.928854i \(-0.620795\pi\)
−0.989634 + 0.143611i \(0.954129\pi\)
\(600\) 0 0
\(601\) −526.113 911.255i −0.875396 1.51623i −0.856340 0.516413i \(-0.827267\pi\)
−0.0190566 0.999818i \(-0.506066\pi\)
\(602\) 90.8829 926.015i 0.150968 1.53823i
\(603\) 0 0
\(604\) −124.521 + 628.267i −0.206160 + 1.04018i
\(605\) 728.501 + 1261.80i 1.20413 + 2.08562i
\(606\) 0 0
\(607\) −380.876 219.899i −0.627474 0.362272i 0.152299 0.988334i \(-0.451332\pi\)
−0.779773 + 0.626062i \(0.784666\pi\)
\(608\) −377.167 + 235.438i −0.620340 + 0.387233i
\(609\) 0 0
\(610\) 885.700 401.673i 1.45197 0.658480i
\(611\) 72.4124i 0.118515i
\(612\) 0 0
\(613\) 449.866 0.733876 0.366938 0.930245i \(-0.380406\pi\)
0.366938 + 0.930245i \(0.380406\pi\)
\(614\) 92.2436 + 203.400i 0.150234 + 0.331270i
\(615\) 0 0
\(616\) 676.236 + 720.518i 1.09779 + 1.16967i
\(617\) −424.268 + 734.854i −0.687630 + 1.19101i 0.284972 + 0.958536i \(0.408016\pi\)
−0.972602 + 0.232475i \(0.925318\pi\)
\(618\) 0 0
\(619\) 467.583 269.959i 0.755384 0.436121i −0.0722522 0.997386i \(-0.523019\pi\)
0.827636 + 0.561265i \(0.189685\pi\)
\(620\) −303.907 + 1533.35i −0.490172 + 2.47315i
\(621\) 0 0
\(622\) −644.387 63.2428i −1.03599 0.101677i
\(623\) 250.898 144.856i 0.402726 0.232514i
\(624\) 0 0
\(625\) 279.778 484.589i 0.447644 0.775343i
\(626\) −595.444 426.379i −0.951188 0.681117i
\(627\) 0 0
\(628\) 290.316 + 853.314i 0.462286 + 1.35878i
\(629\) −63.8714 −0.101544
\(630\) 0 0
\(631\) 43.6036i 0.0691024i 0.999403 + 0.0345512i \(0.0110002\pi\)
−0.999403 + 0.0345512i \(0.989000\pi\)
\(632\) 85.4736 + 364.873i 0.135243 + 0.577331i
\(633\) 0 0
\(634\) 105.701 + 75.6891i 0.166720 + 0.119383i
\(635\) 987.033 + 569.864i 1.55438 + 0.897423i
\(636\) 0 0
\(637\) −6.37860 11.0481i −0.0100135 0.0173439i
\(638\) −1340.08 131.521i −2.10043 0.206145i
\(639\) 0 0
\(640\) −586.021 + 717.585i −0.915657 + 1.12123i
\(641\) −83.6313 144.854i −0.130470 0.225981i 0.793388 0.608716i \(-0.208315\pi\)
−0.923858 + 0.382736i \(0.874982\pi\)
\(642\) 0 0
\(643\) −645.855 372.885i −1.00444 0.579914i −0.0948816 0.995489i \(-0.530247\pi\)
−0.909559 + 0.415574i \(0.863581\pi\)
\(644\) −300.667 + 343.321i −0.466874 + 0.533107i
\(645\) 0 0
\(646\) 16.4952 + 36.3724i 0.0255344 + 0.0563040i
\(647\) 596.836i 0.922467i −0.887279 0.461233i \(-0.847407\pi\)
0.887279 0.461233i \(-0.152593\pi\)
\(648\) 0 0
\(649\) −402.363 −0.619974
\(650\) −382.905 + 173.651i −0.589085 + 0.267155i
\(651\) 0 0
\(652\) −442.844 387.825i −0.679208 0.594823i
\(653\) −395.435 + 684.914i −0.605567 + 1.04887i 0.386394 + 0.922334i \(0.373720\pi\)
−0.991962 + 0.126540i \(0.959613\pi\)
\(654\) 0 0
\(655\) −294.983 + 170.309i −0.450356 + 0.260013i
\(656\) 842.926 + 347.793i 1.28495 + 0.530173i
\(657\) 0 0
\(658\) 12.6805 129.203i 0.0192713 0.196357i
\(659\) −348.635 + 201.284i −0.529036 + 0.305439i −0.740624 0.671920i \(-0.765470\pi\)
0.211588 + 0.977359i \(0.432137\pi\)
\(660\) 0 0
\(661\) −243.272 + 421.359i −0.368036 + 0.637457i −0.989258 0.146177i \(-0.953303\pi\)
0.621222 + 0.783634i \(0.286636\pi\)
\(662\) 511.682 714.571i 0.772934 1.07941i
\(663\) 0 0
\(664\) 259.463 + 1107.61i 0.390757 + 1.66808i
\(665\) −691.933 −1.04050
\(666\) 0 0
\(667\) 621.873i 0.932343i
\(668\) 401.193 136.495i 0.600589 0.204333i
\(669\) 0 0
\(670\) 583.249 814.514i 0.870521 1.21569i
\(671\) 1044.50 + 603.042i 1.55663 + 0.898721i
\(672\) 0 0
\(673\) 85.8636 + 148.720i 0.127583 + 0.220981i 0.922740 0.385423i \(-0.125945\pi\)
−0.795156 + 0.606404i \(0.792611\pi\)
\(674\) −73.2205 + 746.051i −0.108636 + 1.10690i
\(675\) 0 0
\(676\) 431.959 + 85.6132i 0.638993 + 0.126647i
\(677\) 106.547 + 184.546i 0.157382 + 0.272593i 0.933924 0.357472i \(-0.116361\pi\)
−0.776542 + 0.630065i \(0.783028\pi\)
\(678\) 0 0
\(679\) −374.761 216.369i −0.551931 0.318658i
\(680\) 56.9515 + 60.6809i 0.0837522 + 0.0892365i
\(681\) 0 0
\(682\) −1765.52 + 800.677i −2.58873 + 1.17401i
\(683\) 602.265i 0.881794i −0.897558 0.440897i \(-0.854660\pi\)
0.897558 0.440897i \(-0.145340\pi\)
\(684\) 0 0
\(685\) 850.451 1.24153
\(686\) −287.931 634.897i −0.419725 0.925506i
\(687\) 0 0
\(688\) 659.796 + 857.418i 0.959006 + 1.24625i
\(689\) 30.0357 52.0233i 0.0435931 0.0755055i
\(690\) 0 0
\(691\) −1062.89 + 613.657i −1.53818 + 0.888071i −0.539240 + 0.842152i \(0.681288\pi\)
−0.998945 + 0.0459192i \(0.985378\pi\)
\(692\) 731.466 + 144.975i 1.05703 + 0.209501i
\(693\) 0 0
\(694\) 654.913 + 64.2759i 0.943679 + 0.0926166i
\(695\) −248.828 + 143.661i −0.358025 + 0.206706i
\(696\) 0 0
\(697\) 40.9539 70.9342i 0.0587574 0.101771i
\(698\) 605.729 + 433.744i 0.867807 + 0.621410i
\(699\) 0 0
\(700\) −713.614 + 242.787i −1.01945 + 0.346839i
\(701\) 133.314 0.190176 0.0950882 0.995469i \(-0.469687\pi\)
0.0950882 + 0.995469i \(0.469687\pi\)
\(702\) 0 0
\(703\) 617.485i 0.878357i
\(704\) −1146.66 72.7798i −1.62878 0.103380i
\(705\) 0 0
\(706\) 354.095 + 253.557i 0.501552 + 0.359146i
\(707\) −283.709 163.799i −0.401285 0.231682i
\(708\) 0 0
\(709\) 305.128 + 528.497i 0.430364 + 0.745412i 0.996905 0.0786216i \(-0.0250519\pi\)
−0.566541 + 0.824034i \(0.691719\pi\)
\(710\) 102.979 + 10.1068i 0.145041 + 0.0142349i
\(711\) 0 0
\(712\) −97.4534 + 322.458i −0.136873 + 0.452891i
\(713\) −447.658 775.366i −0.627851 1.08747i
\(714\) 0 0
\(715\) −863.722 498.670i −1.20800 0.697440i
\(716\) −576.548 504.918i −0.805235 0.705192i
\(717\) 0 0
\(718\) −120.252 265.159i −0.167482 0.369303i
\(719\) 967.279i 1.34531i −0.739956 0.672656i \(-0.765154\pi\)
0.739956 0.672656i \(-0.234846\pi\)
\(720\) 0 0
\(721\) −369.635 −0.512671
\(722\) −305.907 + 138.731i −0.423693 + 0.192149i
\(723\) 0 0
\(724\) 540.133 616.759i 0.746040 0.851877i
\(725\) 513.577 889.542i 0.708382 1.22695i
\(726\) 0 0
\(727\) 1209.48 698.296i 1.66366 0.960517i 0.692722 0.721204i \(-0.256411\pi\)
0.970942 0.239313i \(-0.0769223\pi\)
\(728\) −404.397 122.217i −0.555490 0.167880i
\(729\) 0 0
\(730\) −113.740 + 1158.90i −0.155808 + 1.58754i
\(731\) 84.1616 48.5907i 0.115132 0.0664716i
\(732\) 0 0
\(733\) 153.115 265.202i 0.208888 0.361804i −0.742477 0.669872i \(-0.766349\pi\)
0.951364 + 0.308068i \(0.0996823\pi\)
\(734\) −62.2683 + 86.9584i −0.0848341 + 0.118472i
\(735\) 0 0
\(736\) −18.2741 530.324i −0.0248290 0.720548i
\(737\) 1242.40 1.68575
\(738\) 0 0
\(739\) 463.182i 0.626769i −0.949626 0.313384i \(-0.898537\pi\)
0.949626 0.313384i \(-0.101463\pi\)
\(740\) 414.427 + 1218.11i 0.560037 + 1.64609i
\(741\) 0 0
\(742\) 62.7017 87.5637i 0.0845036 0.118010i
\(743\) 702.085 + 405.349i 0.944932 + 0.545557i 0.891503 0.453015i \(-0.149652\pi\)
0.0534291 + 0.998572i \(0.482985\pi\)
\(744\) 0 0
\(745\) 415.562 + 719.775i 0.557802 + 0.966141i
\(746\) −66.7128 + 679.743i −0.0894273 + 0.911183i
\(747\) 0 0
\(748\) −20.0649 + 101.237i −0.0268248 + 0.135344i
\(749\) −91.0628 157.725i −0.121579 0.210581i
\(750\) 0 0
\(751\) −858.169 495.464i −1.14270 0.659739i −0.195603 0.980683i \(-0.562666\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(752\) 92.0587 + 119.632i 0.122419 + 0.159085i
\(753\) 0 0
\(754\) 524.278 237.765i 0.695329 0.315338i
\(755\) 1158.97i 1.53506i
\(756\) 0 0
\(757\) −320.001 −0.422723 −0.211361 0.977408i \(-0.567790\pi\)
−0.211361 + 0.977408i \(0.567790\pi\)
\(758\) −181.885 401.061i −0.239953 0.529104i
\(759\) 0 0
\(760\) 586.640 550.586i 0.771894 0.724455i
\(761\) 317.988 550.771i 0.417855 0.723746i −0.577868 0.816130i \(-0.696115\pi\)
0.995723 + 0.0923836i \(0.0294486\pi\)
\(762\) 0 0
\(763\) 494.939 285.753i 0.648675 0.374512i
\(764\) 69.8461 352.407i 0.0914217 0.461266i
\(765\) 0 0
\(766\) 1335.73 + 131.094i 1.74377 + 0.171141i
\(767\) 148.975 86.0107i 0.194231 0.112139i
\(768\) 0 0
\(769\) −152.926 + 264.876i −0.198864 + 0.344442i −0.948160 0.317793i \(-0.897058\pi\)
0.749297 + 0.662234i \(0.230392\pi\)
\(770\) −1453.79 1041.01i −1.88803 1.35196i
\(771\) 0 0
\(772\) 215.925 + 634.659i 0.279695 + 0.822097i
\(773\) 187.263 0.242255 0.121128 0.992637i \(-0.461349\pi\)
0.121128 + 0.992637i \(0.461349\pi\)
\(774\) 0 0
\(775\) 1478.80i 1.90813i
\(776\) 489.902 114.762i 0.631317 0.147890i
\(777\) 0 0
\(778\) 788.532 + 564.644i 1.01354 + 0.725763i
\(779\) −685.766 395.927i −0.880315 0.508250i
\(780\) 0 0
\(781\) 64.1621 + 111.132i 0.0821537 + 0.142294i
\(782\) −47.4368 4.65564i −0.0606608 0.00595350i
\(783\) 0 0
\(784\) 24.5836 + 10.1432i 0.0313566 + 0.0129378i
\(785\) −815.501 1412.49i −1.03885 1.79935i
\(786\) 0 0
\(787\) −160.626 92.7376i −0.204099 0.117837i 0.394467 0.918910i \(-0.370929\pi\)
−0.598566 + 0.801073i \(0.704263\pi\)
\(788\) 488.263 557.530i 0.619623 0.707526i
\(789\) 0 0
\(790\) −280.076 617.576i −0.354527 0.781741i
\(791\) 106.834i 0.135062i
\(792\) 0 0
\(793\) −515.634 −0.650232
\(794\) 508.862 230.774i 0.640885 0.290647i
\(795\) 0 0
\(796\) −414.139 362.686i −0.520275 0.455636i
\(797\) 546.202 946.049i 0.685322 1.18701i −0.288014 0.957626i \(-0.592995\pi\)
0.973336 0.229386i \(-0.0736718\pi\)
\(798\) 0 0
\(799\) 11.7427 6.77967i 0.0146968 0.00848519i
\(800\) 411.831 773.679i 0.514789 0.967099i
\(801\) 0 0
\(802\) −113.732 + 1158.83i −0.141811 + 1.44493i
\(803\) −1250.65 + 722.064i −1.55747 + 0.899208i
\(804\) 0 0
\(805\) 412.900 715.164i 0.512919 0.888402i
\(806\) 482.527 673.855i 0.598668 0.836048i
\(807\) 0 0
\(808\) 370.875 86.8794i 0.459003 0.107524i
\(809\) −51.1143 −0.0631821 −0.0315911 0.999501i \(-0.510057\pi\)
−0.0315911 + 0.999501i \(0.510057\pi\)
\(810\) 0 0
\(811\) 680.159i 0.838667i 0.907832 + 0.419333i \(0.137736\pi\)
−0.907832 + 0.419333i \(0.862264\pi\)
\(812\) 977.088 332.427i 1.20331 0.409392i
\(813\) 0 0
\(814\) −929.004 + 1297.37i −1.14128 + 1.59382i
\(815\) 922.477 + 532.593i 1.13187 + 0.653488i
\(816\) 0 0
\(817\) −469.757 813.643i −0.574978 0.995891i
\(818\) −85.3016 + 869.146i −0.104281 + 1.06253i
\(819\) 0 0
\(820\) −1618.54 320.789i −1.97382 0.391207i
\(821\) 62.1337 + 107.619i 0.0756805 + 0.131082i 0.901382 0.433025i \(-0.142554\pi\)
−0.825702 + 0.564107i \(0.809220\pi\)
\(822\) 0 0
\(823\) 959.409 + 553.915i 1.16575 + 0.673044i 0.952674 0.303992i \(-0.0983197\pi\)
0.213072 + 0.977036i \(0.431653\pi\)
\(824\) 313.387 294.127i 0.380324 0.356950i
\(825\) 0 0
\(826\) 280.873 127.378i 0.340040 0.154211i
\(827\) 856.831i 1.03607i 0.855359 + 0.518036i \(0.173337\pi\)
−0.855359 + 0.518036i \(0.826663\pi\)
\(828\) 0 0
\(829\) −59.5071 −0.0717818 −0.0358909 0.999356i \(-0.511427\pi\)
−0.0358909 + 0.999356i \(0.511427\pi\)
\(830\) −850.196 1874.71i −1.02433 2.25868i
\(831\) 0 0
\(832\) 440.109 218.168i 0.528977 0.262221i
\(833\) 1.19440 2.06877i 0.00143386 0.00248351i
\(834\) 0 0
\(835\) −664.094 + 383.415i −0.795322 + 0.459179i
\(836\) 978.723 + 193.980i 1.17072 + 0.232034i
\(837\) 0 0
\(838\) −1509.29 148.128i −1.80106 0.176764i
\(839\) −402.435 + 232.346i −0.479660 + 0.276932i −0.720275 0.693689i \(-0.755984\pi\)
0.240615 + 0.970621i \(0.422651\pi\)
\(840\) 0 0
\(841\) −282.695 + 489.643i −0.336142 + 0.582215i
\(842\) 851.012 + 609.384i 1.01070 + 0.723734i
\(843\) 0 0
\(844\) −1155.94 + 393.277i −1.36960 + 0.465969i
\(845\) −796.840 −0.943006
\(846\) 0 0
\(847\) 1384.98i 1.63516i
\(848\) 16.5161 + 124.132i 0.0194765 + 0.146382i
\(849\) 0 0
\(850\) −64.0098 45.8355i −0.0753057 0.0539241i
\(851\) −638.216 368.474i −0.749960 0.432990i
\(852\) 0 0
\(853\) 683.164 + 1183.28i 0.800896 + 1.38719i 0.919027 + 0.394195i \(0.128977\pi\)
−0.118131 + 0.992998i \(0.537690\pi\)
\(854\) −920.029 90.2955i −1.07732 0.105732i
\(855\) 0 0
\(856\) 202.711 + 61.2633i 0.236812 + 0.0715693i
\(857\) 838.799 + 1452.84i 0.978762 + 1.69527i 0.666916 + 0.745133i \(0.267614\pi\)
0.311846 + 0.950133i \(0.399053\pi\)
\(858\) 0 0
\(859\) −1424.63 822.513i −1.65848 0.957524i −0.973417 0.229039i \(-0.926442\pi\)
−0.685063 0.728484i \(-0.740225\pi\)
\(860\) −1472.77 1289.79i −1.71252 1.49976i
\(861\) 0 0
\(862\) 602.305 + 1328.10i 0.698729 + 1.54072i
\(863\) 294.311i 0.341033i 0.985355 + 0.170516i \(0.0545436\pi\)
−0.985355 + 0.170516i \(0.945456\pi\)
\(864\) 0 0
\(865\) −1349.34 −1.55994
\(866\) 894.727 405.767i 1.03317 0.468553i
\(867\) 0 0
\(868\) 978.959 1117.84i 1.12783 1.28783i
\(869\) 420.486 728.303i 0.483873 0.838093i
\(870\) 0 0
\(871\) −459.997 + 265.579i −0.528125 + 0.304913i
\(872\) −192.243 + 636.102i −0.220462 + 0.729475i
\(873\) 0 0
\(874\) −45.0090 + 458.601i −0.0514977 + 0.524715i
\(875\) 103.050 59.4960i 0.117772 0.0679955i
\(876\) 0 0
\(877\) −359.584 + 622.818i −0.410016 + 0.710169i −0.994891 0.100954i \(-0.967810\pi\)
0.584875 + 0.811124i \(0.301144\pi\)
\(878\) −219.714 + 306.833i −0.250244 + 0.349468i
\(879\) 0 0
\(880\) 2060.91 274.210i 2.34195 0.311602i
\(881\) −16.3083 −0.0185112 −0.00925559 0.999957i \(-0.502946\pi\)
−0.00925559 + 0.999957i \(0.502946\pi\)
\(882\) 0 0
\(883\) 1190.35i 1.34807i −0.738698 0.674036i \(-0.764559\pi\)
0.738698 0.674036i \(-0.235441\pi\)
\(884\) −14.2118 41.7722i −0.0160767 0.0472536i
\(885\) 0 0
\(886\) −481.138 + 671.915i −0.543045 + 0.758369i
\(887\) −346.987 200.333i −0.391192 0.225855i 0.291485 0.956575i \(-0.405851\pi\)
−0.682676 + 0.730721i \(0.739184\pi\)
\(888\) 0 0
\(889\) −541.693 938.241i −0.609329 1.05539i
\(890\) 59.5384 606.643i 0.0668971 0.681621i
\(891\) 0 0
\(892\) 13.3932 67.5750i 0.0150148 0.0757567i
\(893\) −65.5433 113.524i −0.0733967 0.127127i
\(894\) 0 0
\(895\) 1200.99 + 693.394i 1.34189 + 0.774742i
\(896\) 823.477 312.201i 0.919059 0.348438i
\(897\) 0 0
\(898\) 1162.54 527.223i 1.29459 0.587108i
\(899\) 2024.79i 2.25227i
\(900\) 0 0
\(901\) 11.2484 0.0124844
\(902\) −845.156 1863.59i −0.936981 2.06607i
\(903\) 0 0
\(904\) 85.0101 + 90.5769i 0.0940378 + 0.100196i
\(905\) −741.755 + 1284.76i −0.819618 + 1.41962i
\(906\) 0 0
\(907\) 1091.40 630.121i 1.20331 0.694731i 0.242019 0.970271i \(-0.422190\pi\)
0.961289 + 0.275541i \(0.0888569\pi\)
\(908\) 31.8722 160.810i 0.0351015 0.177104i
\(909\) 0 0
\(910\) 760.795 + 74.6675i 0.836038 + 0.0820522i
\(911\) −835.193 + 482.199i −0.916788 + 0.529308i −0.882609 0.470108i \(-0.844215\pi\)
−0.0341788 + 0.999416i \(0.510882\pi\)
\(912\) 0 0
\(913\) 1276.42 2210.83i 1.39805 2.42150i
\(914\) −375.119 268.611i −0.410414 0.293885i
\(915\) 0 0
\(916\) −171.936 505.363i −0.187703 0.551707i
\(917\) 323.779 0.353086
\(918\) 0 0
\(919\) 424.406i 0.461813i −0.972976 0.230906i \(-0.925831\pi\)
0.972976 0.230906i \(-0.0741691\pi\)
\(920\) 219.003 + 934.888i 0.238047 + 1.01618i
\(921\) 0 0
\(922\) −650.744 465.978i −0.705796 0.505399i
\(923\) −47.5120 27.4311i −0.0514756 0.0297195i
\(924\) 0 0
\(925\) −608.613 1054.15i −0.657960 1.13962i
\(926\) 590.476 + 57.9517i 0.637663 + 0.0625829i
\(927\) 0 0
\(928\) −563.883 + 1059.33i −0.607633 + 1.14152i
\(929\) −429.229 743.447i −0.462033 0.800265i 0.537029 0.843564i \(-0.319547\pi\)
−0.999062 + 0.0432985i \(0.986213\pi\)
\(930\) 0 0
\(931\) −20.0001 11.5470i −0.0214823 0.0124028i
\(932\) −970.706 + 1108.41i −1.04153 + 1.18929i
\(933\) 0 0
\(934\) −104.954 231.426i −0.112370 0.247780i
\(935\) 186.753i 0.199736i
\(936\) 0 0
\(937\) 858.258 0.915964 0.457982 0.888962i \(-0.348572\pi\)
0.457982 + 0.888962i \(0.348572\pi\)
\(938\) −867.264 + 393.312i −0.924589 + 0.419309i
\(939\) 0 0
\(940\) −205.489 179.959i −0.218606 0.191446i
\(941\) −468.553 + 811.558i −0.497931 + 0.862442i −0.999997 0.00238755i \(-0.999240\pi\)
0.502066 + 0.864829i \(0.332573\pi\)
\(942\) 0 0
\(943\) 818.439 472.526i 0.867910 0.501088i
\(944\) −136.774 + 331.491i −0.144888 + 0.351156i
\(945\) 0 0
\(946\) 237.141 2416.25i 0.250677 2.55418i
\(947\) 768.302 443.580i 0.811301 0.468405i −0.0361062 0.999348i \(-0.511495\pi\)
0.847408 + 0.530943i \(0.178162\pi\)
\(948\) 0 0
\(949\) 308.702 534.688i 0.325292 0.563423i
\(950\) −443.120 + 618.823i −0.466442 + 0.651392i
\(951\) 0 0
\(952\) −18.0427 77.0215i −0.0189524 0.0809049i
\(953\) −1078.46 −1.13164 −0.565821 0.824528i \(-0.691441\pi\)
−0.565821 + 0.824528i \(0.691441\pi\)
\(954\) 0 0
\(955\) 650.090i 0.680722i
\(956\) 1092.73 371.770i 1.14302 0.388881i
\(957\) 0 0
\(958\) 14.3395 20.0253i 0.0149682 0.0209033i
\(959\) −700.104 404.205i −0.730036 0.421486i
\(960\) 0 0
\(961\) 977.056 + 1692.31i 1.01671 + 1.76099i
\(962\) 66.6337 678.937i 0.0692658 0.705756i
\(963\) 0 0
\(964\) 404.089 + 80.0894i 0.419180 + 0.0830803i
\(965\) −606.535 1050.55i −0.628534 1.08865i
\(966\) 0 0
\(967\) 103.113 + 59.5324i 0.106632 + 0.0615640i 0.552368 0.833601i \(-0.313725\pi\)
−0.445736 + 0.895165i \(0.647058\pi\)
\(968\) 1102.06 + 1174.22i 1.13849 + 1.21304i
\(969\) 0 0
\(970\) −829.196 + 376.048i −0.854842 + 0.387678i
\(971\) 1516.56i 1.56185i −0.624624 0.780926i \(-0.714748\pi\)
0.624624 0.780926i \(-0.285252\pi\)
\(972\) 0 0
\(973\) 273.118 0.280697
\(974\) 149.558 + 329.779i 0.153550 + 0.338582i
\(975\) 0 0
\(976\) 851.876 655.532i 0.872824 0.671651i
\(977\) 789.151 1366.85i 0.807729 1.39903i −0.106705 0.994291i \(-0.534030\pi\)
0.914434 0.404736i \(-0.132637\pi\)
\(978\) 0 0
\(979\) 654.669 377.974i 0.668712 0.386081i
\(980\) −47.2039 9.35568i −0.0481672 0.00954661i
\(981\) 0 0
\(982\) 989.406 + 97.1044i 1.00754 + 0.0988843i
\(983\) 513.330 296.371i 0.522207 0.301497i −0.215630 0.976475i \(-0.569180\pi\)
0.737837 + 0.674979i \(0.235847\pi\)
\(984\) 0 0
\(985\) −670.522 + 1161.38i −0.680733 + 1.17906i
\(986\) 87.6429 + 62.7584i 0.0888873 + 0.0636495i
\(987\) 0 0
\(988\) −403.838 + 137.394i −0.408743 + 0.139063i
\(989\) 1121.28 1.13375
\(990\) 0 0
\(991\) 1896.17i 1.91339i 0.291098 + 0.956693i \(0.405980\pi\)
−0.291098 + 0.956693i \(0.594020\pi\)
\(992\) 59.4998 + 1726.71i 0.0599796 + 1.74064i
\(993\) 0 0
\(994\) −79.9705 57.2644i −0.0804532 0.0576101i
\(995\) 862.683 + 498.070i 0.867018 + 0.500573i
\(996\) 0 0
\(997\) −34.8563 60.3729i −0.0349612 0.0605546i 0.848015 0.529972i \(-0.177797\pi\)
−0.882977 + 0.469417i \(0.844464\pi\)
\(998\) −1517.84 148.967i −1.52088 0.149266i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.3.f.q.271.1 12
3.2 odd 2 324.3.f.r.271.6 12
4.3 odd 2 inner 324.3.f.q.271.5 12
9.2 odd 6 324.3.f.r.55.2 12
9.4 even 3 324.3.d.f.163.3 yes 6
9.5 odd 6 324.3.d.e.163.4 yes 6
9.7 even 3 inner 324.3.f.q.55.5 12
12.11 even 2 324.3.f.r.271.2 12
36.7 odd 6 inner 324.3.f.q.55.1 12
36.11 even 6 324.3.f.r.55.6 12
36.23 even 6 324.3.d.e.163.3 6
36.31 odd 6 324.3.d.f.163.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.3.d.e.163.3 6 36.23 even 6
324.3.d.e.163.4 yes 6 9.5 odd 6
324.3.d.f.163.3 yes 6 9.4 even 3
324.3.d.f.163.4 yes 6 36.31 odd 6
324.3.f.q.55.1 12 36.7 odd 6 inner
324.3.f.q.55.5 12 9.7 even 3 inner
324.3.f.q.271.1 12 1.1 even 1 trivial
324.3.f.q.271.5 12 4.3 odd 2 inner
324.3.f.r.55.2 12 9.2 odd 6
324.3.f.r.55.6 12 36.11 even 6
324.3.f.r.271.2 12 12.11 even 2
324.3.f.r.271.6 12 3.2 odd 2