Properties

Label 324.3.d.e.163.4
Level $324$
Weight $3$
Character 324.163
Analytic conductor $8.828$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,3,Mod(163,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.163");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3636603.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 12x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 163.4
Root \(-2.47367i\) of defining polynomial
Character \(\chi\) \(=\) 324.163
Dual form 324.3.d.e.163.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.195350 + 1.99044i) q^{2} +(-3.92368 - 0.777662i) q^{4} -7.23805 q^{5} +6.88025i q^{7} +(2.31438 - 7.65792i) q^{8} +(1.41395 - 14.4069i) q^{10} -17.9526i q^{11} +7.67526 q^{13} +(-13.6947 - 1.34405i) q^{14} +(14.7905 + 6.10259i) q^{16} +1.43720 q^{17} +13.8943i q^{19} +(28.3998 + 5.62876i) q^{20} +(35.7336 + 3.50704i) q^{22} -16.5824i q^{23} +27.3894 q^{25} +(-1.49936 + 15.2771i) q^{26} +(5.35051 - 26.9959i) q^{28} +37.5019 q^{29} -53.9918i q^{31} +(-15.0361 + 28.2474i) q^{32} +(-0.280757 + 2.86066i) q^{34} -49.7996i q^{35} +44.4415 q^{37} +(-27.6558 - 2.71425i) q^{38} +(-16.7516 + 55.4284i) q^{40} -56.9911 q^{41} -67.6185i q^{43} +(-13.9611 + 70.4404i) q^{44} +(33.0063 + 3.23938i) q^{46} +9.43453i q^{47} +1.66212 q^{49} +(-5.35051 + 54.5169i) q^{50} +(-30.1152 - 5.96876i) q^{52} +7.82662 q^{53} +129.942i q^{55} +(52.6884 + 15.9235i) q^{56} +(-7.32598 + 74.6451i) q^{58} -22.4125i q^{59} -67.1814 q^{61} +(107.467 + 10.5473i) q^{62} +(-53.2873 - 35.4466i) q^{64} -55.5539 q^{65} -69.2040i q^{67} +(-5.63912 - 1.11766i) q^{68} +(99.1230 + 9.72834i) q^{70} -7.14792i q^{71} -80.4410 q^{73} +(-8.68162 + 88.4579i) q^{74} +(10.8051 - 54.5169i) q^{76} +123.519 q^{77} +46.8439i q^{79} +(-107.054 - 44.1709i) q^{80} +(11.1332 - 113.437i) q^{82} -142.199i q^{83} -10.4026 q^{85} +(134.590 + 13.2092i) q^{86} +(-137.480 - 41.5492i) q^{88} -42.1078 q^{89} +52.8077i q^{91} +(-12.8955 + 65.0642i) q^{92} +(-18.7788 - 1.84303i) q^{94} -100.568i q^{95} +62.8955 q^{97} +(-0.324695 + 3.30835i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 3 q^{4} - 2 q^{5} - 7 q^{8} + 9 q^{10} + 6 q^{13} - 15 q^{16} + 10 q^{17} + 67 q^{20} + 48 q^{22} + 73 q^{26} - 48 q^{28} + 22 q^{29} - 31 q^{32} + 81 q^{34} + 54 q^{37} - 168 q^{38} - 81 q^{40}+ \cdots + 407 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.195350 + 1.99044i −0.0976748 + 0.995218i
\(3\) 0 0
\(4\) −3.92368 0.777662i −0.980919 0.194416i
\(5\) −7.23805 −1.44761 −0.723805 0.690004i \(-0.757609\pi\)
−0.723805 + 0.690004i \(0.757609\pi\)
\(6\) 0 0
\(7\) 6.88025i 0.982893i 0.870908 + 0.491447i \(0.163532\pi\)
−0.870908 + 0.491447i \(0.836468\pi\)
\(8\) 2.31438 7.65792i 0.289297 0.957239i
\(9\) 0 0
\(10\) 1.41395 14.4069i 0.141395 1.44069i
\(11\) 17.9526i 1.63206i −0.578010 0.816029i \(-0.696171\pi\)
0.578010 0.816029i \(-0.303829\pi\)
\(12\) 0 0
\(13\) 7.67526 0.590404 0.295202 0.955435i \(-0.404613\pi\)
0.295202 + 0.955435i \(0.404613\pi\)
\(14\) −13.6947 1.34405i −0.978193 0.0960039i
\(15\) 0 0
\(16\) 14.7905 + 6.10259i 0.924405 + 0.381412i
\(17\) 1.43720 0.0845413 0.0422707 0.999106i \(-0.486541\pi\)
0.0422707 + 0.999106i \(0.486541\pi\)
\(18\) 0 0
\(19\) 13.8943i 0.731281i 0.930756 + 0.365641i \(0.119150\pi\)
−0.930756 + 0.365641i \(0.880850\pi\)
\(20\) 28.3998 + 5.62876i 1.41999 + 0.281438i
\(21\) 0 0
\(22\) 35.7336 + 3.50704i 1.62426 + 0.159411i
\(23\) 16.5824i 0.720976i −0.932764 0.360488i \(-0.882610\pi\)
0.932764 0.360488i \(-0.117390\pi\)
\(24\) 0 0
\(25\) 27.3894 1.09558
\(26\) −1.49936 + 15.2771i −0.0576676 + 0.587581i
\(27\) 0 0
\(28\) 5.35051 26.9959i 0.191090 0.964139i
\(29\) 37.5019 1.29317 0.646584 0.762843i \(-0.276197\pi\)
0.646584 + 0.762843i \(0.276197\pi\)
\(30\) 0 0
\(31\) 53.9918i 1.74167i −0.491575 0.870835i \(-0.663579\pi\)
0.491575 0.870835i \(-0.336421\pi\)
\(32\) −15.0361 + 28.2474i −0.469879 + 0.882731i
\(33\) 0 0
\(34\) −0.280757 + 2.86066i −0.00825756 + 0.0841371i
\(35\) 49.7996i 1.42285i
\(36\) 0 0
\(37\) 44.4415 1.20112 0.600560 0.799580i \(-0.294944\pi\)
0.600560 + 0.799580i \(0.294944\pi\)
\(38\) −27.6558 2.71425i −0.727784 0.0714277i
\(39\) 0 0
\(40\) −16.7516 + 55.4284i −0.418789 + 1.38571i
\(41\) −56.9911 −1.39003 −0.695014 0.718997i \(-0.744602\pi\)
−0.695014 + 0.718997i \(0.744602\pi\)
\(42\) 0 0
\(43\) 67.6185i 1.57252i −0.617894 0.786261i \(-0.712014\pi\)
0.617894 0.786261i \(-0.287986\pi\)
\(44\) −13.9611 + 70.4404i −0.317298 + 1.60092i
\(45\) 0 0
\(46\) 33.0063 + 3.23938i 0.717529 + 0.0704212i
\(47\) 9.43453i 0.200735i 0.994950 + 0.100367i \(0.0320018\pi\)
−0.994950 + 0.100367i \(0.967998\pi\)
\(48\) 0 0
\(49\) 1.66212 0.0339208
\(50\) −5.35051 + 54.5169i −0.107010 + 1.09034i
\(51\) 0 0
\(52\) −30.1152 5.96876i −0.579139 0.114784i
\(53\) 7.82662 0.147672 0.0738360 0.997270i \(-0.476476\pi\)
0.0738360 + 0.997270i \(0.476476\pi\)
\(54\) 0 0
\(55\) 129.942i 2.36259i
\(56\) 52.6884 + 15.9235i 0.940864 + 0.284348i
\(57\) 0 0
\(58\) −7.32598 + 74.6451i −0.126310 + 1.28698i
\(59\) 22.4125i 0.379872i −0.981796 0.189936i \(-0.939172\pi\)
0.981796 0.189936i \(-0.0608281\pi\)
\(60\) 0 0
\(61\) −67.1814 −1.10133 −0.550667 0.834725i \(-0.685627\pi\)
−0.550667 + 0.834725i \(0.685627\pi\)
\(62\) 107.467 + 10.5473i 1.73334 + 0.170117i
\(63\) 0 0
\(64\) −53.2873 35.4466i −0.832614 0.553853i
\(65\) −55.5539 −0.854676
\(66\) 0 0
\(67\) 69.2040i 1.03290i −0.856319 0.516448i \(-0.827254\pi\)
0.856319 0.516448i \(-0.172746\pi\)
\(68\) −5.63912 1.11766i −0.0829282 0.0164362i
\(69\) 0 0
\(70\) 99.1230 + 9.72834i 1.41604 + 0.138976i
\(71\) 7.14792i 0.100675i −0.998732 0.0503375i \(-0.983970\pi\)
0.998732 0.0503375i \(-0.0160297\pi\)
\(72\) 0 0
\(73\) −80.4410 −1.10193 −0.550965 0.834528i \(-0.685740\pi\)
−0.550965 + 0.834528i \(0.685740\pi\)
\(74\) −8.68162 + 88.4579i −0.117319 + 1.19538i
\(75\) 0 0
\(76\) 10.8051 54.5169i 0.142172 0.717328i
\(77\) 123.519 1.60414
\(78\) 0 0
\(79\) 46.8439i 0.592960i 0.955039 + 0.296480i \(0.0958129\pi\)
−0.955039 + 0.296480i \(0.904187\pi\)
\(80\) −107.054 44.1709i −1.33818 0.552136i
\(81\) 0 0
\(82\) 11.1332 113.437i 0.135771 1.38338i
\(83\) 142.199i 1.71324i −0.515950 0.856619i \(-0.672561\pi\)
0.515950 0.856619i \(-0.327439\pi\)
\(84\) 0 0
\(85\) −10.4026 −0.122383
\(86\) 134.590 + 13.2092i 1.56500 + 0.153596i
\(87\) 0 0
\(88\) −137.480 41.5492i −1.56227 0.472150i
\(89\) −42.1078 −0.473122 −0.236561 0.971617i \(-0.576020\pi\)
−0.236561 + 0.971617i \(0.576020\pi\)
\(90\) 0 0
\(91\) 52.8077i 0.580304i
\(92\) −12.8955 + 65.0642i −0.140169 + 0.707219i
\(93\) 0 0
\(94\) −18.7788 1.84303i −0.199775 0.0196067i
\(95\) 100.568i 1.05861i
\(96\) 0 0
\(97\) 62.8955 0.648408 0.324204 0.945987i \(-0.394904\pi\)
0.324204 + 0.945987i \(0.394904\pi\)
\(98\) −0.324695 + 3.30835i −0.00331321 + 0.0337586i
\(99\) 0 0
\(100\) −107.467 21.2997i −1.07467 0.212997i
\(101\) −47.6143 −0.471429 −0.235715 0.971822i \(-0.575743\pi\)
−0.235715 + 0.971822i \(0.575743\pi\)
\(102\) 0 0
\(103\) 53.7241i 0.521593i 0.965394 + 0.260797i \(0.0839852\pi\)
−0.965394 + 0.260797i \(0.916015\pi\)
\(104\) 17.7634 58.7765i 0.170802 0.565158i
\(105\) 0 0
\(106\) −1.52893 + 15.5784i −0.0144238 + 0.146966i
\(107\) 26.4708i 0.247390i 0.992320 + 0.123695i \(0.0394745\pi\)
−0.992320 + 0.123695i \(0.960525\pi\)
\(108\) 0 0
\(109\) 83.0647 0.762061 0.381031 0.924562i \(-0.375569\pi\)
0.381031 + 0.924562i \(0.375569\pi\)
\(110\) −258.642 25.3842i −2.35129 0.230765i
\(111\) 0 0
\(112\) −41.9874 + 101.762i −0.374887 + 0.908592i
\(113\) 15.5276 0.137413 0.0687064 0.997637i \(-0.478113\pi\)
0.0687064 + 0.997637i \(0.478113\pi\)
\(114\) 0 0
\(115\) 120.025i 1.04369i
\(116\) −147.145 29.1638i −1.26849 0.251412i
\(117\) 0 0
\(118\) 44.6106 + 4.37827i 0.378056 + 0.0371039i
\(119\) 9.88832i 0.0830951i
\(120\) 0 0
\(121\) −201.298 −1.66362
\(122\) 13.1239 133.720i 0.107573 1.09607i
\(123\) 0 0
\(124\) −41.9874 + 211.846i −0.338608 + 1.70844i
\(125\) −17.2947 −0.138358
\(126\) 0 0
\(127\) 157.463i 1.23987i −0.784654 0.619934i \(-0.787159\pi\)
0.784654 0.619934i \(-0.212841\pi\)
\(128\) 80.9639 99.1406i 0.632530 0.774536i
\(129\) 0 0
\(130\) 10.8524 110.577i 0.0834803 0.850589i
\(131\) 47.0592i 0.359231i 0.983737 + 0.179615i \(0.0574853\pi\)
−0.983737 + 0.179615i \(0.942515\pi\)
\(132\) 0 0
\(133\) −95.5966 −0.718771
\(134\) 137.746 + 13.5190i 1.02796 + 0.100888i
\(135\) 0 0
\(136\) 3.32623 11.0060i 0.0244576 0.0809263i
\(137\) −117.497 −0.857644 −0.428822 0.903389i \(-0.641071\pi\)
−0.428822 + 0.903389i \(0.641071\pi\)
\(138\) 0 0
\(139\) 39.6959i 0.285582i −0.989753 0.142791i \(-0.954392\pi\)
0.989753 0.142791i \(-0.0456077\pi\)
\(140\) −38.7273 + 195.398i −0.276624 + 1.39570i
\(141\) 0 0
\(142\) 14.2275 + 1.39634i 0.100194 + 0.00983341i
\(143\) 137.791i 0.963575i
\(144\) 0 0
\(145\) −271.441 −1.87200
\(146\) 15.7141 160.113i 0.107631 1.09666i
\(147\) 0 0
\(148\) −174.374 34.5604i −1.17820 0.233516i
\(149\) 114.827 0.770652 0.385326 0.922781i \(-0.374089\pi\)
0.385326 + 0.922781i \(0.374089\pi\)
\(150\) 0 0
\(151\) 160.122i 1.06041i −0.847869 0.530206i \(-0.822115\pi\)
0.847869 0.530206i \(-0.177885\pi\)
\(152\) 106.402 + 32.1567i 0.700011 + 0.211557i
\(153\) 0 0
\(154\) −24.1293 + 245.856i −0.156684 + 1.59647i
\(155\) 390.795i 2.52126i
\(156\) 0 0
\(157\) 225.337 1.43527 0.717634 0.696421i \(-0.245225\pi\)
0.717634 + 0.696421i \(0.245225\pi\)
\(158\) −93.2397 9.15093i −0.590125 0.0579173i
\(159\) 0 0
\(160\) 108.832 204.456i 0.680202 1.27785i
\(161\) 114.091 0.708643
\(162\) 0 0
\(163\) 147.165i 0.902850i −0.892309 0.451425i \(-0.850916\pi\)
0.892309 0.451425i \(-0.149084\pi\)
\(164\) 223.615 + 44.3198i 1.36350 + 0.270243i
\(165\) 0 0
\(166\) 283.038 + 27.7785i 1.70505 + 0.167340i
\(167\) 105.944i 0.634396i 0.948359 + 0.317198i \(0.102742\pi\)
−0.948359 + 0.317198i \(0.897258\pi\)
\(168\) 0 0
\(169\) −110.090 −0.651423
\(170\) 2.03213 20.7056i 0.0119537 0.121798i
\(171\) 0 0
\(172\) −52.5843 + 265.313i −0.305723 + 1.54252i
\(173\) 186.424 1.07759 0.538797 0.842436i \(-0.318879\pi\)
0.538797 + 0.842436i \(0.318879\pi\)
\(174\) 0 0
\(175\) 188.446i 1.07683i
\(176\) 109.558 265.528i 0.622487 1.50868i
\(177\) 0 0
\(178\) 8.22575 83.8130i 0.0462121 0.470859i
\(179\) 191.597i 1.07037i 0.844734 + 0.535187i \(0.179759\pi\)
−0.844734 + 0.535187i \(0.820241\pi\)
\(180\) 0 0
\(181\) 204.960 1.13237 0.566187 0.824277i \(-0.308418\pi\)
0.566187 + 0.824277i \(0.308418\pi\)
\(182\) −105.110 10.3160i −0.577530 0.0566811i
\(183\) 0 0
\(184\) −126.987 38.3780i −0.690147 0.208576i
\(185\) −321.670 −1.73875
\(186\) 0 0
\(187\) 25.8016i 0.137976i
\(188\) 7.33688 37.0180i 0.0390259 0.196904i
\(189\) 0 0
\(190\) 200.174 + 19.6459i 1.05355 + 0.103400i
\(191\) 89.8155i 0.470238i −0.971967 0.235119i \(-0.924452\pi\)
0.971967 0.235119i \(-0.0755480\pi\)
\(192\) 0 0
\(193\) 167.596 0.868374 0.434187 0.900823i \(-0.357036\pi\)
0.434187 + 0.900823i \(0.357036\pi\)
\(194\) −12.2866 + 125.190i −0.0633331 + 0.645307i
\(195\) 0 0
\(196\) −6.52163 1.29257i −0.0332736 0.00659474i
\(197\) −185.277 −0.940492 −0.470246 0.882535i \(-0.655835\pi\)
−0.470246 + 0.882535i \(0.655835\pi\)
\(198\) 0 0
\(199\) 137.625i 0.691585i −0.938311 0.345793i \(-0.887610\pi\)
0.938311 0.345793i \(-0.112390\pi\)
\(200\) 63.3894 209.746i 0.316947 1.04873i
\(201\) 0 0
\(202\) 9.30144 94.7733i 0.0460467 0.469175i
\(203\) 258.022i 1.27105i
\(204\) 0 0
\(205\) 412.505 2.01222
\(206\) −106.934 10.4950i −0.519099 0.0509465i
\(207\) 0 0
\(208\) 113.521 + 46.8389i 0.545773 + 0.225187i
\(209\) 249.440 1.19349
\(210\) 0 0
\(211\) 305.254i 1.44670i 0.690482 + 0.723350i \(0.257398\pi\)
−0.690482 + 0.723350i \(0.742602\pi\)
\(212\) −30.7091 6.08647i −0.144854 0.0287097i
\(213\) 0 0
\(214\) −52.6884 5.17106i −0.246207 0.0241638i
\(215\) 489.426i 2.27640i
\(216\) 0 0
\(217\) 371.477 1.71188
\(218\) −16.2267 + 165.335i −0.0744342 + 0.758417i
\(219\) 0 0
\(220\) 101.051 509.851i 0.459323 2.31751i
\(221\) 11.0309 0.0499136
\(222\) 0 0
\(223\) 17.2224i 0.0772303i 0.999254 + 0.0386152i \(0.0122946\pi\)
−0.999254 + 0.0386152i \(0.987705\pi\)
\(224\) −194.349 103.452i −0.867630 0.461841i
\(225\) 0 0
\(226\) −3.03332 + 30.9068i −0.0134218 + 0.136756i
\(227\) 40.9846i 0.180549i −0.995917 0.0902744i \(-0.971226\pi\)
0.995917 0.0902744i \(-0.0287744\pi\)
\(228\) 0 0
\(229\) −133.453 −0.582763 −0.291381 0.956607i \(-0.594115\pi\)
−0.291381 + 0.956607i \(0.594115\pi\)
\(230\) −238.901 23.4468i −1.03870 0.101942i
\(231\) 0 0
\(232\) 86.7935 287.186i 0.374110 1.23787i
\(233\) 368.345 1.58088 0.790441 0.612539i \(-0.209852\pi\)
0.790441 + 0.612539i \(0.209852\pi\)
\(234\) 0 0
\(235\) 68.2876i 0.290586i
\(236\) −17.4293 + 87.9393i −0.0738531 + 0.372624i
\(237\) 0 0
\(238\) −19.6821 1.93168i −0.0826978 0.00811630i
\(239\) 288.560i 1.20737i 0.797225 + 0.603683i \(0.206301\pi\)
−0.797225 + 0.603683i \(0.793699\pi\)
\(240\) 0 0
\(241\) −102.987 −0.427333 −0.213667 0.976907i \(-0.568541\pi\)
−0.213667 + 0.976907i \(0.568541\pi\)
\(242\) 39.3234 400.670i 0.162493 1.65566i
\(243\) 0 0
\(244\) 263.598 + 52.2444i 1.08032 + 0.214116i
\(245\) −12.0305 −0.0491042
\(246\) 0 0
\(247\) 106.643i 0.431751i
\(248\) −413.464 124.957i −1.66720 0.503860i
\(249\) 0 0
\(250\) 3.37852 34.4241i 0.0135141 0.137696i
\(251\) 69.9866i 0.278831i −0.990234 0.139416i \(-0.955478\pi\)
0.990234 0.139416i \(-0.0445224\pi\)
\(252\) 0 0
\(253\) −297.699 −1.17668
\(254\) 313.421 + 30.7604i 1.23394 + 0.121104i
\(255\) 0 0
\(256\) 181.517 + 180.521i 0.709050 + 0.705158i
\(257\) −97.0819 −0.377751 −0.188875 0.982001i \(-0.560484\pi\)
−0.188875 + 0.982001i \(0.560484\pi\)
\(258\) 0 0
\(259\) 305.768i 1.18057i
\(260\) 217.976 + 43.2022i 0.838368 + 0.166162i
\(261\) 0 0
\(262\) −93.6684 9.19301i −0.357513 0.0350878i
\(263\) 8.40472i 0.0319571i 0.999872 + 0.0159785i \(0.00508635\pi\)
−0.999872 + 0.0159785i \(0.994914\pi\)
\(264\) 0 0
\(265\) −56.6495 −0.213772
\(266\) 18.6748 190.279i 0.0702058 0.715334i
\(267\) 0 0
\(268\) −53.8174 + 271.534i −0.200811 + 1.01319i
\(269\) −281.198 −1.04535 −0.522673 0.852533i \(-0.675065\pi\)
−0.522673 + 0.852533i \(0.675065\pi\)
\(270\) 0 0
\(271\) 369.456i 1.36331i −0.731675 0.681654i \(-0.761261\pi\)
0.731675 0.681654i \(-0.238739\pi\)
\(272\) 21.2569 + 8.77066i 0.0781505 + 0.0322451i
\(273\) 0 0
\(274\) 22.9530 233.871i 0.0837702 0.853543i
\(275\) 491.713i 1.78805i
\(276\) 0 0
\(277\) 132.909 0.479817 0.239908 0.970796i \(-0.422883\pi\)
0.239908 + 0.970796i \(0.422883\pi\)
\(278\) 79.0123 + 7.75459i 0.284217 + 0.0278942i
\(279\) 0 0
\(280\) −381.361 115.255i −1.36200 0.411625i
\(281\) −37.3154 −0.132795 −0.0663974 0.997793i \(-0.521151\pi\)
−0.0663974 + 0.997793i \(0.521151\pi\)
\(282\) 0 0
\(283\) 156.168i 0.551832i 0.961182 + 0.275916i \(0.0889811\pi\)
−0.961182 + 0.275916i \(0.911019\pi\)
\(284\) −5.55867 + 28.0461i −0.0195728 + 0.0987540i
\(285\) 0 0
\(286\) 274.265 + 26.9175i 0.958967 + 0.0941170i
\(287\) 392.113i 1.36625i
\(288\) 0 0
\(289\) −286.934 −0.992853
\(290\) 53.0258 540.285i 0.182848 1.86305i
\(291\) 0 0
\(292\) 315.624 + 62.5559i 1.08091 + 0.214232i
\(293\) −25.9762 −0.0886561 −0.0443280 0.999017i \(-0.514115\pi\)
−0.0443280 + 0.999017i \(0.514115\pi\)
\(294\) 0 0
\(295\) 162.223i 0.549907i
\(296\) 102.854 340.329i 0.347481 1.14976i
\(297\) 0 0
\(298\) −22.4314 + 228.556i −0.0752733 + 0.766967i
\(299\) 127.275i 0.425667i
\(300\) 0 0
\(301\) 465.232 1.54562
\(302\) 318.713 + 31.2798i 1.05534 + 0.103575i
\(303\) 0 0
\(304\) −84.7915 + 205.504i −0.278919 + 0.676000i
\(305\) 486.262 1.59430
\(306\) 0 0
\(307\) 111.670i 0.363745i −0.983322 0.181872i \(-0.941784\pi\)
0.983322 0.181872i \(-0.0582158\pi\)
\(308\) −484.648 96.0559i −1.57353 0.311870i
\(309\) 0 0
\(310\) −777.854 76.3417i −2.50920 0.246264i
\(311\) 323.742i 1.04097i 0.853871 + 0.520485i \(0.174249\pi\)
−0.853871 + 0.520485i \(0.825751\pi\)
\(312\) 0 0
\(313\) −366.181 −1.16991 −0.584953 0.811067i \(-0.698887\pi\)
−0.584953 + 0.811067i \(0.698887\pi\)
\(314\) −44.0195 + 448.519i −0.140189 + 1.42840i
\(315\) 0 0
\(316\) 36.4287 183.800i 0.115281 0.581646i
\(317\) −65.0029 −0.205056 −0.102528 0.994730i \(-0.532693\pi\)
−0.102528 + 0.994730i \(0.532693\pi\)
\(318\) 0 0
\(319\) 673.258i 2.11053i
\(320\) 385.696 + 256.564i 1.20530 + 0.801764i
\(321\) 0 0
\(322\) −22.2877 + 227.092i −0.0692165 + 0.705254i
\(323\) 19.9690i 0.0618235i
\(324\) 0 0
\(325\) 210.221 0.646833
\(326\) 292.922 + 28.7485i 0.898533 + 0.0881857i
\(327\) 0 0
\(328\) −131.899 + 436.433i −0.402131 + 1.33059i
\(329\) −64.9119 −0.197301
\(330\) 0 0
\(331\) 439.440i 1.32761i −0.747904 0.663807i \(-0.768940\pi\)
0.747904 0.663807i \(-0.231060\pi\)
\(332\) −110.583 + 557.942i −0.333080 + 1.68055i
\(333\) 0 0
\(334\) −210.875 20.6962i −0.631363 0.0619645i
\(335\) 500.902i 1.49523i
\(336\) 0 0
\(337\) −374.818 −1.11222 −0.556109 0.831109i \(-0.687706\pi\)
−0.556109 + 0.831109i \(0.687706\pi\)
\(338\) 21.5061 219.128i 0.0636276 0.648308i
\(339\) 0 0
\(340\) 40.8163 + 8.08967i 0.120048 + 0.0237931i
\(341\) −969.295 −2.84251
\(342\) 0 0
\(343\) 348.568i 1.01623i
\(344\) −517.816 156.495i −1.50528 0.454926i
\(345\) 0 0
\(346\) −36.4178 + 371.065i −0.105254 + 1.07244i
\(347\) 329.030i 0.948213i −0.880467 0.474107i \(-0.842771\pi\)
0.880467 0.474107i \(-0.157229\pi\)
\(348\) 0 0
\(349\) 372.506 1.06735 0.533676 0.845689i \(-0.320810\pi\)
0.533676 + 0.845689i \(0.320810\pi\)
\(350\) −375.090 36.8129i −1.07169 0.105180i
\(351\) 0 0
\(352\) 507.115 + 269.938i 1.44067 + 0.766871i
\(353\) −217.758 −0.616879 −0.308440 0.951244i \(-0.599807\pi\)
−0.308440 + 0.951244i \(0.599807\pi\)
\(354\) 0 0
\(355\) 51.7370i 0.145738i
\(356\) 165.218 + 32.7457i 0.464094 + 0.0919822i
\(357\) 0 0
\(358\) −381.361 37.4284i −1.06526 0.104549i
\(359\) 145.576i 0.405505i −0.979230 0.202753i \(-0.935011\pi\)
0.979230 0.202753i \(-0.0649887\pi\)
\(360\) 0 0
\(361\) 167.947 0.465228
\(362\) −40.0388 + 407.959i −0.110604 + 1.12696i
\(363\) 0 0
\(364\) 41.0666 207.200i 0.112820 0.569232i
\(365\) 582.236 1.59517
\(366\) 0 0
\(367\) 53.4769i 0.145714i 0.997342 + 0.0728568i \(0.0232116\pi\)
−0.997342 + 0.0728568i \(0.976788\pi\)
\(368\) 101.196 245.262i 0.274989 0.666474i
\(369\) 0 0
\(370\) 62.8380 640.263i 0.169833 1.73044i
\(371\) 53.8491i 0.145146i
\(372\) 0 0
\(373\) −341.504 −0.915561 −0.457781 0.889065i \(-0.651355\pi\)
−0.457781 + 0.889065i \(0.651355\pi\)
\(374\) 51.3565 + 5.04033i 0.137317 + 0.0134768i
\(375\) 0 0
\(376\) 72.2488 + 21.8350i 0.192151 + 0.0580719i
\(377\) 287.837 0.763492
\(378\) 0 0
\(379\) 220.189i 0.580972i 0.956879 + 0.290486i \(0.0938170\pi\)
−0.956879 + 0.290486i \(0.906183\pi\)
\(380\) −78.2079 + 394.596i −0.205810 + 1.03841i
\(381\) 0 0
\(382\) 178.772 + 17.5454i 0.467990 + 0.0459304i
\(383\) 671.073i 1.75215i −0.482175 0.876075i \(-0.660153\pi\)
0.482175 0.876075i \(-0.339847\pi\)
\(384\) 0 0
\(385\) −894.035 −2.32217
\(386\) −32.7399 + 333.590i −0.0848183 + 0.864222i
\(387\) 0 0
\(388\) −246.782 48.9115i −0.636036 0.126061i
\(389\) −484.924 −1.24659 −0.623296 0.781986i \(-0.714207\pi\)
−0.623296 + 0.781986i \(0.714207\pi\)
\(390\) 0 0
\(391\) 23.8323i 0.0609523i
\(392\) 3.84677 12.7284i 0.00981320 0.0324704i
\(393\) 0 0
\(394\) 36.1938 368.782i 0.0918624 0.935995i
\(395\) 339.058i 0.858376i
\(396\) 0 0
\(397\) −279.373 −0.703711 −0.351855 0.936054i \(-0.614449\pi\)
−0.351855 + 0.936054i \(0.614449\pi\)
\(398\) 273.935 + 26.8851i 0.688278 + 0.0675505i
\(399\) 0 0
\(400\) 405.103 + 167.146i 1.01276 + 0.417866i
\(401\) 582.199 1.45187 0.725934 0.687765i \(-0.241408\pi\)
0.725934 + 0.687765i \(0.241408\pi\)
\(402\) 0 0
\(403\) 414.401i 1.02829i
\(404\) 186.823 + 37.0279i 0.462434 + 0.0916531i
\(405\) 0 0
\(406\) −513.577 50.4046i −1.26497 0.124149i
\(407\) 797.842i 1.96030i
\(408\) 0 0
\(409\) −436.661 −1.06763 −0.533815 0.845601i \(-0.679242\pi\)
−0.533815 + 0.845601i \(0.679242\pi\)
\(410\) −80.5827 + 821.065i −0.196543 + 2.00260i
\(411\) 0 0
\(412\) 41.7792 210.796i 0.101406 0.511641i
\(413\) 154.203 0.373374
\(414\) 0 0
\(415\) 1029.24i 2.48010i
\(416\) −115.406 + 216.806i −0.277419 + 0.521168i
\(417\) 0 0
\(418\) −48.7281 + 496.495i −0.116574 + 1.18779i
\(419\) 758.271i 1.80972i 0.425714 + 0.904858i \(0.360023\pi\)
−0.425714 + 0.904858i \(0.639977\pi\)
\(420\) 0 0
\(421\) 523.348 1.24311 0.621553 0.783372i \(-0.286502\pi\)
0.621553 + 0.783372i \(0.286502\pi\)
\(422\) −607.588 59.6312i −1.43978 0.141306i
\(423\) 0 0
\(424\) 18.1137 59.9356i 0.0427211 0.141358i
\(425\) 39.3641 0.0926215
\(426\) 0 0
\(427\) 462.225i 1.08249i
\(428\) 20.5853 103.863i 0.0480965 0.242670i
\(429\) 0 0
\(430\) −974.171 95.6092i −2.26551 0.222347i
\(431\) 729.146i 1.69176i 0.533377 + 0.845878i \(0.320923\pi\)
−0.533377 + 0.845878i \(0.679077\pi\)
\(432\) 0 0
\(433\) −491.219 −1.13445 −0.567227 0.823561i \(-0.691984\pi\)
−0.567227 + 0.823561i \(0.691984\pi\)
\(434\) −72.5679 + 739.402i −0.167207 + 1.70369i
\(435\) 0 0
\(436\) −325.919 64.5963i −0.747521 0.148157i
\(437\) 230.402 0.527236
\(438\) 0 0
\(439\) 188.693i 0.429825i 0.976633 + 0.214913i \(0.0689467\pi\)
−0.976633 + 0.214913i \(0.931053\pi\)
\(440\) 995.087 + 300.735i 2.26156 + 0.683489i
\(441\) 0 0
\(442\) −2.15488 + 21.9563i −0.00487530 + 0.0496749i
\(443\) 413.208i 0.932749i −0.884587 0.466375i \(-0.845560\pi\)
0.884587 0.466375i \(-0.154440\pi\)
\(444\) 0 0
\(445\) 304.779 0.684896
\(446\) −34.2800 3.36438i −0.0768610 0.00754346i
\(447\) 0 0
\(448\) 243.882 366.630i 0.544378 0.818371i
\(449\) 638.253 1.42150 0.710749 0.703446i \(-0.248356\pi\)
0.710749 + 0.703446i \(0.248356\pi\)
\(450\) 0 0
\(451\) 1023.14i 2.26861i
\(452\) −60.9255 12.0753i −0.134791 0.0267152i
\(453\) 0 0
\(454\) 81.5772 + 8.00633i 0.179686 + 0.0176351i
\(455\) 382.225i 0.840055i
\(456\) 0 0
\(457\) −230.687 −0.504786 −0.252393 0.967625i \(-0.581218\pi\)
−0.252393 + 0.967625i \(0.581218\pi\)
\(458\) 26.0699 265.629i 0.0569213 0.579976i
\(459\) 0 0
\(460\) 93.3386 470.938i 0.202910 1.02378i
\(461\) 400.188 0.868088 0.434044 0.900892i \(-0.357086\pi\)
0.434044 + 0.900892i \(0.357086\pi\)
\(462\) 0 0
\(463\) 296.656i 0.640727i 0.947295 + 0.320363i \(0.103805\pi\)
−0.947295 + 0.320363i \(0.896195\pi\)
\(464\) 554.671 + 228.859i 1.19541 + 0.493230i
\(465\) 0 0
\(466\) −71.9561 + 733.168i −0.154412 + 1.57332i
\(467\) 127.057i 0.272070i −0.990704 0.136035i \(-0.956564\pi\)
0.990704 0.136035i \(-0.0434359\pi\)
\(468\) 0 0
\(469\) 476.141 1.01523
\(470\) 135.922 + 13.3400i 0.289196 + 0.0283829i
\(471\) 0 0
\(472\) −171.633 51.8709i −0.363629 0.109896i
\(473\) −1213.93 −2.56645
\(474\) 0 0
\(475\) 380.558i 0.801174i
\(476\) 7.68977 38.7986i 0.0161550 0.0815096i
\(477\) 0 0
\(478\) −574.361 56.3701i −1.20159 0.117929i
\(479\) 12.3150i 0.0257098i 0.999917 + 0.0128549i \(0.00409195\pi\)
−0.999917 + 0.0128549i \(0.995908\pi\)
\(480\) 0 0
\(481\) 341.100 0.709147
\(482\) 20.1185 204.990i 0.0417397 0.425290i
\(483\) 0 0
\(484\) 789.827 + 156.542i 1.63187 + 0.323433i
\(485\) −455.241 −0.938642
\(486\) 0 0
\(487\) 181.054i 0.371773i −0.982571 0.185887i \(-0.940484\pi\)
0.982571 0.185887i \(-0.0595157\pi\)
\(488\) −155.483 + 514.469i −0.318613 + 1.05424i
\(489\) 0 0
\(490\) 2.35016 23.9460i 0.00479624 0.0488694i
\(491\) 497.080i 1.01238i −0.862421 0.506191i \(-0.831053\pi\)
0.862421 0.506191i \(-0.168947\pi\)
\(492\) 0 0
\(493\) 53.8978 0.109326
\(494\) −212.265 20.8326i −0.429687 0.0421712i
\(495\) 0 0
\(496\) 329.490 798.565i 0.664294 1.61001i
\(497\) 49.1795 0.0989527
\(498\) 0 0
\(499\) 762.567i 1.52819i −0.645103 0.764096i \(-0.723186\pi\)
0.645103 0.764096i \(-0.276814\pi\)
\(500\) 67.8589 + 13.4495i 0.135718 + 0.0268989i
\(501\) 0 0
\(502\) 139.304 + 13.6719i 0.277498 + 0.0272348i
\(503\) 994.596i 1.97733i −0.150146 0.988664i \(-0.547974\pi\)
0.150146 0.988664i \(-0.452026\pi\)
\(504\) 0 0
\(505\) 344.635 0.682446
\(506\) 58.1554 592.551i 0.114932 1.17105i
\(507\) 0 0
\(508\) −122.453 + 617.835i −0.241050 + 1.21621i
\(509\) −53.7310 −0.105562 −0.0527810 0.998606i \(-0.516809\pi\)
−0.0527810 + 0.998606i \(0.516809\pi\)
\(510\) 0 0
\(511\) 553.454i 1.08308i
\(512\) −394.774 + 326.033i −0.771043 + 0.636783i
\(513\) 0 0
\(514\) 18.9649 193.235i 0.0368967 0.375944i
\(515\) 388.858i 0.755064i
\(516\) 0 0
\(517\) 169.375 0.327611
\(518\) −608.613 59.7318i −1.17493 0.115312i
\(519\) 0 0
\(520\) −128.573 + 425.427i −0.247255 + 0.818129i
\(521\) −616.206 −1.18274 −0.591369 0.806401i \(-0.701412\pi\)
−0.591369 + 0.806401i \(0.701412\pi\)
\(522\) 0 0
\(523\) 683.938i 1.30772i −0.756615 0.653860i \(-0.773148\pi\)
0.756615 0.653860i \(-0.226852\pi\)
\(524\) 36.5962 184.645i 0.0698401 0.352376i
\(525\) 0 0
\(526\) −16.7291 1.64186i −0.0318043 0.00312140i
\(527\) 77.5971i 0.147243i
\(528\) 0 0
\(529\) 254.022 0.480194
\(530\) 11.0665 112.757i 0.0208801 0.212749i
\(531\) 0 0
\(532\) 375.090 + 74.3418i 0.705057 + 0.139740i
\(533\) −437.421 −0.820678
\(534\) 0 0
\(535\) 191.597i 0.358125i
\(536\) −529.959 160.164i −0.988729 0.298814i
\(537\) 0 0
\(538\) 54.9320 559.707i 0.102104 1.04035i
\(539\) 29.8395i 0.0553608i
\(540\) 0 0
\(541\) 518.000 0.957486 0.478743 0.877955i \(-0.341093\pi\)
0.478743 + 0.877955i \(0.341093\pi\)
\(542\) 735.379 + 72.1731i 1.35679 + 0.133161i
\(543\) 0 0
\(544\) −21.6100 + 40.5972i −0.0397242 + 0.0746272i
\(545\) −601.227 −1.10317
\(546\) 0 0
\(547\) 294.263i 0.537957i 0.963146 + 0.268979i \(0.0866861\pi\)
−0.963146 + 0.268979i \(0.913314\pi\)
\(548\) 461.021 + 91.3732i 0.841280 + 0.166739i
\(549\) 0 0
\(550\) 978.723 + 96.0559i 1.77950 + 0.174647i
\(551\) 521.064i 0.945669i
\(552\) 0 0
\(553\) −322.298 −0.582817
\(554\) −25.9638 + 264.547i −0.0468660 + 0.477522i
\(555\) 0 0
\(556\) −30.8700 + 155.754i −0.0555216 + 0.280133i
\(557\) −395.706 −0.710424 −0.355212 0.934786i \(-0.615591\pi\)
−0.355212 + 0.934786i \(0.615591\pi\)
\(558\) 0 0
\(559\) 518.989i 0.928424i
\(560\) 303.907 736.561i 0.542691 1.31529i
\(561\) 0 0
\(562\) 7.28954 74.2739i 0.0129707 0.132160i
\(563\) 259.253i 0.460484i 0.973133 + 0.230242i \(0.0739518\pi\)
−0.973133 + 0.230242i \(0.926048\pi\)
\(564\) 0 0
\(565\) −112.390 −0.198920
\(566\) −310.843 30.5074i −0.549193 0.0539001i
\(567\) 0 0
\(568\) −54.7382 16.5430i −0.0963700 0.0291250i
\(569\) 247.188 0.434426 0.217213 0.976124i \(-0.430303\pi\)
0.217213 + 0.976124i \(0.430303\pi\)
\(570\) 0 0
\(571\) 601.307i 1.05308i −0.850151 0.526539i \(-0.823489\pi\)
0.850151 0.526539i \(-0.176511\pi\)
\(572\) −107.155 + 540.648i −0.187334 + 0.945189i
\(573\) 0 0
\(574\) 780.477 + 76.5992i 1.35972 + 0.133448i
\(575\) 454.184i 0.789885i
\(576\) 0 0
\(577\) −754.648 −1.30788 −0.653941 0.756545i \(-0.726886\pi\)
−0.653941 + 0.756545i \(0.726886\pi\)
\(578\) 56.0525 571.125i 0.0969767 0.988105i
\(579\) 0 0
\(580\) 1065.05 + 211.089i 1.83628 + 0.363947i
\(581\) 978.363 1.68393
\(582\) 0 0
\(583\) 140.509i 0.241010i
\(584\) −186.171 + 616.010i −0.318785 + 1.05481i
\(585\) 0 0
\(586\) 5.07445 51.7040i 0.00865946 0.0882321i
\(587\) 243.805i 0.415342i 0.978199 + 0.207671i \(0.0665883\pi\)
−0.978199 + 0.207671i \(0.933412\pi\)
\(588\) 0 0
\(589\) 750.180 1.27365
\(590\) −322.894 31.6901i −0.547278 0.0537121i
\(591\) 0 0
\(592\) 657.311 + 271.208i 1.11032 + 0.458122i
\(593\) 1091.73 1.84103 0.920516 0.390704i \(-0.127768\pi\)
0.920516 + 0.390704i \(0.127768\pi\)
\(594\) 0 0
\(595\) 71.5722i 0.120289i
\(596\) −450.545 89.2967i −0.755947 0.149827i
\(597\) 0 0
\(598\) 253.332 + 24.8630i 0.423632 + 0.0415770i
\(599\) 940.721i 1.57049i −0.619188 0.785243i \(-0.712538\pi\)
0.619188 0.785243i \(-0.287462\pi\)
\(600\) 0 0
\(601\) 1052.23 1.75079 0.875396 0.483406i \(-0.160600\pi\)
0.875396 + 0.483406i \(0.160600\pi\)
\(602\) −90.8829 + 926.015i −0.150968 + 1.53823i
\(603\) 0 0
\(604\) −124.521 + 628.267i −0.206160 + 1.04018i
\(605\) 1457.00 2.40827
\(606\) 0 0
\(607\) 439.798i 0.724544i 0.932072 + 0.362272i \(0.117999\pi\)
−0.932072 + 0.362272i \(0.882001\pi\)
\(608\) −392.479 208.917i −0.645524 0.343614i
\(609\) 0 0
\(610\) −94.9912 + 967.875i −0.155723 + 1.58668i
\(611\) 72.4124i 0.118515i
\(612\) 0 0
\(613\) 449.866 0.733876 0.366938 0.930245i \(-0.380406\pi\)
0.366938 + 0.930245i \(0.380406\pi\)
\(614\) 222.271 + 21.8146i 0.362005 + 0.0355287i
\(615\) 0 0
\(616\) 285.869 945.896i 0.464073 1.53555i
\(617\) −848.536 −1.37526 −0.687630 0.726061i \(-0.741349\pi\)
−0.687630 + 0.726061i \(0.741349\pi\)
\(618\) 0 0
\(619\) 539.918i 0.872242i 0.899888 + 0.436121i \(0.143648\pi\)
−0.899888 + 0.436121i \(0.856352\pi\)
\(620\) 303.907 1533.35i 0.490172 2.47315i
\(621\) 0 0
\(622\) −644.387 63.2428i −1.03599 0.101677i
\(623\) 289.713i 0.465028i
\(624\) 0 0
\(625\) −559.555 −0.895288
\(626\) 71.5332 728.859i 0.114270 1.16431i
\(627\) 0 0
\(628\) −884.150 175.236i −1.40788 0.279038i
\(629\) 63.8714 0.101544
\(630\) 0 0
\(631\) 43.6036i 0.0691024i 0.999403 + 0.0345512i \(0.0110002\pi\)
−0.999403 + 0.0345512i \(0.989000\pi\)
\(632\) 358.726 + 108.414i 0.567605 + 0.171542i
\(633\) 0 0
\(634\) 12.6983 129.384i 0.0200288 0.204076i
\(635\) 1139.73i 1.79485i
\(636\) 0 0
\(637\) 12.7572 0.0200270
\(638\) 1340.08 + 131.521i 2.10043 + 0.206145i
\(639\) 0 0
\(640\) −586.021 + 717.585i −0.915657 + 1.12123i
\(641\) −167.263 −0.260940 −0.130470 0.991452i \(-0.541649\pi\)
−0.130470 + 0.991452i \(0.541649\pi\)
\(642\) 0 0
\(643\) 745.770i 1.15983i 0.814678 + 0.579914i \(0.196914\pi\)
−0.814678 + 0.579914i \(0.803086\pi\)
\(644\) −447.658 88.7246i −0.695121 0.137771i
\(645\) 0 0
\(646\) −39.7470 3.90093i −0.0615279 0.00603860i
\(647\) 596.836i 0.922467i 0.887279 + 0.461233i \(0.152593\pi\)
−0.887279 + 0.461233i \(0.847407\pi\)
\(648\) 0 0
\(649\) −402.363 −0.619974
\(650\) −41.0666 + 418.431i −0.0631793 + 0.643740i
\(651\) 0 0
\(652\) −114.444 + 577.426i −0.175528 + 0.885623i
\(653\) −790.871 −1.21113 −0.605567 0.795794i \(-0.707054\pi\)
−0.605567 + 0.795794i \(0.707054\pi\)
\(654\) 0 0
\(655\) 340.617i 0.520026i
\(656\) −842.926 347.793i −1.28495 0.530173i
\(657\) 0 0
\(658\) 12.6805 129.203i 0.0192713 0.196357i
\(659\) 402.569i 0.610878i 0.952212 + 0.305439i \(0.0988033\pi\)
−0.952212 + 0.305439i \(0.901197\pi\)
\(660\) 0 0
\(661\) 486.544 0.736072 0.368036 0.929811i \(-0.380030\pi\)
0.368036 + 0.929811i \(0.380030\pi\)
\(662\) 874.678 + 85.8445i 1.32127 + 0.129674i
\(663\) 0 0
\(664\) −1088.95 329.101i −1.63998 0.495634i
\(665\) 691.933 1.04050
\(666\) 0 0
\(667\) 621.873i 0.932343i
\(668\) 82.3888 415.691i 0.123337 0.622292i
\(669\) 0 0
\(670\) −997.015 97.8511i −1.48808 0.146046i
\(671\) 1206.08i 1.79744i
\(672\) 0 0
\(673\) −171.727 −0.255167 −0.127583 0.991828i \(-0.540722\pi\)
−0.127583 + 0.991828i \(0.540722\pi\)
\(674\) 73.2205 746.051i 0.108636 1.10690i
\(675\) 0 0
\(676\) 431.959 + 85.6132i 0.638993 + 0.126647i
\(677\) 213.095 0.314763 0.157382 0.987538i \(-0.449695\pi\)
0.157382 + 0.987538i \(0.449695\pi\)
\(678\) 0 0
\(679\) 432.737i 0.637316i
\(680\) −24.0754 + 79.6619i −0.0354050 + 0.117150i
\(681\) 0 0
\(682\) 189.352 1929.32i 0.277642 2.82892i
\(683\) 602.265i 0.881794i 0.897558 + 0.440897i \(0.145340\pi\)
−0.897558 + 0.440897i \(0.854660\pi\)
\(684\) 0 0
\(685\) 850.451 1.24153
\(686\) −693.803 68.0927i −1.01137 0.0992605i
\(687\) 0 0
\(688\) 412.648 1000.11i 0.599779 1.45365i
\(689\) 60.0713 0.0871862
\(690\) 0 0
\(691\) 1227.31i 1.77614i −0.459705 0.888071i \(-0.652045\pi\)
0.459705 0.888071i \(-0.347955\pi\)
\(692\) −731.466 144.975i −1.05703 0.209501i
\(693\) 0 0
\(694\) 654.913 + 64.2759i 0.943679 + 0.0926166i
\(695\) 287.321i 0.413412i
\(696\) 0 0
\(697\) −81.9078 −0.117515
\(698\) −72.7689 + 741.449i −0.104253 + 1.06225i
\(699\) 0 0
\(700\) 146.547 739.402i 0.209353 1.05629i
\(701\) −133.314 −0.190176 −0.0950882 0.995469i \(-0.530313\pi\)
−0.0950882 + 0.995469i \(0.530313\pi\)
\(702\) 0 0
\(703\) 617.485i 0.878357i
\(704\) −636.360 + 956.649i −0.903921 + 1.35888i
\(705\) 0 0
\(706\) 42.5390 433.434i 0.0602536 0.613929i
\(707\) 327.599i 0.463364i
\(708\) 0 0
\(709\) −610.256 −0.860728 −0.430364 0.902655i \(-0.641615\pi\)
−0.430364 + 0.902655i \(0.641615\pi\)
\(710\) −102.979 10.1068i −0.145041 0.0142349i
\(711\) 0 0
\(712\) −97.4534 + 322.458i −0.136873 + 0.452891i
\(713\) −895.316 −1.25570
\(714\) 0 0
\(715\) 997.340i 1.39488i
\(716\) 148.998 751.764i 0.208097 1.04995i
\(717\) 0 0
\(718\) 289.761 + 28.4383i 0.403566 + 0.0396077i
\(719\) 967.279i 1.34531i 0.739956 + 0.672656i \(0.234846\pi\)
−0.739956 + 0.672656i \(0.765154\pi\)
\(720\) 0 0
\(721\) −369.635 −0.512671
\(722\) −32.8084 + 334.289i −0.0454411 + 0.463004i
\(723\) 0 0
\(724\) −804.196 159.389i −1.11077 0.220151i
\(725\) 1027.15 1.41676
\(726\) 0 0
\(727\) 1396.59i 1.92103i 0.278220 + 0.960517i \(0.410256\pi\)
−0.278220 + 0.960517i \(0.589744\pi\)
\(728\) 404.397 + 122.217i 0.555490 + 0.167880i
\(729\) 0 0
\(730\) −113.740 + 1158.90i −0.155808 + 1.58754i
\(731\) 97.1814i 0.132943i
\(732\) 0 0
\(733\) −306.229 −0.417775 −0.208888 0.977940i \(-0.566984\pi\)
−0.208888 + 0.977940i \(0.566984\pi\)
\(734\) −106.442 10.4467i −0.145017 0.0142325i
\(735\) 0 0
\(736\) 468.411 + 249.336i 0.636428 + 0.338772i
\(737\) −1242.40 −1.68575
\(738\) 0 0
\(739\) 463.182i 0.626769i −0.949626 0.313384i \(-0.898537\pi\)
0.949626 0.313384i \(-0.101463\pi\)
\(740\) 1262.13 + 250.150i 1.70558 + 0.338041i
\(741\) 0 0
\(742\) −107.183 10.5194i −0.144452 0.0141771i
\(743\) 810.697i 1.09111i 0.838074 + 0.545557i \(0.183682\pi\)
−0.838074 + 0.545557i \(0.816318\pi\)
\(744\) 0 0
\(745\) −831.125 −1.11560
\(746\) 66.7128 679.743i 0.0894273 0.911183i
\(747\) 0 0
\(748\) −20.0649 + 101.237i −0.0268248 + 0.135344i
\(749\) −182.126 −0.243158
\(750\) 0 0
\(751\) 990.928i 1.31948i 0.751495 + 0.659739i \(0.229333\pi\)
−0.751495 + 0.659739i \(0.770667\pi\)
\(752\) −57.5751 + 139.541i −0.0765626 + 0.185560i
\(753\) 0 0
\(754\) −56.2288 + 572.920i −0.0745739 + 0.759841i
\(755\) 1158.97i 1.53506i
\(756\) 0 0
\(757\) −320.001 −0.422723 −0.211361 0.977408i \(-0.567790\pi\)
−0.211361 + 0.977408i \(0.567790\pi\)
\(758\) −438.271 43.0137i −0.578194 0.0567464i
\(759\) 0 0
\(760\) −770.141 232.752i −1.01334 0.306253i
\(761\) 635.976 0.835710 0.417855 0.908514i \(-0.362782\pi\)
0.417855 + 0.908514i \(0.362782\pi\)
\(762\) 0 0
\(763\) 571.506i 0.749025i
\(764\) −69.8461 + 352.407i −0.0914217 + 0.461266i
\(765\) 0 0
\(766\) 1335.73 + 131.094i 1.74377 + 0.171141i
\(767\) 172.021i 0.224278i
\(768\) 0 0
\(769\) 305.852 0.397727 0.198864 0.980027i \(-0.436275\pi\)
0.198864 + 0.980027i \(0.436275\pi\)
\(770\) 174.649 1779.52i 0.226818 2.31107i
\(771\) 0 0
\(772\) −657.593 130.333i −0.851805 0.168825i
\(773\) −187.263 −0.242255 −0.121128 0.992637i \(-0.538651\pi\)
−0.121128 + 0.992637i \(0.538651\pi\)
\(774\) 0 0
\(775\) 1478.80i 1.90813i
\(776\) 145.564 481.649i 0.187582 0.620681i
\(777\) 0 0
\(778\) 94.7298 965.211i 0.121761 1.24063i
\(779\) 791.854i 1.01650i
\(780\) 0 0
\(781\) −128.324 −0.164307
\(782\) 47.4368 + 4.65564i 0.0606608 + 0.00595350i
\(783\) 0 0
\(784\) 24.5836 + 10.1432i 0.0313566 + 0.0129378i
\(785\) −1631.00 −2.07771
\(786\) 0 0
\(787\) 185.475i 0.235674i 0.993033 + 0.117837i \(0.0375960\pi\)
−0.993033 + 0.117837i \(0.962404\pi\)
\(788\) 726.967 + 144.083i 0.922547 + 0.182846i
\(789\) 0 0
\(790\) 674.874 + 66.2349i 0.854271 + 0.0838417i
\(791\) 106.834i 0.135062i
\(792\) 0 0
\(793\) −515.634 −0.650232
\(794\) 54.5754 556.075i 0.0687348 0.700346i
\(795\) 0 0
\(796\) −107.026 + 539.998i −0.134455 + 0.678389i
\(797\) 1092.40 1.37064 0.685322 0.728240i \(-0.259662\pi\)
0.685322 + 0.728240i \(0.259662\pi\)
\(798\) 0 0
\(799\) 13.5593i 0.0169704i
\(800\) −411.831 + 773.679i −0.514789 + 0.967099i
\(801\) 0 0
\(802\) −113.732 + 1158.83i −0.141811 + 1.44493i
\(803\) 1444.13i 1.79842i
\(804\) 0 0
\(805\) −825.800 −1.02584
\(806\) 824.838 + 80.9530i 1.02337 + 0.100438i
\(807\) 0 0
\(808\) −110.197 + 364.627i −0.136383 + 0.451270i
\(809\) 51.1143 0.0631821 0.0315911 0.999501i \(-0.489943\pi\)
0.0315911 + 0.999501i \(0.489943\pi\)
\(810\) 0 0
\(811\) 680.159i 0.838667i 0.907832 + 0.419333i \(0.137736\pi\)
−0.907832 + 0.419333i \(0.862264\pi\)
\(812\) 200.654 1012.40i 0.247111 1.24679i
\(813\) 0 0
\(814\) 1588.05 + 155.858i 1.95093 + 0.191472i
\(815\) 1065.19i 1.30698i
\(816\) 0 0
\(817\) 939.514 1.14996
\(818\) 85.3016 869.146i 0.104281 1.06253i
\(819\) 0 0
\(820\) −1618.54 320.789i −1.97382 0.391207i
\(821\) 124.267 0.151361 0.0756805 0.997132i \(-0.475887\pi\)
0.0756805 + 0.997132i \(0.475887\pi\)
\(822\) 0 0
\(823\) 1107.83i 1.34609i −0.739602 0.673044i \(-0.764986\pi\)
0.739602 0.673044i \(-0.235014\pi\)
\(824\) 411.415 + 124.338i 0.499290 + 0.150895i
\(825\) 0 0
\(826\) −30.1236 + 306.932i −0.0364692 + 0.371588i
\(827\) 856.831i 1.03607i −0.855359 0.518036i \(-0.826663\pi\)
0.855359 0.518036i \(-0.173337\pi\)
\(828\) 0 0
\(829\) −59.5071 −0.0717818 −0.0358909 0.999356i \(-0.511427\pi\)
−0.0358909 + 0.999356i \(0.511427\pi\)
\(830\) −2048.64 201.062i −2.46824 0.242243i
\(831\) 0 0
\(832\) −408.994 272.062i −0.491579 0.326997i
\(833\) 2.38881 0.00286771
\(834\) 0 0
\(835\) 766.830i 0.918359i
\(836\) −978.723 193.980i −1.17072 0.232034i
\(837\) 0 0
\(838\) −1509.29 148.128i −1.80106 0.176764i
\(839\) 464.691i 0.553863i 0.960890 + 0.276932i \(0.0893176\pi\)
−0.960890 + 0.276932i \(0.910682\pi\)
\(840\) 0 0
\(841\) 565.391 0.672284
\(842\) −102.236 + 1041.69i −0.121420 + 1.23716i
\(843\) 0 0
\(844\) 237.384 1197.72i 0.281261 1.41910i
\(845\) 796.840 0.943006
\(846\) 0 0
\(847\) 1384.98i 1.63516i
\(848\) 115.759 + 47.7627i 0.136509 + 0.0563239i
\(849\) 0 0
\(850\) −7.68977 + 78.3518i −0.00904679 + 0.0921786i
\(851\) 736.948i 0.865979i
\(852\) 0 0
\(853\) −1366.33 −1.60179 −0.800896 0.598803i \(-0.795643\pi\)
−0.800896 + 0.598803i \(0.795643\pi\)
\(854\) 920.029 + 90.2955i 1.07732 + 0.105732i
\(855\) 0 0
\(856\) 202.711 + 61.2633i 0.236812 + 0.0715693i
\(857\) 1677.60 1.95752 0.978762 0.205000i \(-0.0657193\pi\)
0.978762 + 0.205000i \(0.0657193\pi\)
\(858\) 0 0
\(859\) 1645.03i 1.91505i 0.288355 + 0.957524i \(0.406892\pi\)
−0.288355 + 0.957524i \(0.593108\pi\)
\(860\) 380.608 1920.35i 0.442568 2.23296i
\(861\) 0 0
\(862\) −1451.32 142.439i −1.68367 0.165242i
\(863\) 294.311i 0.341033i −0.985355 0.170516i \(-0.945456\pi\)
0.985355 0.170516i \(-0.0545436\pi\)
\(864\) 0 0
\(865\) −1349.34 −1.55994
\(866\) 95.9594 977.740i 0.110808 1.12903i
\(867\) 0 0
\(868\) −1457.56 288.884i −1.67921 0.332815i
\(869\) 840.971 0.967746
\(870\) 0 0
\(871\) 531.159i 0.609826i
\(872\) 192.243 636.102i 0.220462 0.729475i
\(873\) 0 0
\(874\) −45.0090 + 458.601i −0.0514977 + 0.524715i
\(875\) 118.992i 0.135991i
\(876\) 0 0
\(877\) 719.169 0.820033 0.410016 0.912078i \(-0.365523\pi\)
0.410016 + 0.912078i \(0.365523\pi\)
\(878\) −375.582 36.8612i −0.427770 0.0419831i
\(879\) 0 0
\(880\) −792.984 + 1921.91i −0.901118 + 2.18399i
\(881\) 16.3083 0.0185112 0.00925559 0.999957i \(-0.497054\pi\)
0.00925559 + 0.999957i \(0.497054\pi\)
\(882\) 0 0
\(883\) 1190.35i 1.34807i −0.738698 0.674036i \(-0.764559\pi\)
0.738698 0.674036i \(-0.235441\pi\)
\(884\) −43.2817 8.57831i −0.0489612 0.00970398i
\(885\) 0 0
\(886\) 822.464 + 80.7200i 0.928289 + 0.0911061i
\(887\) 400.666i 0.451709i −0.974161 0.225855i \(-0.927483\pi\)
0.974161 0.225855i \(-0.0725174\pi\)
\(888\) 0 0
\(889\) 1083.39 1.21866
\(890\) −59.5384 + 606.643i −0.0668971 + 0.681621i
\(891\) 0 0
\(892\) 13.3932 67.5750i 0.0150148 0.0757567i
\(893\) −131.087 −0.146793
\(894\) 0 0
\(895\) 1386.79i 1.54948i
\(896\) 682.112 + 557.052i 0.761286 + 0.621710i
\(897\) 0 0
\(898\) −124.682 + 1270.40i −0.138845 + 1.41470i
\(899\) 2024.79i 2.25227i
\(900\) 0 0
\(901\) 11.2484 0.0124844
\(902\) −2036.50 199.870i −2.25776 0.221586i
\(903\) 0 0
\(904\) 35.9368 118.909i 0.0397531 0.131537i
\(905\) −1483.51 −1.63924
\(906\) 0 0
\(907\) 1260.24i 1.38946i 0.719270 + 0.694731i \(0.244476\pi\)
−0.719270 + 0.694731i \(0.755524\pi\)
\(908\) −31.8722 + 160.810i −0.0351015 + 0.177104i
\(909\) 0 0
\(910\) 760.795 + 74.6675i 0.836038 + 0.0820522i
\(911\) 964.398i 1.05862i 0.848430 + 0.529308i \(0.177548\pi\)
−0.848430 + 0.529308i \(0.822452\pi\)
\(912\) 0 0
\(913\) −2552.84 −2.79610
\(914\) 45.0646 459.168i 0.0493048 0.502372i
\(915\) 0 0
\(916\) 523.625 + 103.781i 0.571643 + 0.113298i
\(917\) −323.779 −0.353086
\(918\) 0 0
\(919\) 424.406i 0.461813i −0.972976 0.230906i \(-0.925831\pi\)
0.972976 0.230906i \(-0.0741691\pi\)
\(920\) 919.139 + 277.782i 0.999064 + 0.301937i
\(921\) 0 0
\(922\) −78.1767 + 796.550i −0.0847903 + 0.863937i
\(923\) 54.8621i 0.0594389i
\(924\) 0 0
\(925\) 1217.23 1.31592
\(926\) −590.476 57.9517i −0.637663 0.0625829i
\(927\) 0 0
\(928\) −563.883 + 1059.33i −0.607633 + 1.14152i
\(929\) −858.458 −0.924067 −0.462033 0.886862i \(-0.652880\pi\)
−0.462033 + 0.886862i \(0.652880\pi\)
\(930\) 0 0
\(931\) 23.0941i 0.0248057i
\(932\) −1445.27 286.448i −1.55072 0.307348i
\(933\) 0 0
\(934\) 252.898 + 24.8205i 0.270769 + 0.0265744i
\(935\) 186.753i 0.199736i
\(936\) 0 0
\(937\) 858.258 0.915964 0.457982 0.888962i \(-0.348572\pi\)
0.457982 + 0.888962i \(0.348572\pi\)
\(938\) −93.0140 + 947.729i −0.0991621 + 1.01037i
\(939\) 0 0
\(940\) −53.1047 + 267.939i −0.0564944 + 0.285041i
\(941\) −937.106 −0.995862 −0.497931 0.867217i \(-0.665907\pi\)
−0.497931 + 0.867217i \(0.665907\pi\)
\(942\) 0 0
\(943\) 945.052i 1.00218i
\(944\) 136.774 331.491i 0.144888 0.351156i
\(945\) 0 0
\(946\) 237.141 2416.25i 0.250677 2.55418i
\(947\) 887.159i 0.936810i −0.883514 0.468405i \(-0.844829\pi\)
0.883514 0.468405i \(-0.155171\pi\)
\(948\) 0 0
\(949\) −617.405 −0.650585
\(950\) −757.476 74.3418i −0.797344 0.0782546i
\(951\) 0 0
\(952\) 75.7239 + 22.8853i 0.0795419 + 0.0240392i
\(953\) 1078.46 1.13164 0.565821 0.824528i \(-0.308559\pi\)
0.565821 + 0.824528i \(0.308559\pi\)
\(954\) 0 0
\(955\) 650.090i 0.680722i
\(956\) 224.402 1132.22i 0.234731 1.18433i
\(957\) 0 0
\(958\) −24.5122 2.40573i −0.0255868 0.00251120i
\(959\) 808.411i 0.842973i
\(960\) 0 0
\(961\) −1954.11 −2.03342
\(962\) −66.6337 + 678.937i −0.0692658 + 0.705756i
\(963\) 0 0
\(964\) 404.089 + 80.0894i 0.419180 + 0.0830803i
\(965\) −1213.07 −1.25707
\(966\) 0 0
\(967\) 119.065i 0.123128i −0.998103 0.0615640i \(-0.980391\pi\)
0.998103 0.0615640i \(-0.0196088\pi\)
\(968\) −465.878 + 1541.52i −0.481279 + 1.59248i
\(969\) 0 0
\(970\) 88.9312 906.129i 0.0916817 0.934154i
\(971\) 1516.56i 1.56185i 0.624624 + 0.780926i \(0.285252\pi\)
−0.624624 + 0.780926i \(0.714748\pi\)
\(972\) 0 0
\(973\) 273.118 0.280697
\(974\) 360.376 + 35.3687i 0.369996 + 0.0363129i
\(975\) 0 0
\(976\) −993.645 409.980i −1.01808 0.420062i
\(977\) 1578.30 1.61546 0.807729 0.589555i \(-0.200697\pi\)
0.807729 + 0.589555i \(0.200697\pi\)
\(978\) 0 0
\(979\) 755.947i 0.772162i
\(980\) 47.2039 + 9.35568i 0.0481672 + 0.00954661i
\(981\) 0 0
\(982\) 989.406 + 97.1044i 1.00754 + 0.0988843i
\(983\) 592.742i 0.602993i −0.953467 0.301497i \(-0.902514\pi\)
0.953467 0.301497i \(-0.0974862\pi\)
\(984\) 0 0
\(985\) 1341.04 1.36147
\(986\) −10.5289 + 107.280i −0.0106784 + 0.108803i
\(987\) 0 0
\(988\) 82.9319 418.431i 0.0839392 0.423513i
\(989\) −1121.28 −1.13375
\(990\) 0 0
\(991\) 1896.17i 1.91339i 0.291098 + 0.956693i \(0.405980\pi\)
−0.291098 + 0.956693i \(0.594020\pi\)
\(992\) 1525.13 + 811.828i 1.53743 + 0.818375i
\(993\) 0 0
\(994\) −9.60720 + 97.8887i −0.00966519 + 0.0984796i
\(995\) 996.141i 1.00115i
\(996\) 0 0
\(997\) 69.7126 0.0699224 0.0349612 0.999389i \(-0.488869\pi\)
0.0349612 + 0.999389i \(0.488869\pi\)
\(998\) 1517.84 + 148.967i 1.52088 + 0.149266i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.3.d.e.163.4 yes 6
3.2 odd 2 324.3.d.f.163.3 yes 6
4.3 odd 2 inner 324.3.d.e.163.3 6
9.2 odd 6 324.3.f.q.271.1 12
9.4 even 3 324.3.f.r.55.2 12
9.5 odd 6 324.3.f.q.55.5 12
9.7 even 3 324.3.f.r.271.6 12
12.11 even 2 324.3.d.f.163.4 yes 6
36.7 odd 6 324.3.f.r.271.2 12
36.11 even 6 324.3.f.q.271.5 12
36.23 even 6 324.3.f.q.55.1 12
36.31 odd 6 324.3.f.r.55.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.3.d.e.163.3 6 4.3 odd 2 inner
324.3.d.e.163.4 yes 6 1.1 even 1 trivial
324.3.d.f.163.3 yes 6 3.2 odd 2
324.3.d.f.163.4 yes 6 12.11 even 2
324.3.f.q.55.1 12 36.23 even 6
324.3.f.q.55.5 12 9.5 odd 6
324.3.f.q.271.1 12 9.2 odd 6
324.3.f.q.271.5 12 36.11 even 6
324.3.f.r.55.2 12 9.4 even 3
324.3.f.r.55.6 12 36.31 odd 6
324.3.f.r.271.2 12 36.7 odd 6
324.3.f.r.271.6 12 9.7 even 3