Properties

Label 324.4.a.c
Level 324324
Weight 44
Character orbit 324.a
Self dual yes
Analytic conductor 19.11719.117
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,4,Mod(1,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 324=2234 324 = 2^{2} \cdot 3^{4}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 324.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 19.116618841919.1166188419
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.1509.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x27x+4 x^{3} - x^{2} - 7x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 232 2\cdot 3^{2}
Twist minimal: no (minimal twist has level 36)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β22)q5+(β2β1+2)q7+(2β2+3β117)q11+(5β2+4β14)q13+(β26β137)q17+(7β22β1+5)q19++(70β256β131)q97+O(q100) q + ( - \beta_{2} - 2) q^{5} + (\beta_{2} - \beta_1 + 2) q^{7} + (2 \beta_{2} + 3 \beta_1 - 17) q^{11} + (5 \beta_{2} + 4 \beta_1 - 4) q^{13} + (\beta_{2} - 6 \beta_1 - 37) q^{17} + ( - 7 \beta_{2} - 2 \beta_1 + 5) q^{19}+ \cdots + ( - 70 \beta_{2} - 56 \beta_1 - 31) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q6q5+6q751q1112q13111q17+15q19210q23+3q25456q2948q31552q3548q37897q41129q43522q47+225q491104q53+93q97+O(q100) 3 q - 6 q^{5} + 6 q^{7} - 51 q^{11} - 12 q^{13} - 111 q^{17} + 15 q^{19} - 210 q^{23} + 3 q^{25} - 456 q^{29} - 48 q^{31} - 552 q^{35} - 48 q^{37} - 897 q^{41} - 129 q^{43} - 522 q^{47} + 225 q^{49} - 1104 q^{53}+ \cdots - 93 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x27x+4 x^{3} - x^{2} - 7x + 4 : Copy content Toggle raw display

β1\beta_{1}== 6ν2 6\nu - 2 Copy content Toggle raw display
β2\beta_{2}== 3ν23ν14 3\nu^{2} - 3\nu - 14 Copy content Toggle raw display
ν\nu== (β1+2)/6 ( \beta _1 + 2 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (2β2+β1+30)/6 ( 2\beta_{2} + \beta _1 + 30 ) / 6 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.47735
2.92542
0.551929
0 0 0 −13.8439 0 30.7080 0 0 0
1.2 0 0 0 −4.89803 0 −10.6545 0 0 0
1.3 0 0 0 12.7419 0 −14.0535 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 324.4.a.c 3
3.b odd 2 1 324.4.a.d 3
4.b odd 2 1 1296.4.a.v 3
9.c even 3 2 36.4.e.a 6
9.d odd 6 2 108.4.e.a 6
12.b even 2 1 1296.4.a.w 3
36.f odd 6 2 144.4.i.d 6
36.h even 6 2 432.4.i.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.4.e.a 6 9.c even 3 2
108.4.e.a 6 9.d odd 6 2
144.4.i.d 6 36.f odd 6 2
324.4.a.c 3 1.a even 1 1 trivial
324.4.a.d 3 3.b odd 2 1
432.4.i.d 6 36.h even 6 2
1296.4.a.v 3 4.b odd 2 1
1296.4.a.w 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T53+6T52171T5864 T_{5}^{3} + 6T_{5}^{2} - 171T_{5} - 864 acting on S4new(Γ0(324))S_{4}^{\mathrm{new}}(\Gamma_0(324)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3 T^{3} Copy content Toggle raw display
55 T3+6T2+864 T^{3} + 6 T^{2} + \cdots - 864 Copy content Toggle raw display
77 T36T2+4598 T^{3} - 6 T^{2} + \cdots - 4598 Copy content Toggle raw display
1111 T3+51T2+66231 T^{3} + 51 T^{2} + \cdots - 66231 Copy content Toggle raw display
1313 T3+12T2+64466 T^{3} + 12 T^{2} + \cdots - 64466 Copy content Toggle raw display
1717 T3+111T2+577476 T^{3} + 111 T^{2} + \cdots - 577476 Copy content Toggle raw display
1919 T315T2+216368 T^{3} - 15 T^{2} + \cdots - 216368 Copy content Toggle raw display
2323 T3+210T2++2322 T^{3} + 210 T^{2} + \cdots + 2322 Copy content Toggle raw display
2929 T3+456T2++2879658 T^{3} + 456 T^{2} + \cdots + 2879658 Copy content Toggle raw display
3131 T3+48T2+3054788 T^{3} + 48 T^{2} + \cdots - 3054788 Copy content Toggle raw display
3737 T3+48T2+682352 T^{3} + 48 T^{2} + \cdots - 682352 Copy content Toggle raw display
4141 T3+897T2++11796543 T^{3} + 897 T^{2} + \cdots + 11796543 Copy content Toggle raw display
4343 T3+129T2+1425149 T^{3} + 129 T^{2} + \cdots - 1425149 Copy content Toggle raw display
4747 T3+522T2+64558782 T^{3} + 522 T^{2} + \cdots - 64558782 Copy content Toggle raw display
5353 T3+1104T2++11853648 T^{3} + 1104 T^{2} + \cdots + 11853648 Copy content Toggle raw display
5959 T3+453T2+96892713 T^{3} + 453 T^{2} + \cdots - 96892713 Copy content Toggle raw display
6161 T3402T2++1209736 T^{3} - 402 T^{2} + \cdots + 1209736 Copy content Toggle raw display
6767 T3213T2+3095063 T^{3} - 213 T^{2} + \cdots - 3095063 Copy content Toggle raw display
7171 T360T2++113211648 T^{3} - 60 T^{2} + \cdots + 113211648 Copy content Toggle raw display
7373 T3375T2++158369284 T^{3} - 375 T^{2} + \cdots + 158369284 Copy content Toggle raw display
7979 T3+552T2+17848772 T^{3} + 552 T^{2} + \cdots - 17848772 Copy content Toggle raw display
8383 T3612T2++3478788 T^{3} - 612 T^{2} + \cdots + 3478788 Copy content Toggle raw display
8989 T3+462T2++170122248 T^{3} + 462 T^{2} + \cdots + 170122248 Copy content Toggle raw display
9797 T3+93T2++86400523 T^{3} + 93 T^{2} + \cdots + 86400523 Copy content Toggle raw display
show more
show less