Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [144,4,Mod(49,144)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(144, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("144.49");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 144.i (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 6.0.6831243.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 36) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
0 | −5.16718 | + | 0.547914i | 0 | 2.44901 | − | 4.24182i | 0 | −5.32725 | − | 9.22708i | 0 | 26.3996 | − | 5.66234i | 0 | ||||||||||||||||||||||||||||
49.2 | 0 | 2.51979 | − | 4.54430i | 0 | −6.37096 | + | 11.0348i | 0 | −7.02674 | − | 12.1707i | 0 | −14.3013 | − | 22.9014i | 0 | |||||||||||||||||||||||||||||
49.3 | 0 | 4.14739 | + | 3.13036i | 0 | 6.92194 | − | 11.9892i | 0 | 15.3540 | + | 26.5939i | 0 | 7.40171 | + | 25.9656i | 0 | |||||||||||||||||||||||||||||
97.1 | 0 | −5.16718 | − | 0.547914i | 0 | 2.44901 | + | 4.24182i | 0 | −5.32725 | + | 9.22708i | 0 | 26.3996 | + | 5.66234i | 0 | |||||||||||||||||||||||||||||
97.2 | 0 | 2.51979 | + | 4.54430i | 0 | −6.37096 | − | 11.0348i | 0 | −7.02674 | + | 12.1707i | 0 | −14.3013 | + | 22.9014i | 0 | |||||||||||||||||||||||||||||
97.3 | 0 | 4.14739 | − | 3.13036i | 0 | 6.92194 | + | 11.9892i | 0 | 15.3540 | − | 26.5939i | 0 | 7.40171 | − | 25.9656i | 0 | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 144.4.i.d | 6 | |
3.b | odd | 2 | 1 | 432.4.i.d | 6 | ||
4.b | odd | 2 | 1 | 36.4.e.a | ✓ | 6 | |
9.c | even | 3 | 1 | inner | 144.4.i.d | 6 | |
9.c | even | 3 | 1 | 1296.4.a.v | 3 | ||
9.d | odd | 6 | 1 | 432.4.i.d | 6 | ||
9.d | odd | 6 | 1 | 1296.4.a.w | 3 | ||
12.b | even | 2 | 1 | 108.4.e.a | 6 | ||
36.f | odd | 6 | 1 | 36.4.e.a | ✓ | 6 | |
36.f | odd | 6 | 1 | 324.4.a.c | 3 | ||
36.h | even | 6 | 1 | 108.4.e.a | 6 | ||
36.h | even | 6 | 1 | 324.4.a.d | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
36.4.e.a | ✓ | 6 | 4.b | odd | 2 | 1 | |
36.4.e.a | ✓ | 6 | 36.f | odd | 6 | 1 | |
108.4.e.a | 6 | 12.b | even | 2 | 1 | ||
108.4.e.a | 6 | 36.h | even | 6 | 1 | ||
144.4.i.d | 6 | 1.a | even | 1 | 1 | trivial | |
144.4.i.d | 6 | 9.c | even | 3 | 1 | inner | |
324.4.a.c | 3 | 36.f | odd | 6 | 1 | ||
324.4.a.d | 3 | 36.h | even | 6 | 1 | ||
432.4.i.d | 6 | 3.b | odd | 2 | 1 | ||
432.4.i.d | 6 | 9.d | odd | 6 | 1 | ||
1296.4.a.v | 3 | 9.c | even | 3 | 1 | ||
1296.4.a.w | 3 | 9.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .