Properties

Label 144.4.i.d
Level 144144
Weight 44
Character orbit 144.i
Analytic conductor 8.4968.496
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,4,Mod(49,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 144=2432 144 = 2^{4} \cdot 3^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 144.i (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.496275040838.49627504083
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.6831243.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6+13x4+49x2+48 x^{6} + 13x^{4} + 49x^{2} + 48 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2233 2^{2}\cdot 3^{3}
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+1)q3+(β4+β3+2β2+2)q5+(2β5+β43β2++4)q7+(3β5+β3β2++6)q9++(9β5+54β4++225)q99+O(q100) q + ( - \beta_{2} + 1) q^{3} + (\beta_{4} + \beta_{3} + 2 \beta_{2} + \cdots - 2) q^{5} + ( - 2 \beta_{5} + \beta_{4} - 3 \beta_{2} + \cdots + 4) q^{7} + ( - 3 \beta_{5} + \beta_{3} - \beta_{2} + \cdots + 6) q^{9}+ \cdots + (9 \beta_{5} + 54 \beta_{4} + \cdots + 225) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+3q3+6q5+6q7+39q951q11+12q13+180q15222q1730q19120q21210q233q25648q27+456q2948q31603q33+1104q35++1854q99+O(q100) 6 q + 3 q^{3} + 6 q^{5} + 6 q^{7} + 39 q^{9} - 51 q^{11} + 12 q^{13} + 180 q^{15} - 222 q^{17} - 30 q^{19} - 120 q^{21} - 210 q^{23} - 3 q^{25} - 648 q^{27} + 456 q^{29} - 48 q^{31} - 603 q^{33} + 1104 q^{35}+ \cdots + 1854 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6+13x4+49x2+48 x^{6} + 13x^{4} + 49x^{2} + 48 : Copy content Toggle raw display

β1\beta_{1}== (ν5+9ν3+17ν+4)/8 ( \nu^{5} + 9\nu^{3} + 17\nu + 4 ) / 8 Copy content Toggle raw display
β2\beta_{2}== (ν5+4ν45ν3+20ν2+15ν4)/8 ( -\nu^{5} + 4\nu^{4} - 5\nu^{3} + 20\nu^{2} + 15\nu - 4 ) / 8 Copy content Toggle raw display
β3\beta_{3}== (ν5+4ν4+13ν3+44ν2+25ν+100)/8 ( \nu^{5} + 4\nu^{4} + 13\nu^{3} + 44\nu^{2} + 25\nu + 100 ) / 8 Copy content Toggle raw display
β4\beta_{4}== (ν59ν3+12ν25ν+52)/4 ( -\nu^{5} - 9\nu^{3} + 12\nu^{2} - 5\nu + 52 ) / 4 Copy content Toggle raw display
β5\beta_{5}== (3ν4+3ν321ν2+18ν20)/2 ( -3\nu^{4} + 3\nu^{3} - 21\nu^{2} + 18\nu - 20 ) / 2 Copy content Toggle raw display
ν\nu== (β4β3+β2+4β12)/6 ( \beta_{4} - \beta_{3} + \beta_{2} + 4\beta _1 - 2 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (β4+β3β226)/6 ( \beta_{4} + \beta_{3} - \beta_{2} - 26 ) / 6 Copy content Toggle raw display
ν3\nu^{3}== (β53β4+4β3β211β1+4)/3 ( \beta_{5} - 3\beta_{4} + 4\beta_{3} - \beta_{2} - 11\beta _1 + 4 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (2β57β45β3+11β2+2β1+138)/6 ( -2\beta_{5} - 7\beta_{4} - 5\beta_{3} + 11\beta_{2} + 2\beta _1 + 138 ) / 6 Copy content Toggle raw display
ν5\nu^{5}== (18β5+37β455β3+β2+178β162)/6 ( -18\beta_{5} + 37\beta_{4} - 55\beta_{3} + \beta_{2} + 178\beta _1 - 62 ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/144Z)×\left(\mathbb{Z}/144\mathbb{Z}\right)^\times.

nn 3737 6565 127127
χ(n)\chi(n) 11 β1-\beta_{1} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
2.63162i
2.13353i
1.23396i
2.63162i
2.13353i
1.23396i
0 −5.16718 + 0.547914i 0 2.44901 4.24182i 0 −5.32725 9.22708i 0 26.3996 5.66234i 0
49.2 0 2.51979 4.54430i 0 −6.37096 + 11.0348i 0 −7.02674 12.1707i 0 −14.3013 22.9014i 0
49.3 0 4.14739 + 3.13036i 0 6.92194 11.9892i 0 15.3540 + 26.5939i 0 7.40171 + 25.9656i 0
97.1 0 −5.16718 0.547914i 0 2.44901 + 4.24182i 0 −5.32725 + 9.22708i 0 26.3996 + 5.66234i 0
97.2 0 2.51979 + 4.54430i 0 −6.37096 11.0348i 0 −7.02674 + 12.1707i 0 −14.3013 + 22.9014i 0
97.3 0 4.14739 3.13036i 0 6.92194 + 11.9892i 0 15.3540 26.5939i 0 7.40171 25.9656i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.4.i.d 6
3.b odd 2 1 432.4.i.d 6
4.b odd 2 1 36.4.e.a 6
9.c even 3 1 inner 144.4.i.d 6
9.c even 3 1 1296.4.a.v 3
9.d odd 6 1 432.4.i.d 6
9.d odd 6 1 1296.4.a.w 3
12.b even 2 1 108.4.e.a 6
36.f odd 6 1 36.4.e.a 6
36.f odd 6 1 324.4.a.c 3
36.h even 6 1 108.4.e.a 6
36.h even 6 1 324.4.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.4.e.a 6 4.b odd 2 1
36.4.e.a 6 36.f odd 6 1
108.4.e.a 6 12.b even 2 1
108.4.e.a 6 36.h even 6 1
144.4.i.d 6 1.a even 1 1 trivial
144.4.i.d 6 9.c even 3 1 inner
324.4.a.c 3 36.f odd 6 1
324.4.a.d 3 36.h even 6 1
432.4.i.d 6 3.b odd 2 1
432.4.i.d 6 9.d odd 6 1
1296.4.a.v 3 9.c even 3 1
1296.4.a.w 3 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T566T55+207T54702T53+34425T52147744T5+746496 T_{5}^{6} - 6T_{5}^{5} + 207T_{5}^{4} - 702T_{5}^{3} + 34425T_{5}^{2} - 147744T_{5} + 746496 acting on S4new(144,[χ])S_{4}^{\mathrm{new}}(144, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T63T5++19683 T^{6} - 3 T^{5} + \cdots + 19683 Copy content Toggle raw display
55 T66T5++746496 T^{6} - 6 T^{5} + \cdots + 746496 Copy content Toggle raw display
77 T66T5++21141604 T^{6} - 6 T^{5} + \cdots + 21141604 Copy content Toggle raw display
1111 T6++4386545361 T^{6} + \cdots + 4386545361 Copy content Toggle raw display
1313 T6++4155865156 T^{6} + \cdots + 4155865156 Copy content Toggle raw display
1717 (T3+111T2+577476)2 (T^{3} + 111 T^{2} + \cdots - 577476)^{2} Copy content Toggle raw display
1919 (T3+15T2++216368)2 (T^{3} + 15 T^{2} + \cdots + 216368)^{2} Copy content Toggle raw display
2323 T6+210T5++5391684 T^{6} + 210 T^{5} + \cdots + 5391684 Copy content Toggle raw display
2929 T6++8292430196964 T^{6} + \cdots + 8292430196964 Copy content Toggle raw display
3131 T6++9331729724944 T^{6} + \cdots + 9331729724944 Copy content Toggle raw display
3737 (T3+48T2+682352)2 (T^{3} + 48 T^{2} + \cdots - 682352)^{2} Copy content Toggle raw display
4141 T6++139158426750849 T^{6} + \cdots + 139158426750849 Copy content Toggle raw display
4343 T6++2031049672201 T^{6} + \cdots + 2031049672201 Copy content Toggle raw display
4747 T6++41 ⁣ ⁣24 T^{6} + \cdots + 41\!\cdots\!24 Copy content Toggle raw display
5353 (T3+1104T2++11853648)2 (T^{3} + 1104 T^{2} + \cdots + 11853648)^{2} Copy content Toggle raw display
5959 T6++93 ⁣ ⁣69 T^{6} + \cdots + 93\!\cdots\!69 Copy content Toggle raw display
6161 T6++1463461189696 T^{6} + \cdots + 1463461189696 Copy content Toggle raw display
6767 T6++9579414973969 T^{6} + \cdots + 9579414973969 Copy content Toggle raw display
7171 (T3+60T2+113211648)2 (T^{3} + 60 T^{2} + \cdots - 113211648)^{2} Copy content Toggle raw display
7373 (T3375T2++158369284)2 (T^{3} - 375 T^{2} + \cdots + 158369284)^{2} Copy content Toggle raw display
7979 T6++318578661907984 T^{6} + \cdots + 318578661907984 Copy content Toggle raw display
8383 T6++12101965948944 T^{6} + \cdots + 12101965948944 Copy content Toggle raw display
8989 (T3+462T2++170122248)2 (T^{3} + 462 T^{2} + \cdots + 170122248)^{2} Copy content Toggle raw display
9797 T6++74 ⁣ ⁣29 T^{6} + \cdots + 74\!\cdots\!29 Copy content Toggle raw display
show more
show less