Properties

Label 324.4.a.c.1.3
Level $324$
Weight $4$
Character 324.1
Self dual yes
Analytic conductor $19.117$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,4,Mod(1,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.1166188419\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1509.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 36)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.551929\) of defining polynomial
Character \(\chi\) \(=\) 324.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+12.7419 q^{5} -14.0535 q^{7} -42.5491 q^{11} -72.4632 q^{13} -59.6114 q^{17} +105.570 q^{19} -0.225180 q^{23} +37.3563 q^{25} -225.710 q^{29} +201.194 q^{31} -179.068 q^{35} -152.926 q^{37} -489.648 q^{41} -7.58743 q^{43} +373.391 q^{47} -145.500 q^{49} -43.6780 q^{53} -542.157 q^{55} -671.899 q^{59} +74.0354 q^{61} -923.320 q^{65} +420.871 q^{67} -730.840 q^{71} +473.927 q^{73} +597.963 q^{77} -529.622 q^{79} +26.1534 q^{83} -759.563 q^{85} +415.949 q^{89} +1018.36 q^{91} +1345.17 q^{95} +927.485 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{5} + 6 q^{7} - 51 q^{11} - 12 q^{13} - 111 q^{17} + 15 q^{19} - 210 q^{23} + 3 q^{25} - 456 q^{29} - 48 q^{31} - 552 q^{35} - 48 q^{37} - 897 q^{41} - 129 q^{43} - 522 q^{47} + 225 q^{49} - 1104 q^{53}+ \cdots - 93 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 12.7419 1.13967 0.569836 0.821759i \(-0.307007\pi\)
0.569836 + 0.821759i \(0.307007\pi\)
\(6\) 0 0
\(7\) −14.0535 −0.758817 −0.379408 0.925229i \(-0.623872\pi\)
−0.379408 + 0.925229i \(0.623872\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −42.5491 −1.16628 −0.583138 0.812373i \(-0.698175\pi\)
−0.583138 + 0.812373i \(0.698175\pi\)
\(12\) 0 0
\(13\) −72.4632 −1.54598 −0.772988 0.634421i \(-0.781239\pi\)
−0.772988 + 0.634421i \(0.781239\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −59.6114 −0.850464 −0.425232 0.905084i \(-0.639807\pi\)
−0.425232 + 0.905084i \(0.639807\pi\)
\(18\) 0 0
\(19\) 105.570 1.27471 0.637354 0.770571i \(-0.280029\pi\)
0.637354 + 0.770571i \(0.280029\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.225180 −0.00204144 −0.00102072 0.999999i \(-0.500325\pi\)
−0.00102072 + 0.999999i \(0.500325\pi\)
\(24\) 0 0
\(25\) 37.3563 0.298850
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −225.710 −1.44528 −0.722642 0.691223i \(-0.757072\pi\)
−0.722642 + 0.691223i \(0.757072\pi\)
\(30\) 0 0
\(31\) 201.194 1.16566 0.582831 0.812594i \(-0.301945\pi\)
0.582831 + 0.812594i \(0.301945\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −179.068 −0.864802
\(36\) 0 0
\(37\) −152.926 −0.679485 −0.339743 0.940518i \(-0.610340\pi\)
−0.339743 + 0.940518i \(0.610340\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −489.648 −1.86513 −0.932563 0.361008i \(-0.882433\pi\)
−0.932563 + 0.361008i \(0.882433\pi\)
\(42\) 0 0
\(43\) −7.58743 −0.0269087 −0.0134543 0.999909i \(-0.504283\pi\)
−0.0134543 + 0.999909i \(0.504283\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 373.391 1.15882 0.579412 0.815035i \(-0.303282\pi\)
0.579412 + 0.815035i \(0.303282\pi\)
\(48\) 0 0
\(49\) −145.500 −0.424197
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −43.6780 −0.113201 −0.0566003 0.998397i \(-0.518026\pi\)
−0.0566003 + 0.998397i \(0.518026\pi\)
\(54\) 0 0
\(55\) −542.157 −1.32917
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −671.899 −1.48261 −0.741303 0.671171i \(-0.765792\pi\)
−0.741303 + 0.671171i \(0.765792\pi\)
\(60\) 0 0
\(61\) 74.0354 0.155398 0.0776988 0.996977i \(-0.475243\pi\)
0.0776988 + 0.996977i \(0.475243\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −923.320 −1.76190
\(66\) 0 0
\(67\) 420.871 0.767427 0.383713 0.923452i \(-0.374645\pi\)
0.383713 + 0.923452i \(0.374645\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −730.840 −1.22162 −0.610808 0.791778i \(-0.709155\pi\)
−0.610808 + 0.791778i \(0.709155\pi\)
\(72\) 0 0
\(73\) 473.927 0.759849 0.379925 0.925017i \(-0.375950\pi\)
0.379925 + 0.925017i \(0.375950\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 597.963 0.884990
\(78\) 0 0
\(79\) −529.622 −0.754267 −0.377134 0.926159i \(-0.623090\pi\)
−0.377134 + 0.926159i \(0.623090\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 26.1534 0.0345868 0.0172934 0.999850i \(-0.494495\pi\)
0.0172934 + 0.999850i \(0.494495\pi\)
\(84\) 0 0
\(85\) −759.563 −0.969249
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 415.949 0.495399 0.247700 0.968837i \(-0.420325\pi\)
0.247700 + 0.968837i \(0.420325\pi\)
\(90\) 0 0
\(91\) 1018.36 1.17311
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1345.17 1.45275
\(96\) 0 0
\(97\) 927.485 0.970844 0.485422 0.874280i \(-0.338666\pi\)
0.485422 + 0.874280i \(0.338666\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −90.1180 −0.0887829 −0.0443915 0.999014i \(-0.514135\pi\)
−0.0443915 + 0.999014i \(0.514135\pi\)
\(102\) 0 0
\(103\) −325.652 −0.311529 −0.155765 0.987794i \(-0.549784\pi\)
−0.155765 + 0.987794i \(0.549784\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1073.49 0.969888 0.484944 0.874545i \(-0.338840\pi\)
0.484944 + 0.874545i \(0.338840\pi\)
\(108\) 0 0
\(109\) 601.488 0.528552 0.264276 0.964447i \(-0.414867\pi\)
0.264276 + 0.964447i \(0.414867\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −420.039 −0.349681 −0.174840 0.984597i \(-0.555941\pi\)
−0.174840 + 0.984597i \(0.555941\pi\)
\(114\) 0 0
\(115\) −2.86922 −0.00232658
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 837.748 0.645346
\(120\) 0 0
\(121\) 479.425 0.360199
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1116.75 −0.799080
\(126\) 0 0
\(127\) −980.264 −0.684916 −0.342458 0.939533i \(-0.611259\pi\)
−0.342458 + 0.939533i \(0.611259\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1355.39 0.903976 0.451988 0.892024i \(-0.350715\pi\)
0.451988 + 0.892024i \(0.350715\pi\)
\(132\) 0 0
\(133\) −1483.63 −0.967271
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 906.522 0.565324 0.282662 0.959220i \(-0.408783\pi\)
0.282662 + 0.959220i \(0.408783\pi\)
\(138\) 0 0
\(139\) −818.418 −0.499405 −0.249703 0.968323i \(-0.580333\pi\)
−0.249703 + 0.968323i \(0.580333\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3083.25 1.80303
\(144\) 0 0
\(145\) −2875.97 −1.64715
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1159.50 −0.637514 −0.318757 0.947836i \(-0.603265\pi\)
−0.318757 + 0.947836i \(0.603265\pi\)
\(150\) 0 0
\(151\) −637.973 −0.343825 −0.171912 0.985112i \(-0.554995\pi\)
−0.171912 + 0.985112i \(0.554995\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2563.59 1.32847
\(156\) 0 0
\(157\) 3291.72 1.67330 0.836649 0.547739i \(-0.184511\pi\)
0.836649 + 0.547739i \(0.184511\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.16456 0.00154908
\(162\) 0 0
\(163\) −1197.14 −0.575258 −0.287629 0.957742i \(-0.592867\pi\)
−0.287629 + 0.957742i \(0.592867\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 838.838 0.388690 0.194345 0.980933i \(-0.437742\pi\)
0.194345 + 0.980933i \(0.437742\pi\)
\(168\) 0 0
\(169\) 3053.92 1.39004
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2307.18 1.01394 0.506970 0.861964i \(-0.330765\pi\)
0.506970 + 0.861964i \(0.330765\pi\)
\(174\) 0 0
\(175\) −524.986 −0.226773
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3114.47 1.30048 0.650241 0.759728i \(-0.274668\pi\)
0.650241 + 0.759728i \(0.274668\pi\)
\(180\) 0 0
\(181\) 3902.75 1.60270 0.801350 0.598195i \(-0.204115\pi\)
0.801350 + 0.598195i \(0.204115\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1948.58 −0.774390
\(186\) 0 0
\(187\) 2536.41 0.991875
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 105.739 0.0400578 0.0200289 0.999799i \(-0.493624\pi\)
0.0200289 + 0.999799i \(0.493624\pi\)
\(192\) 0 0
\(193\) −1585.37 −0.591282 −0.295641 0.955299i \(-0.595533\pi\)
−0.295641 + 0.955299i \(0.595533\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3905.37 −1.41242 −0.706208 0.708005i \(-0.749595\pi\)
−0.706208 + 0.708005i \(0.749595\pi\)
\(198\) 0 0
\(199\) 1538.77 0.548143 0.274072 0.961709i \(-0.411629\pi\)
0.274072 + 0.961709i \(0.411629\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3172.01 1.09671
\(204\) 0 0
\(205\) −6239.05 −2.12563
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4491.92 −1.48666
\(210\) 0 0
\(211\) 941.467 0.307172 0.153586 0.988135i \(-0.450918\pi\)
0.153586 + 0.988135i \(0.450918\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −96.6784 −0.0306670
\(216\) 0 0
\(217\) −2827.48 −0.884523
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4319.63 1.31480
\(222\) 0 0
\(223\) 3321.57 0.997438 0.498719 0.866764i \(-0.333804\pi\)
0.498719 + 0.866764i \(0.333804\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4211.84 −1.23150 −0.615749 0.787943i \(-0.711146\pi\)
−0.615749 + 0.787943i \(0.711146\pi\)
\(228\) 0 0
\(229\) −354.145 −0.102195 −0.0510973 0.998694i \(-0.516272\pi\)
−0.0510973 + 0.998694i \(0.516272\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 868.789 0.244276 0.122138 0.992513i \(-0.461025\pi\)
0.122138 + 0.992513i \(0.461025\pi\)
\(234\) 0 0
\(235\) 4757.72 1.32068
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1204.35 −0.325955 −0.162977 0.986630i \(-0.552110\pi\)
−0.162977 + 0.986630i \(0.552110\pi\)
\(240\) 0 0
\(241\) −5087.40 −1.35979 −0.679893 0.733311i \(-0.737974\pi\)
−0.679893 + 0.733311i \(0.737974\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1853.94 −0.483445
\(246\) 0 0
\(247\) −7649.96 −1.97067
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5463.91 −1.37402 −0.687010 0.726648i \(-0.741077\pi\)
−0.687010 + 0.726648i \(0.741077\pi\)
\(252\) 0 0
\(253\) 9.58119 0.00238089
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7402.12 −1.79662 −0.898311 0.439361i \(-0.855205\pi\)
−0.898311 + 0.439361i \(0.855205\pi\)
\(258\) 0 0
\(259\) 2149.15 0.515605
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −200.031 −0.0468989 −0.0234495 0.999725i \(-0.507465\pi\)
−0.0234495 + 0.999725i \(0.507465\pi\)
\(264\) 0 0
\(265\) −556.541 −0.129011
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5493.50 −1.24515 −0.622574 0.782561i \(-0.713913\pi\)
−0.622574 + 0.782561i \(0.713913\pi\)
\(270\) 0 0
\(271\) −1861.89 −0.417350 −0.208675 0.977985i \(-0.566915\pi\)
−0.208675 + 0.977985i \(0.566915\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1589.48 −0.348542
\(276\) 0 0
\(277\) 5639.03 1.22316 0.611582 0.791181i \(-0.290533\pi\)
0.611582 + 0.791181i \(0.290533\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2558.04 0.543059 0.271530 0.962430i \(-0.412470\pi\)
0.271530 + 0.962430i \(0.412470\pi\)
\(282\) 0 0
\(283\) 7467.95 1.56863 0.784317 0.620360i \(-0.213014\pi\)
0.784317 + 0.620360i \(0.213014\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6881.26 1.41529
\(288\) 0 0
\(289\) −1359.48 −0.276712
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3561.32 −0.710083 −0.355041 0.934851i \(-0.615533\pi\)
−0.355041 + 0.934851i \(0.615533\pi\)
\(294\) 0 0
\(295\) −8561.27 −1.68968
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 16.3173 0.00315602
\(300\) 0 0
\(301\) 106.630 0.0204188
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 943.352 0.177102
\(306\) 0 0
\(307\) −6101.93 −1.13438 −0.567192 0.823586i \(-0.691970\pi\)
−0.567192 + 0.823586i \(0.691970\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 371.235 0.0676875 0.0338438 0.999427i \(-0.489225\pi\)
0.0338438 + 0.999427i \(0.489225\pi\)
\(312\) 0 0
\(313\) 9321.10 1.68326 0.841629 0.540056i \(-0.181597\pi\)
0.841629 + 0.540056i \(0.181597\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6383.57 −1.13103 −0.565516 0.824737i \(-0.691323\pi\)
−0.565516 + 0.824737i \(0.691323\pi\)
\(318\) 0 0
\(319\) 9603.74 1.68560
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6293.19 −1.08409
\(324\) 0 0
\(325\) −2706.96 −0.462015
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5247.45 −0.879335
\(330\) 0 0
\(331\) −2529.42 −0.420028 −0.210014 0.977698i \(-0.567351\pi\)
−0.210014 + 0.977698i \(0.567351\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5362.70 0.874614
\(336\) 0 0
\(337\) 3599.81 0.581882 0.290941 0.956741i \(-0.406032\pi\)
0.290941 + 0.956741i \(0.406032\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8560.62 −1.35948
\(342\) 0 0
\(343\) 6865.12 1.08070
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11373.2 −1.75950 −0.879748 0.475440i \(-0.842289\pi\)
−0.879748 + 0.475440i \(0.842289\pi\)
\(348\) 0 0
\(349\) −1788.95 −0.274385 −0.137193 0.990544i \(-0.543808\pi\)
−0.137193 + 0.990544i \(0.543808\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1110.37 −0.167419 −0.0837096 0.996490i \(-0.526677\pi\)
−0.0837096 + 0.996490i \(0.526677\pi\)
\(354\) 0 0
\(355\) −9312.30 −1.39224
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2250.71 0.330886 0.165443 0.986219i \(-0.447095\pi\)
0.165443 + 0.986219i \(0.447095\pi\)
\(360\) 0 0
\(361\) 4286.07 0.624883
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6038.74 0.865978
\(366\) 0 0
\(367\) 2507.38 0.356632 0.178316 0.983973i \(-0.442935\pi\)
0.178316 + 0.983973i \(0.442935\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 613.828 0.0858985
\(372\) 0 0
\(373\) −4965.41 −0.689274 −0.344637 0.938736i \(-0.611998\pi\)
−0.344637 + 0.938736i \(0.611998\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16355.6 2.23437
\(378\) 0 0
\(379\) −13541.7 −1.83534 −0.917668 0.397349i \(-0.869930\pi\)
−0.917668 + 0.397349i \(0.869930\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8350.08 1.11402 0.557009 0.830506i \(-0.311949\pi\)
0.557009 + 0.830506i \(0.311949\pi\)
\(384\) 0 0
\(385\) 7619.19 1.00860
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2324.62 −0.302989 −0.151495 0.988458i \(-0.548409\pi\)
−0.151495 + 0.988458i \(0.548409\pi\)
\(390\) 0 0
\(391\) 13.4233 0.00173617
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6748.39 −0.859617
\(396\) 0 0
\(397\) 13253.5 1.67550 0.837749 0.546056i \(-0.183871\pi\)
0.837749 + 0.546056i \(0.183871\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15580.6 1.94029 0.970144 0.242528i \(-0.0779767\pi\)
0.970144 + 0.242528i \(0.0779767\pi\)
\(402\) 0 0
\(403\) −14579.2 −1.80208
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6506.88 0.792467
\(408\) 0 0
\(409\) −12239.2 −1.47968 −0.739840 0.672783i \(-0.765099\pi\)
−0.739840 + 0.672783i \(0.765099\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9442.52 1.12503
\(414\) 0 0
\(415\) 333.244 0.0394176
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6393.00 0.745390 0.372695 0.927954i \(-0.378434\pi\)
0.372695 + 0.927954i \(0.378434\pi\)
\(420\) 0 0
\(421\) −15832.6 −1.83286 −0.916431 0.400193i \(-0.868943\pi\)
−0.916431 + 0.400193i \(0.868943\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2226.86 −0.254161
\(426\) 0 0
\(427\) −1040.45 −0.117918
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9339.01 −1.04372 −0.521861 0.853030i \(-0.674762\pi\)
−0.521861 + 0.853030i \(0.674762\pi\)
\(432\) 0 0
\(433\) −3379.19 −0.375043 −0.187522 0.982260i \(-0.560045\pi\)
−0.187522 + 0.982260i \(0.560045\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −23.7723 −0.00260225
\(438\) 0 0
\(439\) 14547.0 1.58153 0.790766 0.612119i \(-0.209683\pi\)
0.790766 + 0.612119i \(0.209683\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5902.00 −0.632985 −0.316492 0.948595i \(-0.602505\pi\)
−0.316492 + 0.948595i \(0.602505\pi\)
\(444\) 0 0
\(445\) 5299.99 0.564592
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2448.48 0.257352 0.128676 0.991687i \(-0.458927\pi\)
0.128676 + 0.991687i \(0.458927\pi\)
\(450\) 0 0
\(451\) 20834.1 2.17525
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12975.9 1.33696
\(456\) 0 0
\(457\) 4473.74 0.457928 0.228964 0.973435i \(-0.426466\pi\)
0.228964 + 0.973435i \(0.426466\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 502.213 0.0507384 0.0253692 0.999678i \(-0.491924\pi\)
0.0253692 + 0.999678i \(0.491924\pi\)
\(462\) 0 0
\(463\) 7086.74 0.711337 0.355668 0.934612i \(-0.384253\pi\)
0.355668 + 0.934612i \(0.384253\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8057.18 0.798376 0.399188 0.916869i \(-0.369292\pi\)
0.399188 + 0.916869i \(0.369292\pi\)
\(468\) 0 0
\(469\) −5914.71 −0.582336
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 322.838 0.0313829
\(474\) 0 0
\(475\) 3943.71 0.380947
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17160.9 1.63695 0.818477 0.574539i \(-0.194819\pi\)
0.818477 + 0.574539i \(0.194819\pi\)
\(480\) 0 0
\(481\) 11081.5 1.05047
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11817.9 1.10644
\(486\) 0 0
\(487\) −9909.84 −0.922090 −0.461045 0.887377i \(-0.652525\pi\)
−0.461045 + 0.887377i \(0.652525\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −19488.5 −1.79125 −0.895627 0.444806i \(-0.853273\pi\)
−0.895627 + 0.444806i \(0.853273\pi\)
\(492\) 0 0
\(493\) 13454.9 1.22916
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10270.9 0.926984
\(498\) 0 0
\(499\) −925.456 −0.0830242 −0.0415121 0.999138i \(-0.513218\pi\)
−0.0415121 + 0.999138i \(0.513218\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8723.45 0.773279 0.386640 0.922231i \(-0.373636\pi\)
0.386640 + 0.922231i \(0.373636\pi\)
\(504\) 0 0
\(505\) −1148.28 −0.101183
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3048.70 0.265484 0.132742 0.991151i \(-0.457622\pi\)
0.132742 + 0.991151i \(0.457622\pi\)
\(510\) 0 0
\(511\) −6660.33 −0.576587
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4149.43 −0.355041
\(516\) 0 0
\(517\) −15887.5 −1.35151
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15593.0 −1.31121 −0.655607 0.755103i \(-0.727587\pi\)
−0.655607 + 0.755103i \(0.727587\pi\)
\(522\) 0 0
\(523\) −9052.67 −0.756875 −0.378438 0.925627i \(-0.623539\pi\)
−0.378438 + 0.925627i \(0.623539\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11993.4 −0.991352
\(528\) 0 0
\(529\) −12166.9 −0.999996
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 35481.5 2.88344
\(534\) 0 0
\(535\) 13678.3 1.10535
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6190.87 0.494730
\(540\) 0 0
\(541\) −11742.8 −0.933200 −0.466600 0.884469i \(-0.654521\pi\)
−0.466600 + 0.884469i \(0.654521\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7664.11 0.602375
\(546\) 0 0
\(547\) 3946.91 0.308515 0.154257 0.988031i \(-0.450701\pi\)
0.154257 + 0.988031i \(0.450701\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −23828.2 −1.84232
\(552\) 0 0
\(553\) 7443.03 0.572351
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3129.69 0.238078 0.119039 0.992890i \(-0.462019\pi\)
0.119039 + 0.992890i \(0.462019\pi\)
\(558\) 0 0
\(559\) 549.810 0.0416001
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −192.036 −0.0143754 −0.00718769 0.999974i \(-0.502288\pi\)
−0.00718769 + 0.999974i \(0.502288\pi\)
\(564\) 0 0
\(565\) −5352.09 −0.398521
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3261.01 0.240261 0.120131 0.992758i \(-0.461669\pi\)
0.120131 + 0.992758i \(0.461669\pi\)
\(570\) 0 0
\(571\) −9414.44 −0.689986 −0.344993 0.938605i \(-0.612119\pi\)
−0.344993 + 0.938605i \(0.612119\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8.41187 −0.000610086 0
\(576\) 0 0
\(577\) −9739.86 −0.702731 −0.351366 0.936238i \(-0.614283\pi\)
−0.351366 + 0.936238i \(0.614283\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −367.546 −0.0262451
\(582\) 0 0
\(583\) 1858.46 0.132023
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25405.7 −1.78638 −0.893190 0.449680i \(-0.851538\pi\)
−0.893190 + 0.449680i \(0.851538\pi\)
\(588\) 0 0
\(589\) 21240.1 1.48588
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2751.26 0.190524 0.0952620 0.995452i \(-0.469631\pi\)
0.0952620 + 0.995452i \(0.469631\pi\)
\(594\) 0 0
\(595\) 10674.5 0.735482
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3316.22 0.226206 0.113103 0.993583i \(-0.463921\pi\)
0.113103 + 0.993583i \(0.463921\pi\)
\(600\) 0 0
\(601\) −7919.69 −0.537522 −0.268761 0.963207i \(-0.586614\pi\)
−0.268761 + 0.963207i \(0.586614\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6108.79 0.410509
\(606\) 0 0
\(607\) −9474.47 −0.633537 −0.316768 0.948503i \(-0.602598\pi\)
−0.316768 + 0.948503i \(0.602598\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −27057.2 −1.79151
\(612\) 0 0
\(613\) −3165.90 −0.208596 −0.104298 0.994546i \(-0.533260\pi\)
−0.104298 + 0.994546i \(0.533260\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −630.345 −0.0411292 −0.0205646 0.999789i \(-0.506546\pi\)
−0.0205646 + 0.999789i \(0.506546\pi\)
\(618\) 0 0
\(619\) 1172.54 0.0761365 0.0380683 0.999275i \(-0.487880\pi\)
0.0380683 + 0.999275i \(0.487880\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5845.54 −0.375918
\(624\) 0 0
\(625\) −18899.0 −1.20954
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9116.16 0.577878
\(630\) 0 0
\(631\) 17925.9 1.13093 0.565465 0.824772i \(-0.308697\pi\)
0.565465 + 0.824772i \(0.308697\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12490.4 −0.780579
\(636\) 0 0
\(637\) 10543.4 0.655798
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6696.85 −0.412652 −0.206326 0.978483i \(-0.566151\pi\)
−0.206326 + 0.978483i \(0.566151\pi\)
\(642\) 0 0
\(643\) −29691.0 −1.82100 −0.910498 0.413513i \(-0.864301\pi\)
−0.910498 + 0.413513i \(0.864301\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12607.6 −0.766084 −0.383042 0.923731i \(-0.625124\pi\)
−0.383042 + 0.923731i \(0.625124\pi\)
\(648\) 0 0
\(649\) 28588.7 1.72913
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −939.460 −0.0563000 −0.0281500 0.999604i \(-0.508962\pi\)
−0.0281500 + 0.999604i \(0.508962\pi\)
\(654\) 0 0
\(655\) 17270.2 1.03024
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13883.2 −0.820656 −0.410328 0.911938i \(-0.634586\pi\)
−0.410328 + 0.911938i \(0.634586\pi\)
\(660\) 0 0
\(661\) 8144.59 0.479256 0.239628 0.970865i \(-0.422975\pi\)
0.239628 + 0.970865i \(0.422975\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −18904.3 −1.10237
\(666\) 0 0
\(667\) 50.8252 0.00295047
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3150.14 −0.181236
\(672\) 0 0
\(673\) −28922.4 −1.65658 −0.828290 0.560300i \(-0.810686\pi\)
−0.828290 + 0.560300i \(0.810686\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27180.8 −1.54305 −0.771524 0.636200i \(-0.780505\pi\)
−0.771524 + 0.636200i \(0.780505\pi\)
\(678\) 0 0
\(679\) −13034.4 −0.736693
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7985.87 −0.447395 −0.223697 0.974659i \(-0.571813\pi\)
−0.223697 + 0.974659i \(0.571813\pi\)
\(684\) 0 0
\(685\) 11550.8 0.644283
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3165.05 0.175005
\(690\) 0 0
\(691\) 9250.05 0.509246 0.254623 0.967040i \(-0.418049\pi\)
0.254623 + 0.967040i \(0.418049\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10428.2 −0.569158
\(696\) 0 0
\(697\) 29188.6 1.58622
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −10267.4 −0.553201 −0.276601 0.960985i \(-0.589208\pi\)
−0.276601 + 0.960985i \(0.589208\pi\)
\(702\) 0 0
\(703\) −16144.5 −0.866146
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1266.47 0.0673700
\(708\) 0 0
\(709\) 13958.7 0.739392 0.369696 0.929153i \(-0.379462\pi\)
0.369696 + 0.929153i \(0.379462\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −45.3048 −0.00237963
\(714\) 0 0
\(715\) 39286.4 2.05487
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 26373.7 1.36798 0.683988 0.729493i \(-0.260244\pi\)
0.683988 + 0.729493i \(0.260244\pi\)
\(720\) 0 0
\(721\) 4576.55 0.236394
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −8431.67 −0.431923
\(726\) 0 0
\(727\) −8793.84 −0.448618 −0.224309 0.974518i \(-0.572013\pi\)
−0.224309 + 0.974518i \(0.572013\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 452.297 0.0228848
\(732\) 0 0
\(733\) −10674.0 −0.537862 −0.268931 0.963159i \(-0.586670\pi\)
−0.268931 + 0.963159i \(0.586670\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −17907.7 −0.895031
\(738\) 0 0
\(739\) −12678.1 −0.631084 −0.315542 0.948912i \(-0.602186\pi\)
−0.315542 + 0.948912i \(0.602186\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22111.3 1.09177 0.545884 0.837861i \(-0.316194\pi\)
0.545884 + 0.837861i \(0.316194\pi\)
\(744\) 0 0
\(745\) −14774.2 −0.726556
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −15086.2 −0.735967
\(750\) 0 0
\(751\) −22151.0 −1.07630 −0.538151 0.842848i \(-0.680877\pi\)
−0.538151 + 0.842848i \(0.680877\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8129.00 −0.391847
\(756\) 0 0
\(757\) −25282.2 −1.21387 −0.606933 0.794753i \(-0.707601\pi\)
−0.606933 + 0.794753i \(0.707601\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10128.9 −0.482488 −0.241244 0.970464i \(-0.577555\pi\)
−0.241244 + 0.970464i \(0.577555\pi\)
\(762\) 0 0
\(763\) −8453.01 −0.401074
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 48688.0 2.29207
\(768\) 0 0
\(769\) −25234.5 −1.18333 −0.591663 0.806185i \(-0.701528\pi\)
−0.591663 + 0.806185i \(0.701528\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 30384.6 1.41379 0.706895 0.707319i \(-0.250096\pi\)
0.706895 + 0.707319i \(0.250096\pi\)
\(774\) 0 0
\(775\) 7515.85 0.348358
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −51692.2 −2.37749
\(780\) 0 0
\(781\) 31096.6 1.42474
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 41942.8 1.90701
\(786\) 0 0
\(787\) 30144.7 1.36536 0.682682 0.730716i \(-0.260814\pi\)
0.682682 + 0.730716i \(0.260814\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5903.01 0.265344
\(792\) 0 0
\(793\) −5364.84 −0.240241
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16128.0 −0.716793 −0.358397 0.933569i \(-0.616676\pi\)
−0.358397 + 0.933569i \(0.616676\pi\)
\(798\) 0 0
\(799\) −22258.4 −0.985538
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20165.2 −0.886194
\(804\) 0 0
\(805\) 40.3225 0.00176544
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23446.4 −1.01895 −0.509475 0.860485i \(-0.670160\pi\)
−0.509475 + 0.860485i \(0.670160\pi\)
\(810\) 0 0
\(811\) −37762.1 −1.63503 −0.817513 0.575910i \(-0.804648\pi\)
−0.817513 + 0.575910i \(0.804648\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15253.8 −0.655605
\(816\) 0 0
\(817\) −801.007 −0.0343007
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11884.7 −0.505213 −0.252606 0.967569i \(-0.581288\pi\)
−0.252606 + 0.967569i \(0.581288\pi\)
\(822\) 0 0
\(823\) −9064.05 −0.383904 −0.191952 0.981404i \(-0.561482\pi\)
−0.191952 + 0.981404i \(0.561482\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −36451.4 −1.53270 −0.766348 0.642426i \(-0.777928\pi\)
−0.766348 + 0.642426i \(0.777928\pi\)
\(828\) 0 0
\(829\) −15293.4 −0.640725 −0.320362 0.947295i \(-0.603805\pi\)
−0.320362 + 0.947295i \(0.603805\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8673.43 0.360764
\(834\) 0 0
\(835\) 10688.4 0.442979
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −353.539 −0.0145477 −0.00727385 0.999974i \(-0.502315\pi\)
−0.00727385 + 0.999974i \(0.502315\pi\)
\(840\) 0 0
\(841\) 26555.8 1.08884
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 38912.8 1.58419
\(846\) 0 0
\(847\) −6737.59 −0.273325
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 34.4359 0.00138713
\(852\) 0 0
\(853\) 25692.7 1.03130 0.515651 0.856799i \(-0.327550\pi\)
0.515651 + 0.856799i \(0.327550\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13018.0 −0.518886 −0.259443 0.965758i \(-0.583539\pi\)
−0.259443 + 0.965758i \(0.583539\pi\)
\(858\) 0 0
\(859\) −2132.08 −0.0846862 −0.0423431 0.999103i \(-0.513482\pi\)
−0.0423431 + 0.999103i \(0.513482\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 39300.5 1.55018 0.775090 0.631851i \(-0.217705\pi\)
0.775090 + 0.631851i \(0.217705\pi\)
\(864\) 0 0
\(865\) 29397.9 1.15556
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22534.9 0.879684
\(870\) 0 0
\(871\) −30497.7 −1.18642
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 15694.2 0.606356
\(876\) 0 0
\(877\) −10608.5 −0.408463 −0.204232 0.978923i \(-0.565470\pi\)
−0.204232 + 0.978923i \(0.565470\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41310.4 1.57978 0.789888 0.613251i \(-0.210139\pi\)
0.789888 + 0.613251i \(0.210139\pi\)
\(882\) 0 0
\(883\) 47180.5 1.79813 0.899066 0.437814i \(-0.144247\pi\)
0.899066 + 0.437814i \(0.144247\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 49777.7 1.88430 0.942148 0.335197i \(-0.108803\pi\)
0.942148 + 0.335197i \(0.108803\pi\)
\(888\) 0 0
\(889\) 13776.1 0.519726
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 39419.0 1.47716
\(894\) 0 0
\(895\) 39684.2 1.48212
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −45411.4 −1.68471
\(900\) 0 0
\(901\) 2603.70 0.0962730
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 49728.4 1.82655
\(906\) 0 0
\(907\) 1036.51 0.0379456 0.0189728 0.999820i \(-0.493960\pi\)
0.0189728 + 0.999820i \(0.493960\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 24780.9 0.901239 0.450620 0.892716i \(-0.351203\pi\)
0.450620 + 0.892716i \(0.351203\pi\)
\(912\) 0 0
\(913\) −1112.80 −0.0403378
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19047.9 −0.685953
\(918\) 0 0
\(919\) 25210.4 0.904912 0.452456 0.891787i \(-0.350548\pi\)
0.452456 + 0.891787i \(0.350548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 52959.1 1.88859
\(924\) 0 0
\(925\) −5712.76 −0.203064
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −27878.6 −0.984570 −0.492285 0.870434i \(-0.663838\pi\)
−0.492285 + 0.870434i \(0.663838\pi\)
\(930\) 0 0
\(931\) −15360.4 −0.540727
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 32318.7 1.13041
\(936\) 0 0
\(937\) 5091.76 0.177525 0.0887623 0.996053i \(-0.471709\pi\)
0.0887623 + 0.996053i \(0.471709\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −43099.4 −1.49309 −0.746547 0.665333i \(-0.768290\pi\)
−0.746547 + 0.665333i \(0.768290\pi\)
\(942\) 0 0
\(943\) 110.259 0.00380755
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24685.7 −0.847072 −0.423536 0.905879i \(-0.639211\pi\)
−0.423536 + 0.905879i \(0.639211\pi\)
\(948\) 0 0
\(949\) −34342.3 −1.17471
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9714.42 0.330200 0.165100 0.986277i \(-0.447205\pi\)
0.165100 + 0.986277i \(0.447205\pi\)
\(954\) 0 0
\(955\) 1347.32 0.0456527
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12739.8 −0.428977
\(960\) 0 0
\(961\) 10688.0 0.358766
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −20200.6 −0.673867
\(966\) 0 0
\(967\) −34368.2 −1.14292 −0.571461 0.820629i \(-0.693623\pi\)
−0.571461 + 0.820629i \(0.693623\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31313.7 1.03492 0.517458 0.855708i \(-0.326878\pi\)
0.517458 + 0.855708i \(0.326878\pi\)
\(972\) 0 0
\(973\) 11501.6 0.378957
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25398.2 0.831688 0.415844 0.909436i \(-0.363486\pi\)
0.415844 + 0.909436i \(0.363486\pi\)
\(978\) 0 0
\(979\) −17698.3 −0.577772
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 48894.2 1.58645 0.793227 0.608926i \(-0.208399\pi\)
0.793227 + 0.608926i \(0.208399\pi\)
\(984\) 0 0
\(985\) −49761.8 −1.60969
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.70854 5.49325e−5 0
\(990\) 0 0
\(991\) −46870.9 −1.50242 −0.751212 0.660061i \(-0.770530\pi\)
−0.751212 + 0.660061i \(0.770530\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 19606.9 0.624703
\(996\) 0 0
\(997\) −31408.2 −0.997702 −0.498851 0.866688i \(-0.666245\pi\)
−0.498851 + 0.866688i \(0.666245\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.a.c.1.3 3
3.2 odd 2 324.4.a.d.1.1 3
4.3 odd 2 1296.4.a.v.1.3 3
9.2 odd 6 108.4.e.a.37.3 6
9.4 even 3 36.4.e.a.25.2 yes 6
9.5 odd 6 108.4.e.a.73.3 6
9.7 even 3 36.4.e.a.13.2 6
12.11 even 2 1296.4.a.w.1.1 3
36.7 odd 6 144.4.i.d.49.2 6
36.11 even 6 432.4.i.d.145.3 6
36.23 even 6 432.4.i.d.289.3 6
36.31 odd 6 144.4.i.d.97.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.4.e.a.13.2 6 9.7 even 3
36.4.e.a.25.2 yes 6 9.4 even 3
108.4.e.a.37.3 6 9.2 odd 6
108.4.e.a.73.3 6 9.5 odd 6
144.4.i.d.49.2 6 36.7 odd 6
144.4.i.d.97.2 6 36.31 odd 6
324.4.a.c.1.3 3 1.1 even 1 trivial
324.4.a.d.1.1 3 3.2 odd 2
432.4.i.d.145.3 6 36.11 even 6
432.4.i.d.289.3 6 36.23 even 6
1296.4.a.v.1.3 3 4.3 odd 2
1296.4.a.w.1.1 3 12.11 even 2